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Lung cancer is the most common cause of cancer-related death globally. As a preventive 
measure, the United States Preventive Services Task Force (USPSTF) recommends 
annual screening of high risk individuals with low-dose computed tomography (CT). The 
resulting volume of CT scans from millions of people will pose a significant challenge 
for radiologists to interpret. To fill this gap, computer-aided detection (CAD) algorithms 
may prove to be the most promising solution. A crucial first step in the analysis of lung 
cancer screening results using CAD is the detection of pulmonary nodules, which may 
represent early-stage lung cancer. The objective of this work is to develop and validate 
a reinforcement learning model based on deep artificial neural networks for early detec-
tion of lung nodules in thoracic CT images. Inspired by the AlphaGo system, our deep 
learning algorithm takes a raw CT image as input and views it as a collection of states, 
and output a classification of whether a nodule is present or not. The dataset used to 
train our model is the LIDC/IDRI database hosted by the lung nodule analysis (LUNA) 
challenge. In total, there are 888 CT scans with annotations based on agreement from 
at least three out of four radiologists. As a result, there are 590 individuals having one or 
more nodules, and 298 having none. Our training results yielded an overall accuracy of 
99.1% [sensitivity 99.2%, specificity 99.1%, positive predictive value (PPV) 99.1%, neg-
ative predictive value (NPV) 99.2%]. In our test, the results yielded an overall accuracy of 
64.4% (sensitivity 58.9%, specificity 55.3%, PPV 54.2%, and NPV 60.0%). These early 
results show promise in solving the major issue of false positives in CT screening of lung 
nodules, and may help to save unnecessary follow-up tests and expenditures.
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inTrODUcTiOn

Computed tomography (CT) is an imaging procedure that utilizes X-rays to create detailed images 
of internal body structures. Presently, CT imaging is the most preferred method to screen the early-
stage lung cancers in at-risk groups (1). Globally, lung cancer is the leading cause of cancer-related 
death (2). In the United States, lung cancer strikes 225,000 people every year and accounts for $12 
billion in healthcare costs (3). Early detection is critical to give patients the best chance of survival 
and recovery.
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Screening high risk individuals with low-dose CT scans has 
been shown to reduce mortality (4). However, there is significant 
inter-observer variability in interpreting screenings as well as 
a large number of false positives which increase the cost and 
reduce the effectiveness of screening programs. Given the high 
incidence of lung cancer, optimizing screening by reducing false 
positives and false negatives has significant public health impact 
by limiting unnecessary biopsies, radiation exposure, and other 
secondary costs of screening (5).

Several studies have shown that imaging can predict lung 
nodule presence to a high degree (6). Clinically, detecting 
lung nodules is a vital first step in the analysis of lung cancer 
screening results—the nodules may or may not represent 
early-stage lung cancer. Numerous computer-aided detection 
(CAD) methods have been proposed for this task. The majority, 
if not all, utilize classical machine learning approaches such as 
supervised/unsupervised methods (7). The goal of this work 
is to adopt for the first time a reinforcement learning (RL) 
algorithm for lung nodule detection. Developed by Google 
DeepMind, RL is a cutting-edge machine learning approach 
which has improved upon numerous CAD systems and helped 
to beat the best human players in the game of Go, one of the 
most complex games humans ever invented (8). Here, we apply 
RL to the lung nodule analysis (LUNA) dataset and analyze the 
performance of the RL model in detecting lung nodules from 
thoracic CT images.

MaTerials anD MeThODs

lung nodule Data
For the training of our algorithm, we utilize the LUNA dataset, 
which curates CT images from publicly available LIDC/IDRI 
database. In total, there are 888 CT scans included. The database 
also contains annotations collected in two phases with four 
experienced radiologists. Each radiologist marked lesions they 
identified as non-nodule (<3 mm) and nodule (≥3 mm) and the 
annotation process has been described previously (9). The refer-
ence standard consists of all nodule ≥3 mm accepted by at least 
three out of four radiologists. Annotations that are not included 
in the reference standard (non-nodules, nodules <3  mm, and 
nodules annotated by only one or two radiologists) are referred 
to as irrelevant findings (9). A key benefit of this dataset is the 
inclusion of voxel coordinates in the annotation of nodules, which 
proves immensely useful when using a RL approach, described 
in the next section. Figure 1 illustrates examples of nodule and 
non-nodules from a single CT scan.

Data normalization
To balance the intensity values and reduce the effects of artifacts 
and different contrast values between CT images, we normalize 
our dataset. The Z score for each image is calculated by subtracting 
the mean pixel intensity of all our CT images, μ, from each image, 
X, and dividing it by σ, the SD of all images’ pixel intensities. This 
step is helpful when inputting information into a neural network 
because it fine-tunes the input information fed into a convolution 
algorithm (10).

