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Abstract

Vasoregression is a hallmark of vascular eye diseases but the mechanisms involved are still largely unknown. We have
recently characterized a rat ciliopathy model which develops primary photoreceptor degeneration and secondary
vasoregression. To improve the understanding of secondary vasoregression in retinal neurodegeneration, we used
microarray techniques to compare gene expression profiles in this new model before and after retinal vasoregression.
Differential gene expression was validated by quantitative RT-PCR, Western blot and immunofluorescence. Of the 157 genes
regulated more than twofold, the MHC class II invariant chain CD74 yielded the strongest upregulation, and was allocated to
activated microglial cells close to the vessels undergoing vasoregression. Pathway clustering identified genes of the
immune system including inflammatory signaling, and components of the complement cascade upregulated during
vasoregression. Together, our data suggest that microglial cells involved in retinal immune response participate in the
initiation of vasoregression in the retina.
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Introduction

Regression of the matured retinal vasculature in adults is often

initiated by pericyte loss and subsequent degeneration of

endothelial cells [1,2]. Extended vasoregression can result in

hypoxia, and the dense retinal vascular network adapts to the high

metabolic demands of neurons which are in close proximity to

each other. Neurodegeneration such as retinitis pigmentosa leads

to secondary vascular attenuation, leakage and functional

limitations [3,4]. Some investigations also suggest that damage of

retinal glial cells (astrocytes, Müller cells and microglia) precedes

vascular impairment [2,5]. Microglial activation has been found in

a variety of retinal pathologies such as photoreceptor degenera-

tion, diabetes and ischemia- reperfusion [6,7,8]. However, the link

between microglial activation and vasoregression is unclear.

The processes involved in the maturing vessels, comprise

recruitment signals for pericytes, organization of basement

membrane components, and secretion of inhibitors of (metallo-)

proteases [9]. Consequently, regression of mature vessels requires

the erroneous abrogation of survival promoting signals, and the

aberrant activation of matrix-degrading proteases, among others.

For example, in the diabetic retina, dropout of pericytes is

conceived as a primary step in the reactivation of the endothelium,

reducing endothelial protection [10]. The progressive indepen-

dence of vessels for survival signals is one important characteristic

of mature vessels. If VEGF is conditionally reduced in retinal tissue

during postnatal development, it results in a loose capillary

network with numerous regressive capillary profiles. However,

when VEGF is inhibited during adulthood, there is no induction of

vasoregression [11].

Impaired capillary formation is observed when neurodegen-

eration starts before the completion and maturation of the

retinal network in animal models [12]. This contrasts with our

observations in a novel model of adult retinal vasoregression.

We recently characterized this transgenic rat displaying

neuronal and vascular degeneration, and discovered that

vasoregression ensues after the retinal capillary system had fully

developed, preceded by neurodegeneration [13]. In this model,

dropout of vascular pericytes, and capillary occlusions became

evident after the second month of life. Thus, a precise image of

the temporal and structural evolution of retinal vascular

degeneration exists.

Despite an extensive vasoregression, hypoxia and instructive

VEGF regulations were absent in this model, while some

neurotrophins were upregulated, suggesting that a. the response

to injury was probably inadequate, and b. other mechanisms are

involved in the extensive vasoregressive process.

Therefore, in order to identify genes and signaling pathways

involved in retinal vasoregression in this rat model, we

performed a microarray analysis before and after the initiation

of vasoregression. We observed a pronounced implication of

components of the immune and the complement system, and

identified CD74 specifically upregulated in perivascular microg-

lia of the deep capillary in which the primary vascular lesion

occurs.
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Methods

Animals
All experiments in this study were performed in accordance with the

ARVO statement for the use of animals ophthalmic and vision

research, and the regional animal ethics committee. This study was

approved by the ethics committee Regierungspräsidium Karlsruhe,

approval ID: 35-9185.81/G-93/05. Male homozygous PKD-2-247

rats (TGR) and male Sprague-Dawley (SD) rats were used as controls.

Generation and genotyping of the transgenic rats were described

previously [14]. The rats were held in a 12 hours light and dark cycle

with free access to food and drinking water. At 1 and 3 months of age,

SD and TGR rats were anesthetized, and after sacrifice the eyes were

immediately frozen for later preparation of total RNA, retina

homogenate and whole mount retinal immunofluorescence staining.

