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Fic domain-containing AMP transferases (fic AMPylases) are
conserved enzymes that catalyze the covalent transfer of AMP
to proteins. This posttranslational modification regulates the
function of several proteins, including the ER-resident chap-
erone Grp78/BiP. Here we introduce a mouse FICD (mFICD)
AMPylase knockout mouse model to study fic AMPylase
function in vertebrates. We find that mFICD deficiency is well
tolerated in unstressed mice. We also show that mFICD-
deficient mouse embryonic fibroblasts are depleted of AMPy-
lated proteins. mFICD deletion alters protein synthesis and
secretion in splenocytes, including that of IgM, an antibody
secreted early during infections, and the proinflammatory
cytokine IL-1β, without affecting the unfolded protein
response. Finally, we demonstrate that visual nonspatial short-
term learning is stronger in old mFICD−/− mice than in wild-
type controls while other measures of cognition, memory,
and learning are unaffected. Together, our results suggest a
role for mFICD in adaptive immunity and neuronal plasticity
in vivo.

The posttranslational regulation of protein function is a
fundamental concept in biology. To manage protein activity,
dedicated enzymes attach specific chemical modifications to
individual proteins, the presence of which affects the behavior
and activity of the modified proteins. These modifications,
called posttranslational modifications (PTMs), govern essential
biological processes. They are implicated in cancer, neuro-
degeneration, and cardiovascular diseases, among others.

The covalent addition of an AMP moiety to the side chain of
exposed threonine and serine residues has emerged as a new
paradigm to control the activity of the essential ER-resident
chaperone BiP. This process, AMPylation, is catalyzed by
metazoan AMP transferases (AMPylases) that contain a fila-
mentation induced by c-AMP (fic) domain. Fic domain-
containing AMPylases (fic AMPylases) are highly conserved
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and are present in a single copy in most metazoans, including
Caenorhabditis elegans (FIC-1), Drosophila melanogaster
(dfic), Mus musculus (mFICD), and Homo sapiens (FICD)
(1–3).

Metazoan fic AMPylases are bifunctional: using a single
active site, these enzymes catalyze both the transfer of AMP to
surface-exposed threonine and serine hydroxyl groups and the
removal of AMP groups from modified residues (deAMPyla-
tion) (4–8). The switch between AMPylation and deAMPyla-
tion is proposed to involve enzyme dimerization, the exchange
of Mg2+ with Ca2+ ions in the active site, and the subsequent
switch from an open to a closed conformation (4–9). The
latter is stabilized by interactions between an inhibitory
glutamate and a nearby arginine residue, which aligns an
inhibitory α-helix such that the catalytic core preferentially
binds AMP over ATP, catalyzing deAMPylation (6). If the
interactions between these residues are prevented or resolved,
fic AMPylases adopt an open conformation that favors Mg2+

and ATP recruitment to the active site, enabling AMPylation
of target proteins (10). Thus, replacing the critical inhibitory
glutamate residue with a glycine (FICD(E234G)) converts the
enzyme to a constitutively active AMPylase (10–12).

AMPylation of the ER-resident HSP70 protein, BiP, on T518
locks this chaperone in an ATP- and HSP40-bound “primed”
conformation, rendering it unable to support the (re)folding of
client proteins (7, 13). Upon BiP deAMPylation, ATP is hy-
drolyzed and the ADP-bound form of BiP is again able to
engage with client proteins (6, 14). The consequences of BiP
S365/T366 AMPylation remain controversial and may either
inhibit (4, 12, 15) or enhance (16, 17) BiP activity. In addition
to BiP, fic AMPylases also modify a wide range of non-ER
proteins (18–27). Indeed, fic AMPylases are also present in
the nuclear envelope and the cytoplasm (11, 20, 28).

Changes in cellular AMPylation levels affect cellular fitness
and organismal survival: Overexpression of constitutively
active fic AMPylases is toxic and kills human (17, 29, 30) and
yeast cells (20), as well as worm (C. elegans) embryos (19) and
flies (D. melanogaster) (4). In contrast, fic AMPylase deficiency
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AMPylation deficiency alters cytokine secretion
is well tolerated in unstressed human cells but impairs the
activation of the unfolded protein response (UPR) under stress
(17) and reduces neuronal differentiation (25). Further, Fic-1
deficient worms show enhanced sensitivity to the presence of
aggregation-prone poly-glutamine repeat proteins in neurons
(19). Perhaps the most significant in vivo fic AMPylase
knockout (KO) phenotype is found in dfic-deficient flies, which
show significant defects in visual signaling and suffer from
light-induced blindness caused by BiP deregulation (5, 31).
Despite the emerging role of fic AMPylases in proteostasis, our
understanding of how these enzymes affect mammalian
physiology is lacking.