 
Z X
=

−µ
σ  

(1)

reinforcement learning
Reinforcement learning is the science of mapping situations to 
actions (11). It is a type of machine learning that bridges the 
well-established classical approaches of supervised and unsu-
pervised learning, where target values are known and unknown, 
respectively. RL differs in that it seeks to model data without any 
labels, but rather with incremental feedback. Its recent popularity 
stems from its ability to develop novel solution schemas, even 
outperforming humans in certain domains, because it learns to 
solve a task by itself (12). Essentially, it is a way of programming 
agents by either a reward or a punishment without the need to 
specify how a task is to be achieved. A simple RL model is shown 
in Figure 2 illustrating how an agent’s actions in a given environ-
ment affect its resulting reward and state. In its infancy, RL was 
inspired by behavioral psychology, where agents (i.e., rodent) 
learned tasks by being given a reward for a correct action taken in 
a given state. This mechanism ultimately creates a feedback loop. 
Whether the agent, in our case a neural network model, navigates 
a maze, plays a game of ping pong, or detects lung nodules, the 
approach is the same.

A basic reinforcement algorithm is modeled after a Markov 
decision process. For a set number of states, there are a given 
number of possible actions, and a range of possible rewards (13). 
To help optimize an agent’s actions a Q-learning algorithm is 
used (14).

 
Q s a Q s a l r Q s a Q s at t t t t t t t t, , * , ,( ) = ( ) + + ( ) − ( ) + +1 1max

 
(2)

How a model knows the potential rewards from taking a 
certain action comes from experience play. That is, it stores 
numerous combinations of state to state transitions (s→s+1), 
with the corresponding action, a, taken by the model and the 
resultant reward, r: denoted as (s, a, r, s+1). For instance, in a 
game environment, the best action to take would be the action 
that leads to the greatest future rewards (i.e., winning the game), 
even though the most immediate action may not be reward-
ing in the short term. As shown in Eq. 2, the expected future 
rewards are approximated by multiplying the discount rate, λ, 
by the value of the action that would return the largest future 
reward based on all possible actions, maxQ(st+1, at). For a given 
action, what is learned is the reward for that action, rt+1, plus the 
largest future reward expected less current action value, Q(st, 
at). This is learned at a rate, r, the extent to which the algorithm 
overrides old information, and it is valued between 0 and 1. 
To learn which series of actions result in the greatest number 
of future rewards, RL algorithms depend on both greedy and 
exploratory search. The two methods allow a model to explore 
all possible ways to accomplish a task, and select the most 
efficient rewarding (12).

Using the RL approach to tackle the lung nodule task 
requires one main adaptation, which is how we define a state. In 
a typical RL task, a state would refer to a snapshot of everything 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


FigUre 2 | A diagram of a reinforcement model. An agent in a given state (s) and reward (r) completes an action in environment. This results in change of 
environment and either an increase/decrease in reward as a result of that action.

FigUre 1 | Visual illustration of a sample nodule and non-nodule structure in the lung nodule analysis dataset. Frame (a) is a nodule. Frames (B–D) are non-
nodules.
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in an environment at a certain time. However, with lung CT 
images, which are a collection of axial lung scans, we define a 
state as every 10 stacked axial images. Hence, our environment 
is very deterministic. That is, any action taken in a lung CT 
image state would lead to the succeeding 10 scans, from top to 
bottom. Whereas in a conventional task, such as playing a game, 
depending on the action there is more than one succeeding 
state possible. This key difference adapts our reward function to 
act solely as a reward function and evaluate a state on whether 
it immediately has a reward or not, instead of incorporating 

a value function which factors the total reward our agent can 
expect from a given state in the distant future. This makes 
logical sense given that there is only one possible distant future 
in our radiographic image environment, whereas in a game 
environment there is more than one possible distant future. As 
such, rewards are 1 and 0, depending on whether a classification 
is correct or incorrect, respectively, for the immediate state at 
hand only. Thus, the memory replay used to train our model, 
excludes the succeeding state, and only captures current state, 
action, and reward.
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FigUre 3 | A flowchart of the convolutional neural network architecture. Blue box is the input image. Red boxes are convolutional layers with rectified linear unit 
activation. Purple box is the max pooling layer. Cyan box is the dropout layer. Green box is the fully connected layer and softmax binary classifier. Yellow is the 
output of the network.
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convolutional neural networks (cnns)
Learning to control agents directly from high dimensional sen-
sory inputs (i.e., vision and speech) is a significant challenge in 
RL (11). A key component of our RL model is a CNN. It helps 
our model make sense of the very high dimensional CT images 
that we insert into our model. A standard slice has a width and 
length of 512 × 512. With our input of 10 slices for every state, 
this amounts to approximately 2,621,440 pixels. A CNN is able to 
contend with this because it creates a hierarchical representation 
of high dimensional data such as an image (10).

