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Abstract: Multiple myeloma (MM) is a malignant hematological disease. The disease is characterized
by the clonal proliferation of malignant plasma cells in the bone marrow. MM accounts for 1.3% of all
malignancies and has been increasing in incidence all over the world. Various genetic abnormalities,
mutations, and translocation, including epigenetic modifications, are known to contribute to the
disease’s pathophysiology. The prognosis is good if detected early, or else the outcome is very bad if
distant metastasis has already occurred. Conventional treatment with drugs poses a challenge when
there is drug resistance. In the present review, we discuss multiple myeloma and its treatment, drug
resistance, the molecular basis of epigenetic regulation, the role of natural products in epigenetic
regulators, diet, physical activity, addiction, and environmental pollutants, which may be beneficial
for clinicians and researchers.
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1. Introduction
1.1. Multiple Myeloma

Multiple myeloma (MM) is a disease in which there is a clonal expansion of plasma
cells in the bone marrow and that results in the production of a monoclonal protein and
end-organ damage [1]. The first case of MM dates back to 1844, when it was reported by
Samuel Solly, and the case of Alexander McBean, a well-known tradesman from London in
1850, is also worth mentioning [2]. Later, in the middle of the 19th century, Henry Bence
Jones described the large amount of protein excreted by Mr. McBean [2].

MM starts as a benign condition known as monoclonal gammopathy of undetermined
significance (MGUS). In high-income countries, MM is the second most prevalent hema-
tological cancer [3]. With an annual incidence of 4.5–6 cases per 100,000 individuals, MM
accounts for 1.3% of all malignancies and 15% of all hematological neoplasms [1]. In the
last few decades, the incidence of MM has been alarmingly increasing, and approximately
86,000 cases are reported to occur annually all over the world [4]. MM is usually seen in
older individuals and is observed to be more common in males compared to females [5].
Published studies have reported a median age at diagnosis of 72 years with a mortality rate
of 4.1 per 100,000 individuals per year [6].

Various genetic abnormalities, mutations, and translocations, including epigenetic
modifications such as DNA and histone methylation, and abnormal miRNA, are known to
contribute to the disease’s pathophysiology [7–10]. There are different risk factors for MM,
and they include obesity, chronic inflammation, pesticide or organic solvent exposure, and
radiation [3]. Researchers showed a positive association between body mass index (BMI)

Int. J. Mol. Sci. 2022, 23, 1649. https://doi.org/10.3390/ijms23031649 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23031649
https://doi.org/10.3390/ijms23031649
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8302-7257
https://orcid.org/0000-0001-8660-5593
https://orcid.org/0000-0001-6205-001X
https://doi.org/10.3390/ijms23031649
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23031649?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 1649 2 of 18

and the incidence of MM in whites [11]. Interestingly, studies reported that high BMI and
change in glucose metabolism are related to an increase in the incidence of MM [12].

Deletion 17p13, t(4;14)(p16;q32), t(14;16)(q32;q23), Metaphase deletion 13, and metaphase
hypodiploid abnormalities were associated with high risk cases [13]. In a recent study
published in 2020, researchers highlighted genetic and societal factors that contribute to
racial and ethnic differences in the prevalence and prognosis of multiple myeloma and its
precursor state [14].

One of the earliest events related to the pathogenesis of MM include IgH translocations
involving the chromosome 14q32 [15]. Almost all MMs begin with an asymptomatic prema-
lignant stage, which is known as monoclonal gammopathy of undetermined significance,
i.e., MGUS [13]. In the development of MM, the bone marrow is thought to play a crucial
role. In the later stages of the disease, malignant plasma cells can survive outside the bone
marrow and migrate to other tissues or circulate in the peripheral blood. The disease is
complicated by organ dysfunction, i.e., hypercalcaemia, renal insufficiency, anemia, and
bone destruction, which is also known as the CRAB criteria [3].

1.2. Diagnostic Criteria for Multiple Myeloma

In MM, monoclonal plasma cells infiltrate the bone marrow, and there is secretion of
monoclonal immunoglobulin, which is detected in blood or urine. To diagnose MM, the
CRAB criteria are used. Organ damage is usually identified by the acronym CRAB, and this
includes C—calcium elevation (>11.5 mg/dL), R—renal dysfunction (creatinine >2 mg/dL),
and A—anemia (hemoglobin <10 g/dL.) [3]. The monoclonal proteins in blood and urine
need to be investigated. If there is a presence of M protein in the blood, additional blood
tests for calcium, uric acid, creatinine, and beta2 microglobulin are also recommended [3].
A bone marrow biopsy is needed. Investigations such as X-rays, computed tomography
(CT) scans, and magnetic resonance imaging (MRI) are also recommended.

In 2014, the International Myeloma Working Group (IMWG) updated the diagnos-
tic criteria for MM by adding three specific biomarkers that can be used for diagnosis
in individuals without CRAB features, and these include “clonal bone marrow plasma
cells ≥ 60%, serum free light chain (FLC) ratio ≥100 provided the involved FLC level is 100
mg/L or higher, or more than one focal lesion on magnetic resonance imaging (MRI)” [16].
In addition, they revised the definition to include computed tomography (CT) and positron
emitted tomography—computed tomography (PET-CT)—to diagnose MM bone disease.