RNA isolation
Retinal total RNA was individually extracted using Trizol reagent

(Invitrogen, Germany) according to the manufacturer’s protocol. The

quality and purity of RNA were controlled spectrophotometrically

and estimated by electrophoresis on a 1% agarose gel.

Microarrays and pathway analysis
cDNA and cRNA synthesis, and hybridization to arrays of type

Rae230_2 from Affymetrix (Santa Clara, CA, USA) were

performed according to the recommendations of the manufacturer.

Three arrays were applied for each combination of rat transgene

(TGR/SD) and age (1-month and 3-month). A total of 12 arrays

were hybridized. The dependency of gene expression on rat

transgene or age was analyzed using JMP Genomics (SAS Institute,

Cary, NC, USA). Signals were first log transformed and quantile

normalized, before being subjected to mixed model ANOVA, by

which rat transgene and age as well as probe were considered as

fixed effects and array-id as random. An ORA approach using

Fisher’s exact test was taken to identify pathways listed in Kyoto

Encyclopedia of Genes and Genomes that are likely to be affected

by differential gene expression. Additionally, gene set enrichment

analysis (GSEA, version 2.0) and Ingenuity Systems software

(Ingenuity Systems, Redwood City, CA, USA) were applied to

reveal biological pathways modulated by rat transgene or age.

Genes were ranked according to their expression levels. All Gene

Ontology terms were examined using 1000 rounds of permutation

of gene sets. MIAME compliant microarray data were submitted to

Gene Expression Omnibus (GEO), sample number GSE20967.

Quantitative real time PCR
For quantitative real time PCR, retinal total RNA was isolated using

Trizol according to the manufacturer’s protocol. The cDNA synthesis

with removal of genomic DNA was performed using the QuantiTectH
Reverse Transcription kit (Qiagen GmbH, Hilden, Germany).

TaqMan 2xPCR master Mix (Applied Biosystems, Weiterstadt,

Germany) was applied for real time PCR. A volume of 20 ml of

amplification reactions contained 0.4 ml cDNA, 1x Master Mix,

0.9 mM each primers and 0.25 mM probe. The samples were amplified

using an ABI 7000 Real Time PCR System (Applied Biosystems,

Darmstdt, Germany). Thermal cycling was carried out for 2 min at

50uC, then, for 10 min at 95uC, followed by 40 cycles of 15 sec at 95u
and 1 min at 60uC. All primers and MGB probes labelled with FAM

for amplification were purchased from Applied Biosystems: A2M, Rn

01459605_m1; B2M, Rn 00560865_m1; CD74, Rn 00565062_m1;

CEBPB, Rn 00824635_s1; CFB, Rn 01526084_g1; CTSS, Rn

00569036_m1; RT1-DA, Rn 01427980_m1; Serping1, Rn

01485600_m1; C1qa, Rn 01519903_m1; TNFRSF1A, Rn

01492348_m1; IL-1b, Rn 00580432_m1; b-Actin, Rn

00667869_m1. Expression of genes was analysed by the 22DDCT

method using b-actin as a reference gene.

Western blot
To assess protein expression of genes of interest, retinal proteins

were individually extracted from TGR and SD rats of 1 and 3

months of age. The retinas were homogenized in 0.1% SDS buffer

containing 125 mM NaCl, 10 mM EDTA, 25 mM Hepes,

10 mM Na3VO4, 0.5% deoxycholic acid, 0.1% SDS, 1% Triton

X-100 with CompleteTM protease inhibitor cocktail (Roche

Diagnostic GmbH, Mannheim, Germany). The lysate was

centrifuged at 10,000 rpm for 10 min. The supernatant was then

collected and the protein concentration was determined with the

Bradford protein assay according the manufacturer’s protocol. 20–

40 mg proteins were separated on 10–20% SDS gels under

reducing conditions. Furthermore, the proteins were then

transferred onto PVDF membranes and the membranes were

blocked with 5% bovine serum albumin or 5% non-fat dry milk in

Tris buffered with Tween-20 for 1 h to reduce non-specific

binding. Then, the Blot was incubated with primary antibody over

night at 4uC. After washing, they were further incubated with

HRP-conjugated secondary antibody for 2 hours at room

temperature. Finally, the signals were detected with enhance

chemiluminescence (ECL) and exposed to X-film.