Here we describe the generation and characterization of an
mFICD-deficient mouse strain. mFICD−/− mice are viable and
are not visually impaired. We further show that mFICD
deletion alters IgM synthesis and perturbs IL-1β secretion.
Finally, we provide evidence that mFICD is involved in regu-
lating nonspatial short-term memory in vivo. Together, our
results support a modulatory role for mFICD function in
adaptive immunity and neuronal plasticity in vertebrates.
Figure 1. mFICD−/− mice are viable and do not show obvious pheno-
types. SHIPRA test scores, body weight (B) latency to fall from rotarod (C) of
6-month-old wild-type and mFICD−/− mice. n = 10/cohort. Error bars
represent SD. Statistical significance (p values) was calculated using two-
way ANOVA for repeated measures with Geisser–Greenhouse correction
(C) or unpaired t-tests (A and B). Error bars: SD.
Results

mFICD-deficient mice are viable and fertile

To investigate the role of mFICD-mediated protein
AMPylation in vivo, we attempted to generate both mFICD-
deficient and constitutively active mFICD(E234G)-
expressing transgenic mouse strains using CRISPR/Cas9
technology. We used an sgRNA that targets a site adjacent to
the coding sequence of the regulatory motif (TVAIEG)
(Fig. S1A) and a double-stranded repair template to intro-
duce the E234G substitution. The injection of approximately
80 blastocysts resulted in more than 20 independent animals
carrying insertions or deletions in the mFICD gene that often
resulted in frame shifts. Notably, not a single animal carrying
the constitutively active mFICD(E234G) mutation was
recovered. Parallel injections using identical experimental
conditions but targeting different genes efficiently produced
transgenic knock-in strains (32). These results suggest that
embryonic expression of constitutively active mFIC-
D(E234G), particularly in the absence of a wild-type mFICD
copy, may be lethal.

For this study, we backcrossed a mouse strain carrying a
deletion in mFICD. This deletion introduced a frame shift
resulting in a premature stop codon (Fig. S1, B and C). To
characterize the mFICD−/− animals, we assessed 6-month-old
female control and mFICD−/− animals using the SHIPRA
method. SHIPRA is a rapid, comprehensive screening
approach, which provides a qualitative behavioral and func-
tional profile for each animal (33). We found that mFICD−/−

mice performed similarly to control animals for all 14 assessed
features (Fig. 1A; feature by feature results in Table S1). We
found no significant differences in body weight (Fig. 1B),
rotarod performance (Fig. 1C), and life span (Fig. S1D) be-
tween control and mFICD−/− animals. Together, these results
establish that mFICD deficiency is well tolerated by mice un-
der normal growth conditions.
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mFICD is required for AMPylation of BiP, EEF-1A, and HSC70 in
mouse embryonic fibroblasts (MEFs)

AMPylation in vertebrates is conferred by at least two
evolutionarily unrelated enzymes: FICD and the mitochondrial
pseudokinase SelO (34). To define how mFICD deficiency alters
the vertebrate AMPylome, we supplemented mFICD−/− and
control mouse embryonic fibroblast (MEF) lysates with 8-azido-
ATP. Following AMPylation, a click reaction was used to install
a PEG-biotin handle on the modified proteins. We then
recovered AMPylated proteins with streptavidin-coated beads
and identified AMPylated proteins by mass spectrometry
(Fig. 2A). Comparing results from treated MEFs, mFICD−/− KO
MEFs and a cell-free control, we identified 108 proteins that
were AMPylated only in wild-type MEFs (Table S2). Among
these proteins were several known FICD targets, including BiP
(HSPA5), HSC70 (HSPA8), and translation elongation factor
EEF-1A (Fig. 2A and S2A). In contrast, only two proteins
(transketolase (TKT); protein disulfide isomerase (P4HB)) were
identified in both wild-type and mFICD−/− lysates. Gene
ontology analysis showed that AMPylated proteins were
significantly enriched in metabolic, protein (re-)folding, and
stress response processes (Fig. S2B). Together, these results
confirm that FICD is required for the AMPylation-mediated
regulation of BiP, HSC70, EEF-1A, and other proteins.

B and T cell development is unaffected by mFICD deletion

Having established that WT and mFICD−/− mice are
phenotypically similar in overall physiological and



Figure 2. Deletion of mFICD almost completely abrogates protein AMPylation. A, schematic representation of experimental setup. B, table showing
comparative enrichment of indicated proteins in wild-type and MEF KO cells.