1.3. Clinical Features of Multiple Myeloma

According to the Mayo Clinic, the signs of MM include nausea, vomiting, constipa-
tion, mental confusion, loss of appetite, fatigue, feeling of tiredness, frequent infections,
weakness in lower limbs, and feeling of excessive thirst [17]. Other signs and symptoms
include infection, bleeding, renal insufficiency, lesions in the bone, fractures, fatigue due to
anemia, and a decrease in the function of the immune system [3]. Bone pain may be felt in
the lower part of the back, and often, pathological fractures are seen in the lower lumbar or
pelvic region. Fractures due to focal lytic lesions, or generalized loss of bone, or elevated
bone turnover due to excess cytokine production are frequently seen in MM patients [18].

1.4. Treatment of Multiple Myeloma with Various Drugs

For many years, melphalan, an alkalyting agent, prednisone, and other corticosteroids
were used for the treatment of MM. In the last two decades, thalidomide, bortezomib,
and lenalidomide were considered for the treatment of MM [19]. Proteasome inhibitor
drugs such as Velcade (bortezomib) in combination with dexamethasone (the VD protocol)
have been used for the treatment of MM. In the majority of cases, Velcade (bortezomib)
and dexamethasone were combined with cyclophosphamide or adriamycin, or even with
thalidomide (VTD), in order to improve the efficacy [20]. Bortezomib’s indication was
expanded by the European Medicines Agency in August 2013 in order to include non-
pretreated patients prior to planned high-dose treatment and stem cell transplantation [20].
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In a few places, there is conventional treatment with conventional treatment of six cycles
of melphalan/prednisone and lenalidomide [20]. In high-risk cases, combined autolo-
gous/allogeneic stem cell transplantation may prove to be beneficial. Table 1 summarizes
all the different categories of drugs and their mechanisms of action in the treatment of MM.

Table 1. Table showing different categories of drugs that are used to treat MM and their mechanisms
of action.

Class of Drugs Name of Drug Mechanism of Action

Alkalyting agents Melphalan;
Cyclophosphamide

• Formation of cross links between the two strands of DNA and
impairment of DNA synthesis and cell replication [21]

Proteasome
inhibitors Bortezomib

• Inhibits the ubiquitin mediated proteasome degradative
pathway [21]

• Inhibitor of the NF-κB pathway
• Inhibits activations of β5 and β1 subunits of the 20S

proteasome core in the 26S proteasome complex [22]

Immunomodulatory drugs
(IMiDs)

Thalidomide;
2nd generation IMiDs such
as lenalidomide and
pomalidomide

• Ubiquitin ligase modulations [21]
• Induce cell cycle arrest and apoptosis directly in MM cells [23]

Glucocorticoids Prednisone;
Dexamethasone

• Induce apoptosis and alter the cellular cycle of malignant cells,
interacting with the effects of IL-6 [24]

• Induce apoptosis through repression of transcription factor
activity, and also inhibit the transcription of growth/survival
genes [25]

Monoclonal
Antibodies (mAbs)

Daratumumab

• Targets the cell surface marker CD38, which is abundantly
expressed on MM cells, and causes cellular death via a variety
of immune-mediated pathways [26]

Isatuximab
• Binds selectively to CD38, thereby promoting MM cell

death [27]

Elotuzumab

• Targets the CS1, which is a glycoprotein present on the surface
of MM cells, also named signaling lymphocytic activation
molecule family member 7 (SLAMF7) [28]

• Decreases MM cell adhesion to the bone marrow stroma and
increases tumor cell death [29]

Histone Deacetylase
Inhibitors (iHDACs) Panobinostat

• Increasing chromatin structure opening and, as a result,
stimulating the expression of tumor suppressor genes [30]

Other drugs/karyopherin
inhibitor

Selinexor

• Tumor suppressor proteins are forced into the nucleus and
activated, IκBα is trapped in the nucleus to suppress NF-κB
activity, and oncoprotein mRNA translation is reduced [28]

• Induction of apoptosis in malignant cells, sparing normal
cells [28]

Antibody drug
conjugate Belantamab mafodotin

• Bind selectively to B-cell maturation antigen, together with
monomethyl auristatin F (MMAF), a cytotoxic agent that
mediates cell death [31]
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2. Drug Resistance in Multiple Myeloma

It should not be forgotten that MM is still one of the most expensive cancers in terms
of monetary costs [32]. Because multiple myeloma is so heterogeneous and complex,
treating people with the same drug is often difficult. Hence, a proper understanding of the
epigenetics and genetics of MM pathogenesis is important.

