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A flow injection system using an unmodified gold screen-printed electrode was employed for total phenol determination in
black and green teas. In order to avoid passivation of the electrode surface due to the redox reaction, preoxidation of the
sample was realized by hexacyanoferrate(III) followed by addition of an EDTA solution. The complex formed in the presence of
EDTA minimizes or avoids polymerization of the oxidized phenols. The previously filtered tea sample and hexacyanoferrate(IIT)
reagent were introduced simultaneously into two-carrier streams producing two reproducible zones. At confluence point, the pre-
oxidation of the phenolic compounds occurs while this zone flows through the coiled reactor and receives the EDTA solution before
phenol detection. The consumption of ferricyanide was monitorized at 360 mV versus Ag/AgCl and reflected the total amount of
phenolic compounds present in the sample. Results were reported as gallic acid equivalents (GAEs). The proposed system is robust,
versatile, environmentally-friendly (since the reactive is used only in the presence of the sample), and allows the analysis of about
35-40 samples per hour with detection limit = 1 mg/L without the necessity for surface cleaning after each measurement. Precise

results are in agreement with those obtained by the Folin-Ciocalteu method.

1. Introduction

Phenolic compounds are a class of chemicals that have a
hydroxyl functional group attached to an aromatic hydrocar-
bon group. The simplest of the class is phenol (C¢HsOH) [1].
The term “polyphenols” refers to a group of chemical sub-
stances found in plants which are characterized by the pres-
ence of more than one phenol unit, for example, hydrolysable
tannins (gallic acid) and phenylpropanoids (flavonoid,
lignins, and condensed tannins) [1, 2]. The largest and
most studied polyphenols are the flavonoids, as catechins,
which correspond to the main phenolic compound found
in green and black teas [3]. Gallic acid was identified to be
main free phenolic acids; the four major catechins are (—)-
epicatechin gallate (ECG), (—)-epigallocatechin (EGC), (—)-
epigallocatechin gallate (EGCG), and (—)-epicatechin (EC).
These species can be associated to a reduction in the risk
of cardiovascular disease and some forms of cancer, as well
as the improvement of oral health and other physiological

functions such as anti-hypertensive effect, body weight
control, antibacterial and antivirasic activity, and so forth
[1-4]. Therefore, the development of analytical methods for
polyphenols represents an important and exciting topic for
analytical chemists.

For total and/or particular phenol analysis, numerous
methods have been reported based, for example, on spec-
troscopy [5, 6], chemiluminescence [7], spectrophotometry
[8-10], chromatography [3, 11], electrochemistry [12-16],
and so forth. In spite of the fact that many methods
are available, most of them lack versatility, simplicity, and
suitability for large-scale analyses. When a rapid determi-
nation of “total phenolic compounds” is needed, simple
procedures involving an unselective reaction are preferable,
especially when the automation of the analytical procedure
has proved to be a versatile approach and relevant for quality
control [17]. In this context, flow injection system has been
widely accepted and the incorporation of the screen-printed
electrodes can increase analytical applications because of
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FiGure 1: Flow-cell (model FC,) and screen-printed electrode developed by BVT Technologies (Czech Republic). A, R, and W refer to
auxiliary, reference, and working electrodes. In the present flow-cell does not exist the light emitting diode (LED) as specified in the figure.

their characteristics such as small size, planar geometry,
flexible construction, lost cost, disposable, and so forth [18].

The preoxidation of phenol by hexacyanoferrate(III) has
often been exploited in continuous-flow procedures [19, 20]
but it has been shown that it presents a drawback: electrode
fouling with the formation of electropolymerized films on
the electrode surface, which affects the quality of the analysis.
In order to minimize this problem, the use of EDTA has been
proposed [21] and can represent an interesting strategy for
sensor development.

With these facts in mind, the main purpose of this work is
to develop a fast and low-cost automated procedure for total
phenolic compound determination in tea samples by using
hexacyanoferrate(III) and EDTA. The preoxidation by ferri-
cyanide and the use of EDTA prevent electrode fouling. The
design of the FI system, using the simultaneous introduction
of reactive and sample, and the use of unmodified gold
screen-printed electrodes contribute to a low-cost approach
which is suitable for industrial applications.