AMPylation deficiency alters cytokine secretion
morphological terms, and given mFICD’s role in the UPR, an
important pathway in B and T cell development (35), we asked
whether their humoral immune system was affected by mFICD
deficiency. Using flow cytometry, we examined the distribution
of B and T cells in the spleen. We found no difference between
WT and mFICD−/− mice in either the distribution of B and T
cells (Fig. 3A and S3A) nor in any T cell (Fig. 3B and S3B) or B
cell (Fig. 3C and S3C) subsets present in the spleen. B cell
development in the bone marrow (Fig. 3D and S3D) and T cell
development in the thymus (Fig. 3E and S3E) were normal in
mFICD−/− mice.
Deletion of mFICD perturbs protein secretion in splenocytes

BiP, an essential molecular chaperone, discovered as an
immunoglobulin-binding protein and regulated by FICD, is
required for antibody assembly and maturation. We thus
examined the impact of mFICD deficiency on protein secre-
tion. Splenocytes were isolated from WT and mFICD−/− mice
and stimulated with lipopolysaccharide (LPS), heparan sulfate
(HS), or thapsigargin to induce cytokine secretion, which was
then assayed by ELISA (Fig. 4, A–C). While mFICD deletion
significantly reduced LPS-induced IL-6 secretion (Fig. 4A), it
had no effect on secretion of TNFα (Fig. 4B). We also observed
a significant difference in IL-1β production between WT and
mFICD−/− mice (Fig. 4C). This is striking because unlike IL-6
and TNFα, which traffic through the ER, IL-1β folds in the
cytoplasm, and is secreted by a nonclassical pathway. Immu-
noblots showed that intracellular levels of the IgM heavy chain
(μ) were elevated in mFICD−/− B cells, while the levels of other
proteins that fold and traffic through the ER were unchanged
(Fig. S4A).

To further explore the consequences of mFICD deletion on
protein folding and secretion, we focused on immunoglobulins
because of their requirement for BiP activity in the course of
folding and assembly (36). Naïve B cells were purified from the
spleens, activated using LPS, and cultured for 3 days to allow
differentiation into IgM-secreting plasmablasts. We then
followed IgM folding by pulse-chase analysis. Briefly, plasma-
blasts were labeled with 35S-methionine/cysteine for 15 min and
chased in the absence of radioactive label for various times to
follow protein maturation. IgM was immunoprecipitated from
detergent lysates and media samples and analyzed by SDS-
PAGE followed by autoradiography (Fig. 3D). mFICD−/− mice
showed increased levels of both the soluble μ heavy chain (μs)
and the membrane-bound B cell receptor (μm) in detergent
lysates. This was accompanied by increased levels of both μs and
μm mRNA (Fig. 4, E and F). Similar amounts of IgM were
recovered from the media for both WT and mFICD−/− samples,
suggesting that the increased levels of μ in the mFICD−/− cells
did not pass ER quality control for secretion. These observa-
tions were consistent across the five pulse-chase experiments
performed. We did not observe differences in the synthesis or
glycosylation of other ER-folding proteins (Fig. S4B).
mFICD deletion does not impair induction of the unfolded
protein response

AMPylation of BiP exerts fine control over the level of active
BiP present in the ER (7, 12, 13, 17). To examine how abro-
gation of such control affects the folding capacity and stress
tolerance of cells, we examined the physiological UPR induced
during B cell activation. As before, we isolated B cells from
total splenocytes and stimulated them with LPS. Immunoblots
showed no change in the levels of UPR sensors IRE1α or
PERK, both before and after stimulation (Fig. 5A). There was
also no change in the activation of either receptor as moni-
tored by XBP1 splicing or eif2α phosphorylation or in the
expression of downstream targets BiP and Grp94 (Fig. 5A). We
further verified this by examining downstream targets of the
UPR by qPCR (Fig. 5B). We observed no changes in the
expression levels between WT and mFICD−/− samples for any
of the genes that are downstream targets of the IRE1α, PERK,
and ATF6α pathways.

The physiological UPR induced upon B cell activation is
anticipatory of enhanced antibody production and differs from
J. Biol. Chem. (2021) 297(3) 100991 3



Figure 3. B and T cell development is normal in mFICD−/− mice. Sple-
nocytes from age-matched WT and mFICD−/− mice were stained with an-
tibodies against immune-cell markers and analyzed by flow cytometry to
determine B and T cell populations (A) and relevant B cell (B) and T cell (D)
subsets. C, flow cytometry was performed as in (A) on cells isolated from the
bone marrow of WT and mFICD−/− mice to follow B cell development. E,
flow cytometry was performed as in (A) on cells isolated from thymus of WT
and mFICD−/− mice to observe T cell populations (E) and follow T cell
development (F). Each circle represents one data from one mouse, n ≥3
mice per experiment. Error bars: SD.