Retinal Immunofluorescence
For whole mount retinal immunofluorescence staining, eyes were

fixed in 4% paraformaldehyde overnight. After dissection retinas

were washed in PBS and incubated in permeabilization and

blocking buffer containing 1%BSA and 0.5% Triton for 1 hour. For

detecting microglia activation, mouse anti CD11b (1:100, AbD

Serotec, Düsseldorf, Germany) or rabbit anti rat Iba1 (1:50 DAKO,

Hamburg, Germany), rabbit anti CD74 (Santa Cruz, Heidelberg,

Germany) and Lectin labelled with biotin (1:100, Sigma, Munich,

Germany) were used. The corresponding secondary antibodies used

were goat anti mouse IgG Alexa 488 (1:200, Invitrogen, Karlsruhe,

Germany), swine anti rabbit labelled with Tritc (1:20, DAKO,

Hamburg, Germany) and streptavidin labelled with Alexa 633

(1:200, Invitrogen, Karlsruhe, Germany) for CD11b, CD74 and

Lectin. For determination of CD74 expression in pericytes, rabbit

anti NG2 (1:200, Chemicon, Germany), goat anti CD74 (1:50,

Santa Cruz, Heidelberg, Germany) and Lectin labelled with biotin

(1:100, Sigma, Munich, Germany) were used. The corresponding

secondary antibodies used were swine anti rabbit-TRITC (DAKO,

Hamburg, Germany, 1:20), donkey anti goat FITC (Acris, 1:100)

and streptavidin labelled with Alexa 633 (1:200, Invitrogen,

Karlsruhe, Germany) for CD11b, CD74 and Lectin, respectively.

After washing in PBS, the retinas were flat mounted in 50% glycerol

and photos were taken with a confocal microscope (Leica TCS SP2

Confocal Microscope, Leica, Wetzlar, Germany).

Statistical analysis
Statistical analysis for microarray data was summarized above.

Data of transcriptional expression are presented with mean and

standard error. Analysis of variance (ANOVA) with Bonferroni post-

test was performed to determine the significance between the groups.

A p value less than 0.05 was considered as statistically significant.

Results

Genes and pathways involved in the development of
vasoregression

To identify genes and pathways involved in the development of

vasoregression in TGR retinas, gene expression profiling was

Microglial Cells in Retinal Vasoregression
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assessed in TGR and control rats at 1 and 3 months, i.e. before

and after initiation of vasoregression, respectively. The Affymetrix

GeneChipH for rat expression array 230 2.0 was used. The array

comprised of more than 31,000 probe sets for analysing over

30,000 transcripts and variants from over 28,000 rat genes. 3267

genes were significantly upregulated while 2924 genes were

significantly downregulated when significance level (p-value) of

less than 0.001 was defined as cutoff between TGR and SD rats.

Moreover, hierarchical clustering of rat groups was performed

based on differential gene expression (Figure 1). Genes of SD rats

at 1 and 3 months exhibited similar expression patterns, and had a

high comparability to the gene expression patterns of TGR rats at

1 month of age. 3-month old TGR rats demonstrated major

changes in gene expression (Figure 2).

Next, we focused on genes which were differentially expressed

in 3-month TGR over time (i.e. compared with 1-month TGR)

and compared with controls (i.e. 3-month SD rats). As displayed in

the volcano plot, a number of genes in 3-month TGR retinas

exhibited significant expression changes when compared with 1-

month TGR, and with 3-month SD rats. 374 genes were .2+1 or

,221 significantly regulated during development of vasoregression

(Table S1). Of these genes, 157 genes in 3-month TGR were more

than 2-fold upregulated whereas 216 genes in this group were

more than 50% downregulated in comparison with the two other

groups. CD74 (invariant polypeptide of major histocompatibility

complex, class II antigen-associated), Lgals3 (Lectin-galactose

binding-soluble 3), and Serping1 (serine peptidase inhibitor-clade

G, member 1) were the genes with the strongest upregulation in

the 3-month TGR while Slc31a2 (solute carrier family 31-member

2), Hk2 (Hexokinase 2), Pax4 (paired box gene 4) and Rdh12

(retinol dehydrogenase 12) were ,90% down-regulated. In

contrast, there were only few genes which were regulated between

TGR and SD retinas at 1 month, and in SD retinas between 1 and

3 months (Figure 2).