2. Experimental

2.1. Apparatus. Cyclic voltammetry was performed using a
PS potentiostat system (Palm Instruments BV, The Nether-
lands) connected to a PC. A three-compartment electro-
chemical cell containing three electrodes in the form of an
electrochemical sensor type AC1.W.R (BVT Technologies,
Czech Republic) was used. The sensor was formed on a
corundum ceramic base and on this surface, the working,
the reference, and the auxiliary electrodes were placed as
illustrated in Figure 1. Its compositions were: AuPd (98/2),
Ag/AgCl (60/40), and AuPd (98/2%), respectively.

Hydrodynamic experiments were carried with the PS
potentiostat at amperometric detection technique (Eppl. =
360mV, Interval = 0.05s and time run between 1000r
3000 s). Flow-injection experiments were carried out in an
ALITEA eight channels peristaltic pump (Sweden) furnished
with a Tygon, injection commutator tubing (0.8 mM, i.d.,
wall thickness < 0.2 mM) and other accessories. The flow-
cell (Figure 1), which ensured the wall-jet flow around the
working electrode (model FC,), was fabricated by BVT
Technologies (Czech Republic).

2.2. Reagents, Standards, and Samples. All solutions used
were prepared with analytical-grade chemicals such as
Folin Ciocalteau reagent, gallic acid monohydrate (3,4,5-
trihydroxybenzoic acid), (—)-epicatechin gallate (ECG),
(—)-epigallocatechin (EGC), (—)-epigallocatechin gallate
(EGCQG), (—)-epicatechin (EC), sodium carbonate, potas-
sium hexacyanoferrate, potassium nitrate, and ethylenedi-
aminetetraacetic acid disodium salt dehydrate (EDTA).

Working standard solutions of gallic acid, ECG, EGC,
EGCG, and EC were freshly prepared by dilution of the stock
solution with 0.05 M phosphate buffer. The stock solution of
gallic acid was prepared by dissolving 0.500 g of dry gallic
acid in 10 mL of ethanol and dilute to 100 mL volumetric
flask with double distilled water (Millipore-Q). When not in
use, it was stored under refrigerator for no more than two
weeks.

Black and green tea samples were provided by local sto-
res. The bags of different tea samples (2 g each) were intro-
duced in a 250 mL erlenmeyer of boiling water and allowed
to cool down to room temperature (25°C). After that, the
sample solution was filtered using a standard filter paper
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Figure 2: Flow diagram used. S, sample (standard solutions or
samples), C; and C,, carrier streams (phosphate buffer solution),
R, reagent stream (ferricyanide solution), IC, injector, Lg and Lg,
sample and reagent loops, W, waste, B; and B,, coiled reactors,
a and b, confluent points, R, confluent stream (EDTA solution),
FC, flow cell (model FC,), and W, waste. The boxed part relates
to the movable bar of the commutator, the dashed lines indicating
the next commutating state. The sites where pumping is applied are
indicated by arrows. For system dimensioning, see text.

(Whatman, qualitative). Before injection in the FI system,
the tea samples, if necessary, were diluted with the carrier
solution for fitting better the calibration curve.

2.3. Electrodes. Gold screen printed electrodes were used as
received. Initially, they were used for cyclic voltammetry
experiments and after that they were placed into the
flow-electrochemical cell (Figure 1) for flow amperometric
experiments.

3. Results and Discussion

The composition of gallic acid and tea catechins in com-
mercial teas varies with species, season, and horticultural
conditions and particularly with degree of fermentation dur-
ing the manufacturing process. Also, the procedure used for
obtaining the samples, for example, the time of boiling water,
the use of filtration, type of filter, and so forth. can alters the
final results. Therefore, these steps must be well defined.