AMPylation deficiency alters cytokine secretion
a UPR induced by an accumulation of misfolded proteins. To
ascertain whether mFICD−/− cells responded differently to the
latter type of UPR, we incubated B cells with several chemical
initiators of the UPR. As with the physiological UPR from B
cell activation, we found no significant difference in any of the
UPR receptors or downstream targets assayed by immunoblot
(Fig. 5C).

mFICD−/− mice are not visually impaired

In D. melanogaster, the mFICD ortholog dfic regulates
reversible photoreceptor degeneration, which is critical for
visual neurotransmission and adaptation to constant light
4 J. Biol. Chem. (2021) 297(3) 100991
exposure (5, 31). We thus tested whether mFICD−/− mice show
signs of visual impairment. As part of the SHIRPA test (see
Table S1), we assessed visual placing and the pupillary light
reflex, which was normal in all tested 6-month-old control as
well as mFICD−/− animals. To confirm these results, we per-
formed optometry tests, in which mice were presented a
rotating grating, a condition that elicits head movements in
mice with intact eyesight (37). mFICD deficiency did not
impact the animal’s response to the moving grating early
(6 months old) or late (18 months old) in life (Fig. 6, A and B).
These results suggested that mFICD deficiency does not affect
vision in mice.

mFICD deficiency does not impair learning, cognition, and
memory

FICD activity modulates neurogenesis and neuronal differ-
entiation in human cerebral organoids (25). To determine if
mFICD−/− animals may have defects in learning, cognition, and
memory, we tested control and mFICD−/− animals at 6 and
18 months of age in Morris water maze tests (38). These tests
are designed to assess impairments in visual short-term and
long-term memory and visual–spatial abilities by observing
and recording escape latency, distance moved, and velocity
(38). There was no significant difference in visual nonspatial
short-term learning comparing wild-type and mFICD−/− ani-
mals at 6 months of age (Fig. 7, A and B). However, 18-month-
old mFICD−/− mice showed a significantly decreased escape
latency between trial 1 and 2 while the performance of wild-
type mice did not (Fig. 7, C and D). This suggests that visual
nonspatial short-term learning is stronger in old mFICD−/−

mice than in wild-type controls. Next, we assessed learning
and memory capacity of mFICD−/− and wild-type mice at 6
and 18 months of age using a submerged platform setup. Both
control and mFICD−/− mice performed equally well (Figs. 7E
and S5A) phase. Upon removal of the platform, wild-type and
mFICD−/− showed similar recall behaviors, spending the most
time in the maze quadrant that contained the platform in the
preceding learning phase (Fig. 7, F and G). Swimming speed
was similar between control and mFICD−/− cohorts (Fig. S5B),
suggesting that mFICD deficiency does not affect aging-
dependent decline in rough muscle function. Together, these
results indicate that cerebellar function, learning, and memory
are not affected by mFICD loss. Finally, to test for cognitive
flexibility, we reintroduced the platform to a new position
(quadrant) in the water maze. We found that both control and
mFICD−/− mice at 6 and 18 months of age adapted to the new
situation and memorized the new position of the platform
equally well (Fig. 7H).

Discussion

Protein AMPylation in metazoans is increasingly recognized
as a PTM that regulates the function of the ER-resident
chaperone BiP as well as that of other proteins (15, 21).
While the consequences of hyper- and hypo-AMPylation are
well established in tissue culture systems and invertebrate
models, the impact of fic AMPylase deficiency on mammalian



Figure 4. Protein secretion in mFICD−/− splenocytes and B cells is perturbed. A–C, splenocytes were isolated from WT and mFICD−/− mice and incubated
with lipopolysaccharide (LPS), heparan sulfate (HS), or thapsigargin (Tg) and monitored for secretion of IL-6 (A), IL-1β (B), and TNFα (C). D, three-day LPS-
stimulated B cells were pulse labeled with 35S methionine and cysteine and chased for the indicated times. Media samples and detergent lysates were
immunoprecipitated with an anti-μ polyclonal antibody and then analyzed by SDS-PAGE and autoradiography. Gels are representative of five independent
experiments. qPCR was performed on RNA purified from 3-day LPS-activated B cells as in (D) using primers against membrane-bound (E) or soluble (F) μ.
Primers against actin were used for normalization. *p < 0.05. Error bars: SD.