Initially, the patients become responsive to treatment, but at later stages they become
resistant. This is the main challenge encountered with MM treatment. Many patients
have relapsed, or, at times, treatment becomes refractory because of resistance. One of the
processes underlying medication resistance is alteration in the myeloma cells’ adhesive
abilities to the extracellular matrix or stromal cells in the bone marrow [33]. Researchers
showed that genetic abnormalities and epigenetic aberrations that affect the patterns of
DNA methylation and histone modifications of genes, mainly tumor suppressors, play a
vital role in drug resistance in MM resistance [33].

The main causes for drug resistance are: (i) epigenetic alteration [34,35], (ii) genetic
alteration [21], (iii) abnormal drug transport and metabolism, decreasing the intracellular
drugs levels [36], (iv) apoptosis or other intracellular signaling pathways are dysregu-
lated, and autophagy is activated [35], (v) cancer stem cells’ tenacity, which is resistant to
many drugs and capable of self-initiating MM [35,37], (vi) the dependency of MM cells on
stromal microenvironment components, which revealed a dysfunctional tumor microenvi-
ronment [35,38]. It has been reported that drug resistance in cancer can be acquired during
therapy due to “selection pressure”, which is created by treatment, or it might even be
caused by intrinsic processes in which malignant cells are resistant to drugs, even prior to
treatment [39,40].

Drug Resistance in Multiple Myeloma and Molecular Concept

The P-glycoprotein (P-gp), which is produced by the MDR/ATP-Binding Cassette
(ABC) B1 gene, is one of the most critical players in drug resistance [21]. P-gp plays an
important role in drug resistance when patients are treated with proteasome inhibitors,
alkylating agents, and immunomodulatory drugs. The P-gp protein belongs to the pump
transporter family, which mediates the cellular efflux of peptides and drugs. It was ob-
served that 75% of patients treated with drugs such as doxorubicin, dexamethasone, and
vincristine exhibited the expression of P-gp [41]. Interestingly, in untreated MM patients,
P-gp expression was much less, giving evidence that the cumulative dose enhances P-gp
expression in myeloma cells [21]. The myeloma cells express P-gp protein, which is directly
related to the cumulative dose of vincristine and/or doxorubicin that the patients have
received. However, patients treated with melphalan did not show an increase in P-gp
expression, but interestingly, when the treatment included conventional drugs such as vin-
cristine, doxorubicin, dexamethasone, bortezomib, and carfilzomib, there was an increase
of P-gp expression [42,43]. Hence, P-gp may be considered as the protein candidate in all
drug resistance cases. The inhibition of P-gp activity has received considerable attention in
clinical studies. P-gp can also be a marker predicting the therapeutic response in MM.

The multidrug resistance associated protein (MRP) is also considered to be important
for drug resistance. It is a member of the ATP-binding cassette superfamily of transport
proteins. Other members of the ATP-binding cassette superfamily of transport proteins in-
clude BCRP (Breast Cancer Resistance Protein) and LRP (Lung Resistant Protein). Research
studies have shown that the MRP gene can induce resistance to numerous drugs, such
as doxorubicin, daunorubicin, and vincristine [44]. Multi-drug resistance refers to a state
where the cancer cells become resistant to a wide variety of structurally and functionally
unrelated drugs after exposure to a single chemotherapeutic agent [45].

3. Epigenetic Dysregulation in Multiple Myeloma and Future Planning
Involvement of miRNAs and its Dysregulations and Outcome

According to research reports, miRNA can play an important role in the regulation
of drug response in MM [35]. miRNAs can control various genes and regulate different
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cellular pathways. miRNAs can function as oncogenic or suppressors of tumors. It has
been reported that miRNAs may control the drug response of MM cells through regulation
of the apoptotic or proliferative pathways, which include p53 [46], which is a transcription
factor that can stimulate tumor suppressor miRNAs or even inhibit some oncomiRNAs [47].
The miRNAs activated by p53 have been reported to affect the antiapoptotic genes, thereby
enhancing the tumor suppressor activity of p53 [47].

Many miRNAs are observed to be dysregulated in the pathogenesis or drug resistant
cases of MM. Upregulation of miR-21 has been reported to cause inhibition of apoptosis and
increase drug resistance [48]. Upregulation of miR-221/222 leads to inhibition of apoptosis
and modulation of drug influx–efflux and ABC transporters [49]. Upregulated miR106b-25
cluster, miR-181a/b, and miR-32 targeted genes were reported to control p53 activity in
MM [50]. Downregulation of miR-631 involved the UbcH10/MDR1 pathway, which was as-
sociated with the development of BTZ resistance in myeloma cells [51]. Downregulation of
miR-30c caused activation of the oncogenic Wnt/β-catenin/BCL9 pathway and promoted
MM cell proliferation and drug resistance [52]. The allelic imbalances or heterozygosity loss
were observed to be significantly associated with the altered expression of miRNAs, which
were located in different regions, such as et-7b at 22q13.31 or miR-140-3p at 16q22. [53].
The use of antagomirs or miRNA mimics has been shown to possess anticancer activity
and to have synergistic effects with antimyeloma drugs [54].

Epigenetic means changes in the expression of genes and chromatin structure without
any change in the sequence of the DNA. Epigenetic dysregulation has been linked to
many cancers. Hence, epigenetic modifications could be promising targets for future
drug discovery.