Additionally, to examine the potential biological relevance of

the transcriptome response during vasoregression, differentially

expressed genes were classified according to their biological

processes defined in Gene Ontology (GO) and Kyoto Encyclope-

dia of Genes and Genomes (KEGG). Functional analysis using

GO revealed that a number of specific pathways were actively

involved in the development of vasoregression in TGR rats at 3

months. Fourty pathways in GO were significantly upregulated

during vasoregression in 3-month TGR compared with 1-month

TGR and 3-month SD retinas. On the other hand, a total of five

pathways were upregulated in KEGG. Furthermore, genes

involved in the immune system including inflammatory and

complementary response, cell signalling via receptors, especially

protein tyrosine kinase activity, exhibited strong correlation with

vasoregression. Some genes were shared by different pathways,

such as CD74 antigen in the immune effector process, in antigen

processing and presentation, in inflammatory response and in

cytokine binding; CCAAT/enhancer binding protein beta

(CEBPB) was shared in pathways of the immune response, in

defence response and in inflammatory response. Figure 3 depicts

the two central pathways, i.e. the antigen presentation pathways,

and the acute response pathway, and their relationships.

Transmembrane receptor tyrosine kinases, which are relevant

for vascular development and remodelling such as tyrosine kinase

with immunoglobulin-like and EGF-like domains 1 (Tie1), VEGF

receptor-2 (KDR), VEGF receptor-1 (FLT1), platelet-derived

growth factor receptor alpha (PDGFRA), Epidermal-Growth-

Factor-Receptor (EGFR) and fibroblast growth factor receptors

(FGFR) were also found to be significantly changed (data not

shown).

As internal validation, and based on previous results, we found

GFAP 9 fold upregulated in the 3-month TGR rats compared

with their age-matched controls in the array analysis [13].

Validation of microarray data by quantitative real-time
PCR

To validate the differential transcriptional gene expression

observed on microarray analysis, we carried out TaqMan probe

based on quantitative real-time PCR with independently retrieved

TGR and SD retinas at 1 and 3 months of age. As shown in

Figure 4, mRNA levels of CD74 were high in TGR retinas at 3

months, whereas expression of CD74 was low in TGR retinas at 1

month and SD retinas at 1 and 3 months. Similarly, A2M (alpha-

2-macroglobulin), B2M (beta-2-macroglobulin), CEBPB, CFB

Figure 1. Hierarchical clustering analysis of gene profiling in
SD and TGR rats at 1- and 3-month. Only genes with negative
log10 P.10 are shown on the clustering diagram. The diagram shows
that TGR 1-month, SD 1- and 3-month have similar gene expression
profiling whereas 3-month TGR differs markedly from these three
groups. Red indicates high and blue low expression of the single gene
compared with the mean. The fold changes in the bar are represented
in log2X. A: 1-month TGR; B: 1-month SD; C: 3-month SD; D: 3-month
TGR.
doi:10.1371/journal.pone.0016865.g001

Microglial Cells in Retinal Vasoregression
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(complement factor B), CTSS (cathapsin S), RT1-DA (RT1 class

II, locus Da), SERPING1 (serine/cysteine peptidase inhibitor,

clade G, member 1), C1qa (complement component 1, q

subcomponent, alpha polypeptide) and TNFRSF1A (Tumor

necrosis factor receptor superfamily member 1A) were expressed

significantly higher in 3-month TGR retinas than in other three

groups. These ten genes retrieved from microarray analysis were

fully confirmed in quantitative real time PCR. Expression of

CD74 detected was 19-fold higher in 3-month TGR retinas

compared with age-matched SD rats in real time PCR analysis.

Upregulated transcripts of B2M (3-fold), RT1-DA (23-fold) and

CTSS (3-fold) which participate in antigen processing and

presentation were confirmed by quantitative real-time PCR.

Furthermore, complement regulation mediated by CFB (16-fold),

SERPING1 (7-fold), and C1qa (3-fold) was also confirmed by real

time PCR. Upregulation in inflammatory responses via A2M (4-

fold), CEBPB (3-fold), TNFRSF1A (3-fold) and IL-1b (2-fold) were

also confirmed. Thus, the expression levels of regulated genes from

microarray analysis were fully confirmed by quantitative real time

PCR.