AMPylation deficiency alters cytokine secretion
physiology is unknown. Here we describe a functional mFICD
knockout mouse. We have examined the physiological,
neurological, and molecular consequences of mFICD deletion
and identified points where WT and mFICD−/− mice differ.
Overall, our phenotypic and pathologic assessments of
mFICD−/− mice did not identify major debilitating abnormal-
ities or dysfunctions. These findings are in accordance with
previous work in human tissue culture and C. elegans in vivo
models for FIC-1 deficiency, both of which showed that the
absence of FICD/FIC-1 is well tolerated in unstressed cells and
animals (5, 7, 11, 12, 17). In contrast with work done in dfic-
deficient flies, which suffer from deficits in visual perception
and light-induced blindness (5, 31), we did not observe dif-
ferences or defects in vision in mFICD−/− mice. Possible
explanations for these divergent observations include the
presence of compensatory/alternative mechanisms to regulate
proteins AMPylated by mFICD−/− in mice and/or differences
in target protein profile between dfic and mFICD. Further
work is required to decipher the role of mFICD in visual
perception in molecular detail.

On a molecular level, mFICD deficiency depletes unstressed
cells of most AMPylated proteins. In accordance with previous
studies, we find evidence that mFICD AMPylates both ER-
resident and cytoplasmic proteins (11, 19, 20, 25–29, 31, 39).
The mechanisms that underlie mFICD’s ability to target to-
pologically distinct compartments remain to be defined.
AMPylation of BiP by mFICD regulates the levels of active BiP
to allow a fine-tuned response to ER stress (7). We show that
J. Biol. Chem. (2021) 297(3) 100991 5



Figure 5. mFICD deletion does not alter UPR in plasmablasts. A, naïve B cells purified from spleens of WT and mFICD−/− mice were stimulated with LPS
for a course of 3 days to allow for differentiation into plasmablasts and samples were collected each day for protein analysis via immunoblot. Postnuclear
supernatants were analyzed by SDS-PAGE and immunoblotting with the indicated antibodies. B, samples collected as in (A) were lysed in TriZol and used for
RNA purification and analysis by qPCR using primers directed against the indicated genes. Actin was used as reference gene. Error bars: SD. C, naïve B cells
similarly purified as in (A) were stimulated with LPS for 2 days and subsequently incubated with DMSO, DTT (5 mM; 3 h), Tunicamycin (Tu; 10 μg/ml; 8 h),
Thapsigargin (Tg; 2.5 μM; 8 h), Subtilase cytotoxin (SubAB; 100 ng/ml; 8 h), or MG132 (50 μM; 8 h). These treated plasmablasts cells were then lysed and
subjected to analysis by immunoblot as in (A).

AMPylation deficiency alters cytokine secretion
in B cells, abrogation of mFICD activity resulted in higher
levels of μ synthesis in the ER but secretion of IgM is similar
for WT and mFICD−/− B cells. BiP binds to the CH1 domain of
Figure 6. mFICD−/− mice do not show visual impairments. Optometry-based
wild-type and mFICD−/− mice. Statistical significance (p values) was calculated
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immunoglobulins to prevent aggregation and promote folding,
only releasing the heavy chain molecule once a correctly folded
light chain is available for association. Increased levels of
assessments of visual perception of 6-month-old (A) and 28-month-old (B)
using unpaired t-tests. Error bars: SD.



Figure 7. mFICD−/− mice show no signs of cognitive deficits.Morris water maze tests to assess visual and spatial learning and memory. Escape latency (A,
C) and distance (B, D) of 6-month-old and 18-month-old mice in initial learning test using visible platform. E, escape latency of 6- and 18-month-old mice in
subsequent learning phase using a submerged platform. F–G, distance in quadrant (recall of platform) of 6-month-old and 18-month-old mice. H, distance
to platform upon moving the platform to new position (cognitive flexibility measure). Statistical significance (p values) was calculated using two-way
ANOVA for repeated measures with Geisser–Greenhouse correction (B and D) or unpaired t-tests (A and C). Error bars: SD.

AMPylation deficiency alters cytokine secretion
intracellular μ could be due to a deficit in light chain levels or
possibly due to strengthened interaction between the CH1
domain and BiP due to increased BiP activity.