DNA methylation, histone post-translational modifications, chromatin remodeling,
and the silencing of gene expression have been implicated in the genesis and progression
of MM. Dysregulation of DNA methylation has received considerable interest from differ-
ent researchers. The expression of lineage-specific gene sets regulates the lymphopoiesis
process. Progenitor cells have various ways of controlling gene expression, and there is
a significant amount of control by epigenetic modifications. One of the most important
epigenetic markers is DNA methylation, and this influences genetic architecture and gene
expression [55]. The abnormal methylation of DNA is a typical feature of cancer cells.
Hypomethylation is linked to genomic instability [56], whereas local hypermethylation is
thought to play a role in tumor suppressor gene suppression [57]. Regarding the prognosis
of MM, epigenetically-inhibited tumor suppressor genes could be considered very impor-
tant. In most malignancies, genome-wide hypomethylation is accompanied by a global
rise in entropy [58]. The MM epigenome is well characterized by substantial intra-tumor
heterogeneity and methylation patterns that are primarily stochastic [59]. Research studies
have shown that DNA methylation gains are associated with increased heterogeneity, and
the same results were seen in acute myeloid leukemia [60]. GPX3, RSBP1, SPARC, and
TGFBI have all been found to be epigenetically inactivated in MM samples, and their
methylation status was linked to overall survival, giving evidence of their prognostic
significance [55]. Currently, DNA methyltransferase inhibitors (DNMTis) are employed
to correct abnormal DNA methylation patterns [55]. Interestingly, 5-azacytidine (azacyti-
dine) and 5-aza-2′deoxycytidine (decitabine), two cytidine analogs, have been found to
exhibit anti-myeloma activity, as evidenced by increased DNA damage, cell cycle arrest,
and induction of MM cell death [61]. According to the latest research studies, enhanced
stochastic methylation variation permits tumor cells to better adapt and discover novel
paths in response to changes in the environment or treatment pressure [59].

Post-translational modifications (PTMs), such as acetylation, can occur on histones.
Acetylation of histones is one of the most well-studied PTMs, making it a key participant
in chromatin structural remodeling and gene transcription modulation [62]. Acetylated
histones also serve as binding sites for proteins with bromodomains, which frequently
control gene expression in a favorable manner [63]. Coding mutations involving histone
acetyltransferases (HATs) are observed in MM. The main function of the HATs is to acetylate
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newly translated histones. There are two types of enzymes, type A HATs and type B HATs,
which play a role in transferring acetyl groups to other proteins, such as oncogenes and
tumor suppressors such as MYC, P53, and PTEN, changing their protein activities [64].
Histone deacetylase catalyzes the removal of acetyl groups, which results in transcriptional
repression [65]. In the future, enzyme-binding acetylated histones may also prove to be
beneficial in planning therapeutic options.

4. Role of Natural Products in Epigenetic Regulators
4.1. DNA Methyltransferase (DNMTs)

A few drugs target DNMTs, and they include well-known epigenetic drugs such as
azacytidine and decitabine, which have been widely used as epigenetic modulators. The
causes of concern are the adverse effects of azacytidine and decitabine, which include
toxicity and poor chemical stability [66]. In this regard, the phytochemicals isolated from
plants were found to be less toxic. There is a need to try phytocompounds present in
natural products. A few natural products that act as DNMTis are: (i) Epigallocatechin-3-
gallate (EGCG), (ii) curcumin, (iii) Kazinol Q, (iv) Nanaomycin, (v) Parthenolide, and (vi)
Antroquinolol D [67].

4.2. Epigallocatechin-3-gallate (EGCG)

Epigallocatechin-3-gallate (EGCG) is found in green tea. Green tea, as a natural
product, is also rich in polyphenols and may be beneficial in treating cancers. EGCG and
polyphenols were reported to have chemoprotective effect against various cancers [68]. The
first research on EGCG, published in 2003, showed that EGCG inhibited DNMT activity
with an IC50 of 20 µM and reactivated methylation-silencing genes in cancer cells [69]. The
same study also supported the view that inhibition of DNA methylation by any dietary
constituent could be beneficial for the prevention of cancer. EGCG may also influence
apoptosis, thereby proving its role in cancer.

4.3. Curcumin

The rhizome of Curcuma longa has several active compounds, and polyphenol non-
toxic curcumin is one of them. The yellow pigment substance forms a major part of the spice
(known as turmeric) used in India and Southeast Asia. Traditionally, curcumin has been
used for the treatment of various diseases due to its anti-inflammatory, antibacterial, anti-
allergic, and antioxidant properties. Curcumin can act as an epigenetic regulator. A recent
study highlighted the anti-proliferation, anti-angiogenesis, and anti-mutation properties
of curcumin and the apoptosis induced by it in cancer cells, thereby combating multidrug
resistance [70]. The same published article reported the action of curcumin on various sig-
naling pathways and cell cycle checkpoints. Interestingly, curcumin could boost myeloma
cells’ chemosensitivity to Bortezomib, and this could be due to Notch1 suppression [71].
The polyphenol curcumin has been reported to inhibit the activity of histone acetyltrans-
ferase, which leads to histone acetylation inhibition [72]. Curcumin has been shown to
induce methylation of the mTOR promoter through the upregulation of DNMT3A and
DNMT3B [73]. Epigenetic regulation of the mammalian target of the rapamycin (mTOR)
gene plays an important role in MM, and treatment with curcumin showed downregulation
of mTOR to be associated with hypermethylation of its promoter [73]. Hence, curcumin
could be used as an effective epigenetic modulator.