For comparative studies, the Folin-Ciocalteau method
was used [8]. It is a sensible method for total phenols, and
the hydroxyl groups control the color developed which is
monitored at 765 nm. Ascorbate is a potential interferent,
and reducing sugars (glucose and fructose) can cause
minor interferences and must be corrected. Concerning the
procedure, the following method was used: (i) 20 4L of blank,
standard or sample (ii) 1500 uL of water (iii) 100 uL of the
Folin-Ciocalteu reagent (iv) mix the solution and after few
minutes, add 300 uL of the sodium carbonate solution (v) left
at 40°C for 30 minutes and (vi) determine the absorbance
of each solution. The results are reported as gallic acid
equivalent (GAE). The total content of phenolic compounds
can be calculated according to the formula C = (¢ - V)/m,
where ¢ is the concentration of gallic acid established from
the calibration curve (mg-L7!), V is the volume of tea
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FiGgure 3: Cyclic voltammograms obtained for 10 mM K;Fe(CN)g
in .LOMKNO; (3) and in presence of 1 mM gallic acid (2). The
lower register (1) refers to 1.0 mM gallic acid in 1.0 M KNO;. Scan
rate =50mVs .

solution (mL), and m is the weight of tea (g). This method
is not specific and refers to an estimative of total polyphenols
contents; however, it is the most used method for this kind
of analysis and refers to a international standard method.
Results were expressed as galic acid equivalent (GAE) because
the phenols in tea contain mostly other phenols and only
small amount of gallic acid. The results could be expressed
also as catechin gallate because of the low concentration in
tea. The phenols found in tea is mainly because the presence
of caffeine and catechin as ECG, EGC, EGCG, and EC [3].

The preoxidation of gallic acid by ferricyanide and the
employment of EDTA were put here as strategic to prevent
the passivation of the working electrode during the oxidation
of phenolic compound. The proposed FI system represents
an interesting alternative for developing robust systems for
routine analysis. Before using the flow injection system of
Figure 2, gallic acid, ferricyanide, and EDTA solutions were
observed by cyclic voltammetry.

3.1. Cyclic Voltammograms of the Gallic Acid and Ferricyanide.
Effect of EDTA. Figure 3 shows cyclic voltammograms of the
gallic acid alone (1), ferricyanide alone (3), and ferricyanide
plus gallic acid (2). All in presence of 1 M KNOs. Profile no.
2 shows the anodic and cathodic peaks at 270 and —17 mV
with a formal potential & 143 mV and a peak separation of
ca. 253 mV. If compared with the profile no. 1 or gallic acid
alone, the anodic peak is shifted to more positive potential
as a result of a catalytic effect for the oxidation process.
Thus, the ferricyanide(III) can be use for oxidizing the gallic
acid and the ferrocyanide(II) produced (or residual amount
of ferricyanide) can be used as an indicative of the process
and monitoring of the gallic acid. The drawback of this
monitoring is the passivation of the electrode which requires
the cleaning of the electrode after each measurement.
Certainly, for industrial application, it is not so attractive.
The addition of EDTA to the medium produces a significant
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FiGure 4: Effect of EDTA solution on the operational stability of
the gold screen-printed electrode. High level (100.0 mg-L ™!, square)
or low level (50.0 mg-L~!, circle) refers to successive injection of
standard-solutions of gallic in phosphate buffer. R" is the flow
rate which depending on the experiments; it is distilled water for
100.0 mg-L~! gallic acid and 0.25 M EDTA solution for 50.0 mg-L™!
gallic acid.

enhancement in the electrochemical behavior of phenolic
compounds, avoiding electrode passivation [21].

We believe that the stabilization of the signals occurs
because: (i) the oxidation of gallic acid occurs by hexa-
cyanoferrate(III), outside of the electrode, like a preoxidation
and (ii) the oxidized gallic acid reacts with EDTA giving
a complex GA,x EDTA. The formation of the complex
reduces polymerization of the oxidized products formed
that passivate the electrode. In fact, Figure 4 shows that in
presence of EDTA solution the signals associated to gallic
acid was maintained constant after 50 successive injection; in
its absence, this signal was deteriorated. Similar results were
showed before in experiments using dopamine, catechol, and
4-aminophenol oxidation [21]. Therefore, the preoxidation
and the formation of a complex with EDTA can be used to
avoid the formation of a passivation layer on the electrode
surface and allows the determination of phenolic compounds
without the necessity of cleaning the electrode by polishing
before each measurement.