CD-74 expressing microglia localizes to retinal
vasoregression

To investigate translational expression levels of CD74 obtained

on the microarray, we performed western blot analysis with retinal

lysates from TGR and SD rats at 1 and 3 months. Weak CD74

expression was found in the retinas of 1- and 3-month SD and 1-

month TGR rats. A significant overexpression of CD74 protein

was detected in 3-month TGR retinas compared with other three

groups (Figure 5A and B).

Next, we identified by immunofluorescence that CD74 was

expressed in cells close to both, the superficial and deep capillary

layers in SD rats. In contrast, CD74 positive cells were located

predominantly around the deep capillary in TGR rats of one

month of age. The strongest and most obvious accumulation of

CD74-positive cells was found in TGR rats of three months in the

vicinity of the deep capillary layers. CD74 positive cells were either

localized on or closed to the vessels or in the inter-vascular spaces

with prolonged end feet spanning vessels. The morphology of

these cells identified them as microglial cells which were further

confirmed by co-immunostaining with microglial marker CD11b

and Iba-1 (Figure 6A, B, C, D and Figure S1). CD74 was

expressed predominantly in the membrane of cell soma and dot-

like in the processes of microglial cells, whereas CD11b labelled

strongly all processes of microglial cells. Even though CD74-

positive microglial cells were localised close to vessels and some

even seemed morphologiocally like pericytes, immunofluorescence

staining revealed no colocalisation between CD74 positive

microglia cells and pericytes labelled with pericyte-specific marker

NG2 (Figure 6E, F, G, H). 66% CD74 positive microglial cells

were close to the capillaries. Close correlation between CD74

positive microglial cells and regressive vessels was noted in 3-

month TGR retinas (Figure 6I, J, K, L).

We analysed expression of macrophage-inhibiting factor (MIF)

known as ligand for CD74 in various tissues and diseases. We

compared protein expression in the four groups analyzed and did

not find any upregulated expression in the TGR groups (data not

Figure 2. Volcano blots of significance against the fold change of expression of SD and TGR retinas at 1- and 3-month. The diagram
shows that there are numerous genes in 3-month TGR up and down regulated compared with 3-month SD (A) and 1-month TGR (B). Few genes were
differentially expressed among 1-month TGR and SD rats, 1- and 3-month SD rats. Horizontal reference line indicates negative log10 P.10 on the
clustering diagram.
doi:10.1371/journal.pone.0016865.g002

Microglial Cells in Retinal Vasoregression
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shown). Thus, MIF as ligand for CD74 seems not to be relevant in

the neurodegenerative retina.

Discussion

In our model of ciliopathy-associated neurodegeneration, we

identified CD74 and other components of the immunity system,

expressed in microglia, as mediators of secondary vasoregression.

Genes involved in the immune response including inflammatory/

complementary pathways and in tyrosine kinase pathway were

strongly regulated. Our findings suggest that CD74 positive

microglial cells may have a function during the development of

vasoregression in the retina.

The first novel finding in our study suggests that immune system

including antigen processing and presentation, inflammatory and

complementary response plays a predominant role during

vasoregression in TGR rat. Activation of these pathways was

verified by upregulation of CD74/B2M/RT1-DA/CTSS, A2M/

CEBPB/TNFRSF1A/IL-1b and CFB/SERPING1/C1qa, re-

spectively. The representative molecule from antigen processing

and presentation as well as inflammatory pathways during

vasoregression is CD74. CD74 is the invariant chain directing

the trafficking of MHC class II molecules in antigen presenting

cells (APCs) [15]. Previous studies have shown that CD74 is

associated with cancer and inflammatory disease, such as

Helicobacter pylori infection, bladder inflammation, atherosclero-

sis and renal injury [16,17]. Moreover, upregulation of members

of the innate immunity and of the complement cascade has been

uniformly observed in several other animal models of post-

developmental retinal injury (Table S2). For example, the model of

acute IOP elevation resembles the PKD model in that some

components of the innate immunity and the complement system

Figure 3. Antigen presentation and complement component response signaling predicted by Ingenuity Pathway Analysis in the
TGR. All genes whose mRNA expression levels were differentially regulated in the TGR at 3 months are highlighted in red. Genes validated by real-
time PCR are marked by green dotted circles. Symbols depict different gene functions. The upward facing fork shape represents transmembrane
receptor, the right facing forceps shape represents peptidase, the dumbell shape represents transcription regulator.
doi:10.1371/journal.pone.0016865.g003

Microglial Cells in Retinal Vasoregression
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were comparatively regulated. However, the involvement of the

microglia was not established. Of note, by comparing our data

with data of other models, the link between CD74 expression on

microglia and the close proximity to vasoregression was not made.