4.4. Kazinol Q

Kazinol Q, a natural chemical derived from the Formosan plant Broussonetia kazinoki,
has been demonstrated to be effective as a DNMT1 inhibitor [74]. DNA methylation plays
an important role as an epigenetic regulator of the transcription of various cancer genes.
Kazinol Q inhibits DNMT activity. Kazinol Q may inhibit the proliferation of different
cancer cells. Earlier reports showed that Kazinol Q inhibits the growth of MCF-7 breast
and LNCaP prostate cancer cells, and such an action was performed through apoptosis
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induction [74]. Hence, Kazinol Q may be effective in the epigenetic regulation of MM
because it has an effect on DNMT inhibition.

4.5. Nanaomycin A

Nanaomycin A is another quinone antibiotic that was discovered in a Streptomyces
culture. The antibacterial activity of nanaomycin A is due to its ability to generate O2

− [75].
Nanaomycin causes the induction of apoptosis. The anti-proliferative action of Nanaomycin
A was attributed to its selective inhibition of DNMT3B with an IC50 value of 500 nM [67].
Nanaomycin A showed selectivity for DNMT3B in biochemical assays and, according to
researchers, this was the first identified DNMT3B-selective inhibitor that induced genomic
demethylation [76].

4.6. Parthenolide

Parthenolide is an extract from the plant Tanacetum parthenium. In traditional medicine,
the plant was used for the treatment of migraines and rheumatoid arthritis [77]. The plant
was used for its anti-inflammatory and epigenetic cancer therapy properties [78]. The plant
extract possesses anticancer properties. Parthenolide causes apoptosis and suppresses the
growth of human 786-O kidney cancer cells [79]. The suppression of the transcription factor
nuclear factor-kappa B is linked to apoptosis (NF-kB) [77]. Parthenolide epigenetically
regulates the NF-kB target genes. Parthenolide, being an NF-kB inhibitor, can be effective
as an anti-proliferative agent, which can induce apoptosis and check metastasis.

4.7. Antroquinolol D

Antroquinonol D, an ubiquinone derivative, is isolated from the mycelium of Antrodia
camphorate [80]. According to research reports, Antroquinolol D was reported to inhibit
the activity of DNMT1 in MDA-MB-231 breast cancer cells, having an IC50 value lower
than 5 µM nM [67]. Hence, Antroquinolol D inhibits breast cancer growth and migratory
potential, and such action is performed by inducing DNA demethylation and the recovery
of several tumor suppressor genes. The plant product may also suppress NF-κB signaling.

4.8. Resveratrol

Resveratrol has been studied in multiple cancer cell lines, including MM, liver, skin,
breast, prostate, lung, and colon. Resveratrol affects various signaling pathways that control
cell division, growth, apoptosis, angiogenesis, and tumor metastasis [81,82]. Talib et al.
described the tumor microenvironment being targeted by resveratrol that included reactive
oxygen species (ROS), tumor associated macrophages, indoleamine 2,3-dioxygenase in
dendritic cells, vascular endothelial growth factor (VEGF), tissue fibrosis, and interleukin 6
(IL-6) [83]. Resveratrol’s main chemotherapeutic action is apoptosis, which is associated
with the activation of the tumor suppressor p53 as well as the induced activation of the
Fas/CD85/APO-1receptor in various cancer cells [84,85]. Focusing on MM, resveratrol
is found to be able to sensitize carfilzomib-induced apoptosis via promoting oxidative
stress [86]. Resveratrol also induces apoptosis and obstructs the proliferation of MM cells
by inhibiting the constitutive activation of NF-κB through abrogating the IκB-α kinase
activation, subsequently downregulating survivin, cIAP-2, cyclin D1, XIAP, Bcl-xL, Bfl-
1/A1, Bcl-2, and TNF-α receptor-associated factor 2 (TRAF2) [87].