The CV scanned between 800 and —200mV versus
Ag/AgCl with 10mM hexacyanoferrate(III) plus 1.0M
KNOs; (profile no. 3) presented clear anodic and cathodic
peaks (3, Figure 3). These peaks were attributed to the
reversible Fe(CN)63_/Fe(CN)64_ redox couple with a peak
separation of ca. 130 mV. It is important to clarify that the
deviation from the theoretical values [22] is attributed to the
ink composition and mainly to the presence of a polymeric
binder that affects the redox activity [23]. It is possible that
the binder could cover some of the active sites of the electrode
surface.

3.2. The Flow-Injection System. The flow-injection system is
illustrated in Figure 2 and involves two-carrier streams. In
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the position specified, the sample (S) and the reagent (R)
were aspirated through the Lg and Lg loops, respectively,
which defined the injected volumes. When the injector
commutator was switched, the loops were placed into the
corresponding C; and C, water carrier streams, producing
two reproducible zones which were pushed towards a conflu-
ence point. The zone associated with Ly is the first to arrive
in order to keep the oxidative ambient at the confluence
point; the sample zone (associated with Lg) arrives later
because it flows through a different analytical path after
injection (B;). At confluence point (a), the total phenol
contents (expressed as gallic acid equivalent) are oxidized
by hexacyanoferrate(III) while this zone flows through coil
B;. At (b) confluent point, an additional confluent stream
of EDTA solution (R" or EDTA reagent) is added in order
to avoid fouling of the working electrode. The monitoring
of hexacyanoferrate(IlI) consumption was carried out at
360 mV versus Ag/AgCl and the passage of the processed
sample through the flow cell produced a transient peak in
the baseline, proportional to the total content in the sample.

In this system, the peak height is the basis of the
measurements and it is proportional to the content of
phenols. The flow-injection analysis was designed to provide
a moderate dispersion. The flow rate of C; and C, were fixed
as 1.2mL-min~! as a compromise between the sampling
rate and the mean available time for the reduction of
hexacyanoferrate(III). Path B; (15cm) was needed to
increase sample dispersion and to retard the arrival of the
sample zone at the confluent point. The B, coil reactor was
50 cm long. Both were defined after preliminary experiments
and could be both reduced or increased depending on the
kind of sample to be analyzed and the condition of the
mixture. The Lg and Lg sampling loops were usually 25 cm
long (ca. 100 uL). The sample aspiration rate was chosen as
1.2mL-min"! to simplify the system (all stream with same
value) and fill the sampling loop under good conditions.
For routine work, the lengths of the sampling and reagent
loops could be adjusted to guarantee better results in terms
of sample dispersion regardless of the travel analytical path
and amount of reagent. This procedure can be conducted
employing a standard solution.

In order to define the composition of the reagent, the
potassium ferricyanide concentration was varied between
0.5 and 5.0 mM. The concentrations of solutions of EDTA
were varied using concentrations of 0.05, 0.1, 0.2, and 0.5 M.
Sample and reactive loops were varied using lengths of 5, 15,
25, and 30 cm. The coiled reactors dimensions were varied as
5, 15, or 30 for By and 25, 50, or 100 cm long for B,. The
speed of the peristaltic pump was investigated in order to
know the effect of the mean available times for oxidation of
gallic acid. Thus, the flow rates verified were 0.4, 0.8, 1.2, or
1.6 mL-min~!, respectively.