Signal transduction studies indicated that CD74 binds MIF, and

in cooperation with CD44, mediates a variety of ERK1/2 and src

tyrosine kinase-based cellular functions such as endothelial

proliferation, regulation of apoptosis, regulation of arachidonic

and prostaglandin metabolism [18].

Apart from APCs, cancer cells and podocytes, expression of

CD74 is increased in smooth muscle cells undergoing inflamma-

tion and in microglia in neurodegenerative disorder such as

Alzheimer disease [19,20]. We found that CD74 is expressed in

microglial cells during vasoregression in TGR retinas. Of note, our

model represents a ciliopathy-based photoreceptor degeneration

with secondary vascular defects. Thus, our data which show

similarities to gene expression profiles of other inflammatory and

neurodegenerative diseases suggest that CD74 may represent an

important link between inflammatory stimuli and vasoregression.

Interestingly, we observed a strong upregulation of CD74

preceding and accompanying neurodegeneration and vasoregres-

sion in the absence of major changes in retinal MIF levels. Thus,

CD74 mediated tissue damage may indicate a predominant

immune cell mediated antigen processing and presentation

process. This is supported by the finding that various genes of

the complement system such as C1qa, CFB and Serping1 are

highly upregulated in the TGR model.

Antigen binding of C1qa binding is the first step in activating

the classical complement pathway, whereas CFB and Serping1 are

regulators in the alternative and classical complement activation

pathways [21].

Recent genetic studies show that polymorphisms in complement

factor B and H (CFH) are important for the development of age-

related macular degeneration (AMD) and its vascular pathology. A

study from von Leithner et al. demonstrated that CFH is essential in

the maintenance of endothelial function for normal retina perfusion

[22]. Deficiency in CFB causes an autoimmune response directly in

the endothelium of intra-retinal vascular network. Retinal vessels in

CFH knockout mice are progressively overloaded with C3 and C3b,

leading to vasoconstriction and occlusion. While CFB promotes

complement activation after binding to C3b, CFH suppresses the

activation upon binding to C3b. CFH and CFB are closely

associated with C3 and the formation of C5 convertase. Together,

complement activation can cause vascular damage in a variety of

pathological settings. The multiple interplay of components of the

classical and alternative complement pathway in association with

the activated immune system provide a possible mechanistic link

between photoreceptor-degeneration induced upregulation of

CD74 activation in microglia and secondary vasoregression, but

the causal relationship between complement activation and

vasoregression needs further substantiation.

The proximity of CD74 positive microglia to the capillary

network which is primarily affected in the TGR suggests that these

cells are somehow involved in the onset of vasoregression. Mature

vessels are largely independent of growth survival signals than

immature vessels. Thus, adult vasoregression in the presence of

upregulated survival factors is extraordinary. However, the role of

microglia in the destruction of retinal vessels is suggestive given the

evidence, e.g. from the RCS rat and other models in which

photoreceptor degeneration, microglia activation, and vessel

regression have been demonstrated [6,23,24].

However, neither model has provided evidence that CD74 and

the complement system are central mediators. From our data, we

postulate that defects in cilia of the photoreceptor cells lead to

apoptosis, hypothetically releasing peptides and cell debris that

activate microglial cells.

Our model represents specific features which are considered a

general responsive phenotype of the retina. In a recent review by

Figure 4. Confirmation of gene expression profiles in SD and TGR retinas at 1- and 3-month. Transcriptional analysis of genes was
performed by quantitative real-time PCR in rats of 1-month SD (white bars), 1-month TGR (gray bars), 3-month SD (striped bars) and 3-month TGR
(black bars). The values at 1-month are standardized to 1. *p,0.05, **p,0.01, ***p,0.001: 3-month TGR compared with 1-month TGR. #p,0.05,
###p,0.001: 3-month TGR compared with 3-month SD.
doi:10.1371/journal.pone.0016865.g004

Microglial Cells in Retinal Vasoregression
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Xu et al., the aging retina shows ‘‘para-inflammation’’ as

characteristic multicellular response pattern, including low level

apoptosis, complement activation and inflammatory cytokine

reaction, and the activation of microglia as an important effector

cell. By comparison, the TGR model shares some of these

important characteristics, however, also with some singularities,

such as the extensive vasoregression [25].