Despite the fact that this compound attracts attention in cancer studies including
MM, its efficacy in clinical studies is still limited. The high concentrations of resveratrol
utilized in preclinical studies seem difficult to achieve in clinical settings [88]. However, its
notable potential must not be taken lightly. Hence, more clinical trials are needed to prove
its efficacy. Resveratrol acts on the enzymes that catalyze DNA methylation and histone
modifications. The epigenetic modification is performed mainly through methylation
and acetylation.
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4.9. Quercetin

Quercetin is an important bioflavonoid that can be found in plants such as berries
(blueberries and cranberries), apples, green leafy vegetables, onions, broccoli, cauliflower,
cabbage, and nuts [89]. Interestingly, quercetin has the ability to neutralize free radicals
and bind to metal ions. In MM, quercetin inhibits its cell proliferation by downregulating
the expression of IQ motif-containing GTPase activating protein 1 (IQGAP1) and activating
the extracellular signal-regulated kinase 1/2 (ERK1/2). Besides that, this compound is able
to inhibit the activation of mitogen-activated protein kinase (MAPK) and the interaction
between IQGAP1 and ERK1/2 in MM cells [90]. Modulation of DNA methylation and
histone acetylation are the two important mechanisms by which quercetin acts as an
epigenetic modifier.

4.10. Genistein

Genistein is predominantly found in Leguminosae, and it belongs to the aglycone
subgroup of isoflavones. This compound’s anti-cancer and epigenetic regulation effects
are centered on its ability to induce programmed cell death, increasing anti-cancer efficacy
and inhibiting angiogenesis [91]. Treatment utilizing genistein is described as being able
to inhibit human MM cell proliferation by upregulating miR-29b. Genistein is also able
to inhibit NF-κB expressed by MM cells, Akt phosphorylation, and MM cell proliferation.
Furthermore, it is also able to induce apoptosis in MM cells and decrease the expression of
NF-κB-regulated genes [90].

5. Lifestyle Factors Concerned with Epigenetic Effects in Multiple Myeloma

Lifestyle is defined as the ‘distinguished way of life of an individual or group of people’.
Lifestyle factors that generally influence health include diet, psychosocial and physical
activities, working conditions, and smoking and addictions. Individual genetic profiles are
intertwined with lifestyle and environmental factors, thus affecting their health status [92].
Epigenetic mechanisms are flexible genomic parameters that influence genome function
under exogenous influence. Therefore, recent studies focus on changes in mechanisms such
as DNA methylation, histone modifications, and microRNA expression that are influenced
by lifestyle [93].

Amodio et al. stated that several DNMT, histone methyltransferase (HMT), and
miRNA inhibitors are emerging as promising cancer management tools that are on the verge
of clinical success [94]. One cannot forget the gene expression studies that are beneficial
for molecular classification, for example, comparative genomic hybridization to map
abnormalities for tumors [95]. The reversibility of epigenetic mechanisms has prompted
current studies to understand their relationship with lifestyle in order to restore epigenetic
equilibrium [94]. Figure 1 illustrates the targeted role of epigenetics in MM progression.

5.1. Diet

Dietary factors have an important role in the normal physiological function of the hu-
man body and are also involved in the process of pathological progression. The epigenetic
variation of MM is dependent on dietary factors. As a result, developing strategies that
use dietary compounds to target epigenetic modifications is critical in the prevention and
treatment of MM [96].

Caloric restriction (CR) is the term describing a reduction in calorie intake by 10%
to 40%, without causing any malnutrition. There is a scarcity of epigenetic data on the
effects of pure CR in humans, as it is a difficult intervention to implement in the long
run [97]. Two important trials, the DIOGENES and RESMENA studies, showed that CR
significantly reduced inflammation and improved metabolic syndrome features [96,98,99].
To date, studies exploring epigenetically mediated changes in gene expression linked to CR
have focused on aging processes. DNA methylation and histone modification are the main
genetic codes that play significant roles in regulating the chromatin structure and gene
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expression in response to CR. However, studies utilizing CR intervention in describing the
epigenetic changes among MM or general cancer populations are still scarce [100,101].

Figure 1. Schematic diagram showing etiology of multiple myeloma and the epigenetic machinery
involved.

The consumption of fatty acids (FA) was found to have a significant impact on DNA
methylation (either hyper or hypomethylation), acetylation or deacetylation of histones,
and the miRNAs responsible for the repression or activation of genes. The desirable effects
of disease prevention, including cancer progression, are associated with certain types of
FA, such as n-3 PUFA (e.g., EPA-DHA) and MUFA (e.g., OA, palmitoleic). n-3 PUFA
supplementation is associated with modification in DNA methylation profiles of blood
leukocytes related to pathways involving inflammatory and immune responses. Besides
that, in vitro studies revealed that the MUFA (oleic acid) anti-inflammatory effect was
associated with DNA methylation signatures [96]. On the other hand, dietary FA types such
as n-6 PUFA, saturated fatty acids (stearic and palmitic), and trans fatty acids (elaidic) are
associated with DNA hypermethylation of the PPARγ1 gene promoter, a key factor in the
activation of pro-inflammatory mediators and insulin resistance in macrophages [102,103].
These laboratory findings are in accordance with human studies that associate the intake
of omega-3 essential fatty acid (n-3) with a reduced risk of MM, whilst a high intake of
saturated fat is associated with poor MM progression [104,105].