The system shown in Figure 2 with 1.0 mM K;3Fe(CN)g
as (R), 0.05MK,HPO4/KH,PO; as (C; and C,), and
0.25 M EDTA as (R") was used for analysis of the samples.
Gallic acid standard (1.0 to 10.0 or 5.0 to 50.0 mg-L~!) solu-
tions were used before the analysis to evaluate the flow system
and create the analytical curve. Precision was evaluated by
calculating the relative standard deviation of the results of
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FIGURE 5: Recorder output of a routine run. From left to right, measurements in duplicate for gallic acid standard solution (50, 60, 70, 80,
and 100 mg-L™!) followed by signal of phenolic compounds EGCG (50 mg-L1), EC (50 mg-L™!), GA (25 and 50 mg-L!), and different

samples of tea.

TasLE 1: Optimization of variables.

Type Parameter Investigated range Selected value
I Flow rate/mL-min~! 0.4-1.6 1.2
Path length, B;/cm 5-30 15
Reactor, B,/cm 10-100 50
Inj. Volume/uL 25-100 60
II K3Fe(CN)g/mM 0.5-5.0 1.0
EDTA/M 0.05-0.5 0.25
111 Potential, mV versus Ag/AgCl —100 to 600 360

L, II and III, hydrodynamic, chemical, and physical parameters.

eleven successive measurements of a typical tea sample with a
gallic content of 39.23 mg-L~!. The results obtained from the
Folin-Ciocalteu method (six samples) were compared with
those obtained by the proposed approach.

Optimization of the variables involved in the system
design were performed by the univariate method. Table 1
gives the range over which each variable was studied and
also the selected values. For these investigations, the flow
system shown in Figure 2 was employed with a 25.0 or
50.0 mg-L~'of gallic acid standard solution. The poten-
tial applied to the working electrode was 360 mV versus
Ag/AgCl because for higher (up to 600 mV) or lower (up
to —100mV) the signals presented instability. Increasing
the injected volume (25 to 100 yL) led to a favorable effect
on the analytical signal. For values greater than 100 uL,
the signal did not increase, probably due to the saturation
of the electrode surface by adsorbed species. In addition,
pronounced losses in the linearity and sampling rate were

observed. For 60 uL, good correlations between the current
and the concentration, combined with a suitable sampling
frequency. Thus, this volume was selected for both sample
and reagent.

The influence of flow rate on the analytical signal
(not shown) was investigated by varying it from 0.4 to
1.6 mL-min~!. For flow rates lower than 0.8 mL-min~!, the
recorded peak heights were increased as a result of the
longer oxidation time of gallic acid by hexacyanoferrate(III).
However, the strategy resulted in an unacceptable low sam-
pling rate. For values higher than 1.2 mL-min™!, in spite of
the high sampling frequency, the system stability decreased.
Then, the flow rate was selected as 1.2mL-min~! for
subsequent experiments as a compromise between sensitivity
and analytical frequency.

The effect of the reagent concentration was studied by
varying the hexacyanoferrate(IlI) from 0.5 to 5.0 mM. By
increasing the composition of the ferricyanide, reagent was
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TABLE 2: Parameters of regression for phenolic compounds.

Phenolic compounds Linear range (yg/mL)

Gallic acid 5.0-25.0
50.0-100.0
EGCG 12.5-100.0
EC 12.5-100.0
ECG 12.5-100.0
EGC 12.5-100.0

Equation Correlation, R?
—0.016 + 0.007x 0.9818
—0.047 + 0.003x 0.9948
—0.005 + 0.021x 0.9976
—0.0002 + 0.023x 0.9710
0.003 + 0.022x 0.9982
0.008 + 0.022x 0.9919

For the interval 5.0-25.0, the concentration of K3Fe(CN)g was 1.0 mM; for the others, the concentration of K3Fe(CN)g was 2.0 mM.