We further discovered that deletion of mFICD compro-
mised secretion of IL-1β. Pro-IL-1β folds in the cytoplasm
where it is cleaved by caspase-1 to produce the active cytokine,
which is then released from the cell via nonclassical secretion
through gasdermin-D pores (40). IL-1β can enter both the type
I and type III nonconventional protein secretion pathways
(41). It is therefore possible that AMPylation plays a role in the
J. Biol. Chem. (2021) 297(3) 100991 7



AMPylation deficiency alters cytokine secretion
regulation of nonclassical secretion. Of note, the bacterial
Hsp70 (DnaK) has also been implicated in nonclassical
secretion (42).

mFICD−/− mice do not show signs of cognitive impairment;
rather, they had a tendency to perform somewhat better in
most assays than wild-type control animals, a trend we also
observed in motor assays. In particular visual nonspatial short-
term learning was improved in old mFICD−/− mice as
compared with wild-type controls (Fig. 7, C and D). We
attribute this to the presumably continuous derepression of
BiP and the dysregulation of other AMPylated proteins such as
HSC70 and EEF-1A in the absence of mFICD. Future work on
mFICD-dependent and independent protein AMPylation in
the presence of aggregation-prone proteins or in response to
stressors that cause protein unfolding should define the role of
this PTM in neuronal health and aging.

In conclusion, our work shows that mFICD deficiency is
tolerated in the absence of stress but can impair BiP-
dependent (antibody folding and maturation) and -indepen-
dent (IL-1β secretion) processes. Knowing that FICD is
involved in the regulation of cellular stress pathways, it appears
likely that the characterization of critical in vivo roles of
mFICD will require specific cellular and/or environmental
stresses, as yet to be identified. Future studies focusing on the
effects of protein AMPylation in chronic or acute stress and
disease models should thus provide additional insights into the
role of mFICD in proteostasis and protein folding.

Experimental Procedures

Generation of FICD−/− mouse

All animal procedures were performed according to NIH
guidelines and approved by the Committee on Animal Care at
MIT and the Institutional Animal Care and Use Committee
(IACUC) at Boston Children’s Hospital. CRISPR/Cas9-
mediated genome editing was performed exactly as described
in Maruyama et al. (32). We targeted a genomic location using
an sgRNA (ccacacggtggccatcgaggg) close to the sequence
encoding for the regulatory FICD motif (TVAIEG), which
resulted in multiple transgenic animal containing 1–300 bp
long deletion or insertions. Mice were out-crossed six times
with C57BL/6J animals to eliminate putative off-target muta-
tion introduced during CAS9-based genome editing.

Identification of AMPylated proteins

Mass-spectrometry-based identification of AMPylated
proteins was performed using a chemical reporter setup as
previously described (43, 44). Briefly, we supplemented total
lysates of mFICD−/− and wild-type MEFs with N6-propargyl-
ATP and incubated the lysates at room temperature for 1 h.
This allowed endogenous mFICD to utilize N6-propargyl-
ATP as nucleotide substrate. We then supplemented the
reaction with biotin-(PEG)3-azide to covalently couple a
biotin handle to the AMP-propargyl groups now found on
AMPylated proteins. AMPylated (biotinylated) proteins were
recovered using Streptavidin-modified agarose beads, eluted
for LC/MS/MS analysis.
8 J. Biol. Chem. (2021) 297(3) 100991
Mass spectrometry

Eluates from Streptavidin-modified agarose beads were
reduced, alkylated, and digested with trypsin at 37 �C over-
night. The resulting peptides were extracted, concentrated,
and injected onto a Waters NanoAcquity HPLC equipped with
a self-packed Aeris 3 μ3 column. Peptides were eluted using
customized reverse-phase gradients and analyzed using an
Orbitrap Elite mass spectrometer (Thermo Fisher) in nano-
spray configuration, operated in a data-dependent manner.
The resulting fragmentation spectra were matched against
custom databases with Mascot (Matrix Science) 2.5.1 and
PEAKS (Bioinformatics Solutions) 7.5. A detailed description
of the performed mass searches is provided in Table S2.

Behavioral test

We examined ten female C57BL/6J (wild type) and ten fe-
male mFICD−/− mice setup in cages of four, each containing
two control and two mFICD−/− animals. Each mouse received
a unique paw tattoo to enable ID tracking throughout the
experiment. All project members involved in behavioral testing
of animals were blinded and unaware of cage compositions.

SHRIPA test

SHIRPA testing was performed as described previously
(33, 45).