Dietary polyphenols are supplied by the daily intake of fruits and vegetables. These
plant polyphenols supply the source of various classes of polyphenols, including stilbenes,
flavonoids, benzoquinones, phenolic acids, acetophenones, xanthones, and lignins. Pre-
ventive mechanisms that have been heavily studied are the capabilities of polyphenols to
alter cancer cells’ epigenomes by remodeling their chromatin or reactivating silenced genes.
Furthermore, previous studies have shown that polyphenols gained from daily diet intake
are potential chemo-preventive agents due to their ability to modify histone and inhibit
DNMTs. Common sources of food that contain polyphenols with protective roles against
cancer are described in Table 2.
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Table 2. Table showing dietary sources of polyphenols and its epigenetic dietary compounds that
affect cancer progression.

Dietary Sources Epigenetic Dietary Compounds Mechanism of Action

Garlic Allyl mercaptan,
Organosulfur

• Histone deacetylases (HDAC) inhibitor [106]

Berries Resveratrol
• Dietary inhibitors of DNA methyltransferasses (DNMTs)
• HDAC inhibitor [107]

Nuts Resveratrol
Selenium

• Dietary inhibitors of DNA methyltransferasses (DNMT)
• HDAC inhibitor [108]

Green tea EC, ECG, EGC and EGCG

• Histone acetyltransferase (HAT) inhibitor
• HDAC inhibitor
• miRNA modulator [109]

Turmeric Curcumin
• DNMT inhibitor
• miRNA modulator [70]

Beans Genistein;
Folate

• DNMT inhibitor
• HDAC inhibitor
• miRNA modulator [110]

Green vegetables
Folate;
Isothiocyanates;
Sulforaphane

• DNMT inhibitor
• HDAC inhibitor; miRNA modulator [111]

The ability of pharmacologically-dosed ascorbic acid (vitamin C) to either prevent
or promote cancer progression may have contradictory evidence. However, increasing
the intake of foods high in vitamin C may have a beneficial effect on chemo-prevention.
Vitamin C has been reported to regulate the demethylation of DNA and histone, and it has
a potential epigenetic impact on cancer prevention and treatment [112]. However, intake
of certain natural products and antioxidants such as vitamin C may interact with the MM
medication bortezomib, hence antagonizing its effect. Therefore, it is wise to highlight the
potential negative interactions between patients’ anticancer therapies and complimentary
therapies for MM patients in order to maximize the benefits of treatment [113].

5.2. Physical Activity

Multiple studies, including cohort studies, describe the association between high BMI
in early adult life and the incidence of MM, suggesting that physical activity (PA) has either
a direct or indirect effect on the progression of MM [114]. It has been found that exercise may
reduce the risk of cancer through increasing global DNA methylation (DNMT1, DNMT2,
DNMT3A, DNMT3B, DNMT3L) and influence the expression of genes related to muscle
work, which includes PPARGC1A encoding peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1α) [115].

The anti-inflammatory effect of PA through epigenetic regulation depends on the
type of activity, endurance, body composition, gender, and age. Studies found that PA
is associated with a desirable effect on the methylation of the ASC gene, plasma IL-1β
levels, and NFKB2 gene promoter methylation. However, it is worth highlighting that
overexertion of PA may also induce inflammation [96].

Elucidating the effect of PA on epigenetic regulation must include its interaction
with diet, body composition, and age-related factors. These confounding factors must be
discussed together in order to highlight the various outcomes of NFKB1 and NFKB2 gene
methylation and inflammatory miRNAs [96,116]. Published data on MM and PA, which
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could be used to further evaluate the epigenetic regulation that is affected, is still scarce.
Therefore, it is recommended to design a future study that focuses on the impact exerted
by PA on the progression of the disease in order to understand its potential as part of the
therapeutic regimen.

5.3. Addiction

Addiction to drugs and other addictive substances may lead to cellular and molecular
changes, with many common neuronal changes in gene expression, as demonstrated by
numerous human studies and animal models [117]. Some addictive drugs have been
observed to increase the production of reactive oxygen species (ROS), and this results in
oxidative stress conditions that eventually cause alteration in mitochondrial and nuclear
gene expression [118].

Wong et al., early on, suggested that acute drug use produces enduring modifications
in gene expression through epigenetic changes that affect susceptibility to addiction [119].
Increased vulnerability to substances of abuse will then feed back into an enhanced risk of sub-
sequent drug use that brings about further alterations to the epigenome and gene expression.

Recent evidence with regard to opioid addiction points towards the substance promot-
ing increased levels of permissive histone acetylation and decreased levels of repressive
histone methylation, including alteration of the pattern of DNA methylation and noncoding
RNA expression in the reward circuitry of the brain [120]. Nestler et al. reported that exces-
sive dopamine signaling during drug use modulates gene expression and changes synaptic
function and circuit activity [121]. A study in an experimental model of rats suggested that
methamphetamine-induced alterations in global gene expression in the nucleus accumbens
might be related, in part, to methamphetamine-induced changes in histone acetylation,
and that may be secondary to changes in histone acetyltransferase and histone deacetylase
expression [122].