60

Y =0.363 + 1.074x

Proposed method
W
(=]
1

R? =0.9975
20
10
0 T T T T T T T T T T T
0 10 20 30 40 50 60

Reference method

FIGURE 6: Relationship between proposed and the reference method
used for total phenolic compounds detection.

possible to improve the amperometric response of the system
but the linear range of response decreased. A concentration
of K3Fe(CN)g < 0.5 mM, resulted in a loss of linearity, and
for higher concentrations, up to 5.0 mM, a good calibration
curve was obtained in the range from 100.0 up to 500.0
mg-L~!. For higher intervals, poor linearity was observed.
We have noted that by changing the ferricyanide concen-
tration it is possible to obtain different analytical curves.
Table 2 shows the performance of different analytical curves
obtained by gallic acid (two intervals) and catechin solutions:
(—)-epicatechin gallate (ECG), (—)-epigallocatechin (EGC),
(—)-epigallocatechin gallate (EGCG), and (—)-epicatechin
(EC). This variable (ferricyanide concentration) can be
changed to adjust the system depending on the sample to be
analyzed.

The beneficial effect of EDTA on the electrochemical
redox process was evaluated by flow amperometry (Figure 4).
By using the system of Figure 2, solutions of gallic acid were
injected with R" as water or EDTA solution. Fifty successive
injections of 100.0 or 50.0 mg-L™! gallic acid were performed
as R" = distilled water or R" = 0.10 M solution of EDTA.

For the first case (injected standard, 50.0 mg-L~! and
R’ = EDTA), in 10 injections, the current varied around
0.100 yA. When the EDTA solution was replaced by distilled
water, the decrease found was higher from around 0.220 to

less than 0.150 yA. In order to improve the performance
of the sensor concerning the operational stability, the
concentration of EDTA was increased up to 0.25 M. Under
these circumstances, the loss in analytical signal was between
2.0 and 3.0%.

The oxidation of phenolic compounds by hexacyanofer-
rate(IT) is not selective, and for the specific compound deter-
mination, is necessary previous treatment of the sample. Teas
with addition of ascorbic and citric acid (“tea with lemon”,
etc.) must be avoided since standards of gallic acid plus
ascorbic acid gave results with significant errors. The samples
used in this work were selected, and the low-interferent-
to-analyte ratio found restricted the number of potential
interferents.

3.3. Applications. After being dimensioned, the flow system
was applied to an analysis of tea. The long-term stability
of the system was evaluated by injecting different samples
during 4-5h working periods. For analysis of the black
and green teas, the system was adjusted and the calibration
curve was obtained in the concentration range from 50.0 to
100.0 mg-L™! of gallic acid. For n = 5, the typical regression
coefficient was 0.9948 (Figure 5). Using the proposed system,
about 35-40 samples can be run per hour with a detection
limit of 1.0 mg-L~!. The sampling rate can be improved by
reducing the mean available time for phenolic compound
oxidation. This aspect is particularly important when sen-
sitivity is not critical. For a typical tea sample with a total
phenol content of about 40.0 mg-L~!, the relative standard
deviation of eleven experiments was estimated to be lower
than 2.0%. The accuracy was assessed by running six already
analyzed samples by the Folin-Ciocalteau method (Figure 6).
The linear correlation between both methods was 0.9975.

4, Conclusion

The design of an FI system (including the SPE) which
introduces simultaneously the reactive and sample for pre-
oxidation and environmentally-friendly analysis is desirable
for routine applications.

The oxidation by hexacyanoferrate(IIl) is unselective;
it means that its use is not appropriate for total phenolic
compound monitoring. The use of a low concentration
of ferricyanide with the possibility of reagent adjustment,
depending on the kind of sample and necessity, results it in
an attractive approach.



International Journal of Analytical Chemistry

The use of EDTA and the preoxidation step are an
interesting strategy for avoiding or minimizing passivation
of the electrode surface. It is possible to carry out phenol
analysis without continuous cleaning of the electrode surface
simplifying the setup. The EDTA concentration can be
adjusted for different kinds of samples. The use of screen-
printed electrodes is attractive, and considering the low cost
of the proposed system, it can be used for large-scale analysis
and/or for quality control of teas and other beverages. Gold
SPE was used for this analysis because it was available at
laboratory but the use of carbonaceous SPE could present
better results because of less sensitivity to surface oxidation.
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