Adult vasoregression may be promoted when pericytes are lost

yielding reduced endothelial protection. The TGR has reduced

pericyte coverage over time for unknown reasons, rendering it more

susceptible to vasoregression in analogy to mice with heterozygous

PDGF-B deficiency. Activated microglia is known to secrete

inflammatory cytokines such TNF-alpha and IL-1b which can

activate and subsequently damage endothelial cells [26]. Further

studies inhibiting inflammatory signalling in this model are required

to delineate the importance of these secondary tissue responses.

Of note, some of the genes upregulated in the TGR are

consistent with genes expressed in Müller glia isolated from 6

months diabetic SD retinas [27]. These include CD74, RT1-Ba,

C1s, A2M, Timp1 and CEBP. Many genes associated with

immune/inflammatory and acute-phase response produced by

Müller cells are also strongly regulated in our TGR rat model.

Interestingly, CD74 was not found in astrocytes or Müller cells in

the TGR. Whether this is due to differences in species or in

Figure 5. Expression of CD74 in SD and TGR retinas at 1- and 3 months. A. Translational analysis of CD74 by Western blot. B. quantitative
analysis of translational CD74 expression. The values at 1-month are standardized to 1. C: expression and localization of CD74 in the retina. Vessels are
visualized by staining with Lectin (red), and CD74 positive cells are displayed in green. Few CD74 positive cells are seen in SD in the superficial and
deep capillary layers. A slight increase in number of CD74 positive cells is found in TGR in the superficial capillary layer at 1 month. The numbers of
CD74 positive cells are raised in the deep capillary layer in 3-month TGR compared with other three groups at all time points observed. C–F: the
superficial capillary layer; G–J: the deep capillary layer. 1 m: 1-month retina. 3 m: 3-month retina. *p,0.05: 3-month TGR compared with other three
groups.
doi:10.1371/journal.pone.0016865.g005

Microglial Cells in Retinal Vasoregression
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inducing mechanisms needs further investigations. Together, the

data indicate that vasoregression in TGR retinas shares similarities

with molecular changes induced by chronic hyperglycemia.

As we determined gene expression before and after vessel

regression, the involvement of specific tyrosine kinases in relation to

vasoregression is not surprising. Given the progressive glial response

to the neurodegeneration with concomitant activation and

expression of neurotrophin which share survival activities of vessels,

the responsive upregulation of the respective tyrosine kinase

pathways appears as an epiphenomenon of the ongoing damage.

In summary, our study on analysis of gene expression profiling

identified pathways involved in immune/inflammatory/complement

system that act as regulators in the development of vasoregression in

the degenerating retina. CD74 and activated microglial cells might be

a novel target for interfering with retinal vasoregression.

Supporting Information

Figure S1 Colocalization of Iba 1 and CD74 in the TGR
retina. A: Iba 1; B: CD74; C: Lectin; D: merged image of A–C.

(PPTX)

Table S1 Genes regulated in 3-month TGR retinas compared

with 1-month TGR and 3-month SD retinas. Genes more than

2fold upregulated or more than 30% downregulated are included

in the table.

(PDF)

Table S2 Comparison of gene expression in the TGR model

with other animal models.

(PDF)
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Figure 6. Activation of microglial cells in TGR retinas. Vessels and microglial cells are visualized by staining with Lectin (blue) and CD11b
(green), respectively. CD74 (red) is expressed in microglial cells (A–D). Furthermore, CD74 (green) is not detected in pericytes as demonstrated by the
staining with NG2 (red), a pericyte marker (E–H). Moreover, microglial cells expressing CD74 were found to be close to regressive capillary (I–L).
Arrows in A–D: colocalization of CD74 and CD11b; arrows in E–H: pericyte; arrowheads in E–H: CD74 positive microglial cell. Arrows in I–L: regressive
vessel.
doi:10.1371/journal.pone.0016865.g006
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