A microarray analysis in a zebrafish model identified 1362 genes with a significant
change in expression between control and those treated with nicotine or ethanol, with
153 genes shared by both ethanol- and nicotine-treated animals [123]. Ponomarev et al.
reported that global changes in gene expression in the brains of alcoholics are primarily
caused by chronic alcohol abuse, which eventually changes gene expression via alteration
in chromatin states [124]. Renthal and Nestler have reported that chromatin structure
regulation through post-translational modifications of histones (e.g., acetylation) is an im-
portant mechanism to translate environmental triggers, which include substances of abuse,
into specific modifications of gene expression [125]. However, the association between
substance addiction influencing epigenetic factors in MM is yet to be clearly elucidated.

5.4. Pollutants

Although the exact etiology of multiple myeloma still remains unclear, environmental
factors have been suggested to increase the risk of the disease [126]. In particular, studies
have shown that exposure to pesticides and Agent Orange, a defoliant chemical used in the
Vietnam War, is associated with an elevated risk of MM, especially among workers in the
agricultural industry [127]. Several other occupational and toxic agents have been impli-
cated as potentially causative, yet the precise association of the disease through epigenetics
is yet to be defined. Numerous research findings, however, show that exposure to heavy
metals and environmental pollutants can interact with epigenetic factors such as genomic
DNA methylation, specific gene promoter DNA methylation, DNA methyltransferase
activity, global and gene-specific post-translational histone modifications, and alterations
in microRNA expression levels [128].

Shukla et al. have demonstrated that particulate matter from air pollution disturbs
the mitochondrial machinery and results in epigenome disruption. This epimutation
is thought to involve mitochondrial DNA, allele imprinting, histone withholding, and
non-coding RNAs, and the harmful changes may be passed down across generations,
resulting in transgenerational epigenomic inheritance [129]. In addition, respiratory cell
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lines and animal models have also demonstrated distinct gene expression signatures in
the transcriptome when exposed to particulate matter or ozone [130]. Particulate matter
such as diesel exhaust particles and other environmental toxins also alter the expression of
microRNA (short non-coding RNA that regulates gene expression), subsequently altering
cellular processes leading to disease pathogenesis [130,131].

Industrially, occupational exposure to benzene gives rise to hematopoietic malignancy,
possibly via its genotoxic action. The acquired epigenetic modifications may participate in
benzene leukemogenesis, as benzene affects nuclear receptors, inciting post-translational
alterations at the protein level that interfere with the function of regulatory proteins, which
comprise oncoproteins and tumor suppressor proteins [132]. Other principal environmental
and industrial pollutants, such as cadmium, chromium, lead, methyl mercury, arsenic,
nickel, aluminum, benzene, polybrominated diphenyl ethers, polycyclic aromatic hydro-
carbons, bisphenol A, and volatile organic compounds, have all been linked to epigenetic
changes and are associated with a broad array of adverse health outcomes [133].

6. Epigenetic Treatment to Overcome Drug Resistance

Genetic mutations and epigenetic alterations were found to be responsible for the
growth of the tumor and chemotherapy resistance [134]. It is always possible to reverse the
changes with epigenetic modifications, and the malignant cells may be reverted to their
normal state, thereby making them a suitable therapeutic target for appropriate drugs [135].
In the future, genomic technology could be used to better understand many somatic
mutations. Many target genes of miRNAs encode for proteins that are involved in survival,
proliferation, and drug resistance, and these areas could be studied in detail [136]. A few
miRNAs are known to be direct transcriptional targets and tumor-suppressive effectors,
and they could be potential areas of future drug targets.

A better understanding of histone modifications, such as deacetylation and methyla-
tion, could also be useful in combating drug resistance. Although many dysregulations of
the epigenome in MM have been studied by researchers, only one epigenetic treatment for
MM has been approved to date [137]. Pan-histone deacetylase (HDAC) inhibitor panobi-
nostat is the only epigenetic drug that has been used to date [137]. This drug interferes
with the chaperone function of HSP90 and leads to the suppression of tumor growth [138].
Panobinostat, when combined with a proteasome inhibitor and dexamethasone, showed
better results with regard to survival in relapsing and refractory MM patients [138]. HDAC
inhibitors have multiple modes of action, hence they could be useful in many drug re-
sistance cases. HDACs alter histones and DNA, and also affect the post-transcriptional
modifications of other proteins, which could perhaps act as an important epigenetic modi-
fier [137]. Epigenetic inhibitors with a combination of miRNAs could be effectively used
for drug resistant cases. Future clinical trials involving the epigenetic miRNA axis may
also be beneficial.

7. Conclusions

There is a concern regarding the increase in the incidence of MM throughout the
world. MM is a clonal plasma cell disorder. In this cancer, atypical plasma cells are found
in the bone marrow. Proper diagnosis and early treatment of MM are necessary for better
outcomes. The efficacy and tolerability of the drugs and the resistance they endanger
will always remain the main challenges. Apart from the genetic abnormalities that are
responsible for the etiology of MM, epigenetic aberrations are also responsible for the
development of MM. Epigenetic drugs and modifications may help in combating the
disease. In the present review, we discussed MM and modifiable epigenetics.
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