Immunoblotting

B cells or LPS-stimulated plasmablasts were lysed in RIPA
buffer (10 mM Tris-HCl, pH 7.4; 150 mM NaCl; 1% NP-40;
0.5% sodium deoxycholate; 0.1% SDS; 1 mM EDTA) supple-
mented with protease inhibitors (Roche) and phosphatase in-
hibitors. Protein concentrations were determined using BCA
assays (Pierce). Protein samples were boiled in SDS-PAGE
sample buffer (62.5 mM Tris-HCl, pH 6.8; 2% SDS; 10%
glycerol; 0.1% bromophenol blue) with β-ME, analyzed by
SDS-PAGE, and transferred to nitrocellulose membranes,
which were subsequently blocked in 5% nonfat milk (wt/vol in
PBS), and immunoblotted with indicated primary antibodies
and appropriate horseradish-peroxidase-conjugated secondary
antibodies (Southern Biotech). Primary antibodies to IRE-1
(Cell Signaling Technology), XBP-1 (Cell Signaling Technol-
ogy), PERK (Santa Cruz), phospho-eIF2α (Ser51; Cell Signaling
Technology), eIF2α (Cell Signaling Technology), ATF4 (Cell
Signaling Technology), GRP94/BiP (anti-KDEL; Enzo Life
Sciences), p97 (Fitzgerald), actin (Sigma-Aldrich), μ heavy
chain (Southern Biotech), and κ light chian (Southern Biotech)
were obtained commercially. Polyclonal antibodies against
mouse class I MHC heavy chain, class II MHC α, β, or
invariant (li) chains, Igβ, and STING were generated in rabbits.
Immunoblots were developed using Western Lightning
Chemiluminescence Reagent (PerkinElmer).

Morris water maze tests

Mice were placed in a circular pool (137-cm diameter) filled
with water maintained at room temperature. The tank was
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divided into quadrants each marked on the wall of the tank
with a different visual cue for spatial orientation. Swim time
and path length were recorded by automated video tracking
(Ethovision XT 11.5, Noldus Information Technology, The
Netherlands). A black curtain surrounded the tank to prevent
cues in the room aiding the spatial performance. On day 1
(visible platform), mice were given 90 s to swim to a platform
elevated 1 cm above the water and marked with a flag. The
position of the platform was kept constant, but the starting
quadrant varied. Four starts (each from one of the four
quadrants) were administered in one trial, and two visual trials
were administered during day 1. On days 2 and 3 (learning),
the platform was moved to the opposite quadrant from the
visible position, submerged 1 cm below the water line, and the
flag was removed. Mice were given 90 s to find the hidden
platform and left on the platform for 5 s to orientate them-
selves. Mice that did not find the platform within 90 s were
guided to it by the experimenter. Each mouse completed three
learning trials on day 2 (Trials 1–3), and two learning trials on
day 3 (Trials 4 and 5), with each trial comprising four different
start positions. On day 4 (recall), the platform was removed
entirely from the tank, the mice placed in the quadrant
opposite the quadrant that had previously contained the
platform (e.g., north east, NE) and given 60 s to swim. Time
spent and path length traversed in each of the four quadrants
were recorded. On day 5 (recall), the platform was placed back
into the tank 1 cm below the water in a quadrant different
from the visible and learning trials and mice were tested across
three trials (four starts of 90 s each from different locations).

Rotarod tests

On day 1, mice were placed on a rotarod (Economex, Co-
lumbus Instruments, USA) set to revolve at 4 rpm for 5
continuous minutes. This training phase allows mice to
acclimate to the movement of the rotarod. The following day,
mice are placed on the rotarod revolving at 4 rpm for a 10 s
acclimation before accelerating at 0.1 rpm/s. These trials were
repeated four times with a break of at least 5 min between
repeats. Latency to fall was recorded as readout.

Optometer tests

We used a protocol adapted from Prusky et al. (37), which
employs an optomotor device (CerebralMechanics, Canada) to
measure visual acuity. The device consisted of four computer
monitors arranged in a square with a lid on top to enclose the
mouse within. A computer program was used to project on the
monitors a virtual cylinder in 3-D coordinate space. Visual
stimuli were drawn on the walls of the cylinder, and from the
perspective of the platform, each monitor appeared as a win-
dow on a surrounding 3-D world. The software also controlled
the speed of rotation and geometry of the cylinder and the
spatial frequency and contrast of the stimuli. A red crosshair in
the video frame indicated the center of the cylinder rotation.
Mice were placed one at a time on the platform inside the
device, the lid of the box was closed, and the animals were
allowed to move freely, and as the mouse moved about the
platform, the experimenter followed the mouse’s head with the
red crosshair. When a grating perceptible to the mouse was
projected on the cylinder wall and the cylinder was rotated
(12 deg/s), the mouse normally stopped moving its body and
would begin to track the grating with reflexive head move-
ments in concert with the rotation. An experimenter assessed
whether the animals tracked the cylinder by monitoring in the
video window the image of the cylinder, the animal, and the
crosshair simultaneously. If the mouse’s head tracked the
cylinder rotation, it was judged that the animal could see the
grating. Using a staircase procedure, the mouse was tested
systematically against increasing spatial frequencies of the
grating until the animal no longer responded. The threshold
was then calculated as the highest spatial frequency that the
mouse responded to.

Cytokine measurements

Total splenocytes were isolated from C57BL/6 and
mFICD−/− mouse spleens and then treated for 3 days with
20 μg/ml LPS (Sigma), 100 μg/ml heparan sulfate or 2.5 μM
thapsigargin (Enzo Life Sciences). Supernatants were har-
vested after 72 h, and TNFα, Il-6, and IL-1β levels were
quantified by ELISA (Biolegend kits).

Cell culture

Naïve B lymphocytes were purified from mouse spleens by
negative selection using CD43 (Ly48) magnetic beads (Milte-
nyi Biotec) according to the manufacturer’s instructions. Naïve
B cells were cultured in RPMI 1640 media (Gibco) supple-
mented with 10% heat-inactivated FBS, 2 mM L-glutamine,
100 U/ml penicillin G sodium, 100 μg/ml streptomycin sulfate,
1 mM sodium pyruvate, 0.1 mM nonessential amino acids, and
0.1 mM β-mercaptoethanol (β-ME).

Flow cytometry

WT and mFICD−/− mice aged 6–8 weeks were euthanized
by CO2 asphyxiation followed by cervical dislocation. Spleen,
bone marrow, and thymus tissues were extracted and ho-
mogenized in PBE buffer (PBS +0.5% BSA and 1 mM EDTA).
Red blood cells were lysed using ACK lysis buffer (Gibco),
and cells were resuspended in PBE for surface staining with
the following antibodies (clone;source) for 30 min at 4�C:
B220 PerCP-Cy5.5, CD43 APC, CD19 Pacific Blue, IgM
FITC, IgD APC-Cy7, CD21 PerCP-Cy5.5, CD23 FITC, IgM
APC, CD44 FITC, CD25 PE-Cy7, CD4 APC, CD8α Pacific
Blue (53–6.7;BioLegend), CD3 PerCP-Cy5.5 (145-2C11;BD),
B220 APC-Cy7. All samples were blocked using Fc-Block
(BD Bioscience). Acquisition of B and T cell populations
was performed on an LSRFortessa cytometer (BD) instru-
ment and analyzed with the FlowJo software package (Tree-
Star).

Pulse chase labeling and immunoprecipitation

Suspension pulse chase was performed as previously
described (46). Briefly, LPS-stimulated plasmablasts were
starved for methionine and cysteine for 15 min and pulse
J. Biol. Chem. (2021) 297(3) 100991 9
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labeled for 5 min with 55 μCi/1 × 106 cells of Express 35S
protein labeling mix (PerkinElmer). Samples were then diluted
10× with cell culture media containing 5 mM unlabeled
methionine and cysteine. At the end of each chase time, a
sample was removed and diluted 1:1 into ice-cold PBS con-
taining 20 mM N-ethyl maleimide (Sigma). Cells were
collected by centrifugation at 1250g for 5 min and washed
twice with ice-cold PBS. Cells were lysed in RIPA buffer
supplemented with protease and phosphatase inhibitors
(Roche). IgM was immunoprecipitated from lysates or media
samples with a goat anti-mouse IgM antibody (Southern
Biotech). Immunoprecipitates were washed with lysis buffer
and eluted from beads with SDS-PAGE sample buffer con-
taining 20 mM DTT and analyzed by SDS-PAGE. Gels were
then dried and exposed to BioMax MR films (Carestream).

RNA extraction, cDNA synthesis, and qPCR

LPS-activated plasmablasts on each day of activation were
lysed using TriZol (Invitrogen) and RNA was isolated using
RNA extraction kit (Zymo). RNA was checked for integrity
and equivalent amounts of RNA were converted into cDNA
using the Maxima H minus cDNA Synthesis master mix
(Invitrogen). Samples for qPCR were prepared with primers
against target genes and mixed with SSO Advanced Universal
SYBR Green Supermix (BioRad) in 96-well plates and analyzed
on a CFX96 qPCR machine (BioRad). Analysis was performed
using the standard Δct method using actin as a reference gene.
Statistical analysis was carried out on non-log-transformed
values.

Statistical analysis

Data is graphed as means ± SD; where feasible, individual
data points are shown. Depending on the experiment, we used
unpaired/paired two-tailed t tests, Turkey’s multiple compar-
ison’s test, two-way ANOVA with multiple comparison test as
well as Kaplan–Meier tests to evaluate survival data. Individual
p values are displayed in each figure.

Data availability

Raw mass spectrometry data related to this work are pub-
licly available on Figshare.com (https://doi.org/10.6084/m9.
figshare.14924190).

Supporting information—This article contains supporting
information (47, 48).
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