Unlike a regular neural network, the layers of a CNN have 
neurons arranged in three dimensions (width, height, and 
depth) and respond to a receptive field, a small region of the 
input image, as opposed to a fully connected layer which 
responds to all the neurons. For a given neuron, it learns to 
detect features from a local region, which facilitates the cap-
turing of local structures while preserving the topology of the 
image. The final output layer reduces the image into a vector of 
class scores. A CNN deep learning system is composed of five 
layers: an input layer, a convolutional layer, an activation layer, 
a pooling layer, and a fully connected layer. With most CNN 
architectures having more than one of each layer, they are thus 
referred to as “deep” learning (10). The function of each layer 
is described further below.

Input Layer
This layer holds the raw pixels values of the input image (colored 
blue in Figure 3).

Convolutional Layer
This layer visualized by the red boxes in Figure 3 is composed 
of several feature maps along the depth dimension, each cor-
responding to a different convolution filter. All neurons with 
the same spatial dimension are connected to the same recep-
tive field of the input image. This facilitates capturing a wide 
variety of imaging features. The depth of the layer, meaning 

the number of convolution filters, represents the number of 
features that can be extracted from each input receptive field. 
Each neuron in a feature map shares exactly the same weights, 
which define the convolution filter. This allows reducing the 
number of weights, and thus increasing the generalizability of 
the architecture (10).

Activation Layer
Often seen as one with the convolutional layer, as in Figure 3, 
the activation layer applies a threshold function to the output 
of each neuron in the previous layer. In our network, we use a 
rectified linear unit (RELU) activation, where RELU(x) = max(0, 
x), meaning it fires the real value of the output and thresholds at 
zero. It simply replaces the negative values with “0.”

Pooling Layer
Typically placed after an activation layer, this layer down-samples 
along spatial dimensions. Shown by the purple box in Figure 3, 
it selects the invariant imaging features by reducing the spatial 
dimension of the convolution layer. The most commonly used 
is max pooling, which selects the maximum value of four of its 
inputs as the output, thus preserving the most prominent filter 
responses.

Fully Connected Layer
Shown as green in Figure 3, this layer connects all neurons in the 
previous layer with a weight for each connection. As the output 
layer, each output nodes represents the “score” for each class.

To facilitate the learning of complex relationships, multiple 
convolutional-pooling layers are combined to form a deep 
architecture of nonlinear transformations, helping to create a 
hierarchical representation of an image. This allows learning 
complex features with predictive power for image classification 
tasks (10). As illustrated in Figure 3, we use 3D CNN given that 
nodules are spherical in shape, and can best be captured with 3D 
convolutions.
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TaBle 1 | The number of patients and nodules they carry for nodule versus 
non-nodule groups.

# of patients # of states # of nodules

Nodules 590 15,616 1,148
Non-nodules 298 7,107 0

FigUre 4 | Training and validation loss is shown on the training data for 120 
epochs. Blue line corresponds to training loss and orange line corresponds 
to validation loss.
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Data augmentation
Overfitting is a result of network parameters greatly outnumber-
ing the number of features in the input images. Given the network 
size and the number of features available from the CT images, our 
model tended to overfit, hence the need to increase the number 
of CT images. To counter this overfitting, we used standard deep 
neural network methods, such as artificially augmenting the 
dataset using label-preserving transformations (15). The data 
augmentation consists of applying various image translations, 
such as rotations, horizontal and vertical flipping, and inversions. 
We apply a random combination of these transformations on each 
image, thus creating nominally “new” images. This multiplies the 
dataset by many folds and helps in reducing overfitting (10).

iMPleMenTaTiOn anD eXPeriMenTs

implementation
Our python code uses the Keras package (16) and makes use of 
the Theano Library. Keras can leverage graphical processing units 
to accelerate the deep learning algorithms. We trained our CNN 
architecture on an NVIDIA Quadro M6000 GPU card. Training 
time was approximately 2 h.

experimentation
We utilize the entire LUNA dataset (n = 888 patients), with 70% 
in training our model and 30% in test. In the training set, we 
balance our dataset for nodule states and non-nodule states. As 
shown in Table 1, for any sampling of states selected, approxi-
mately 5% are nodule states. Early on, the imbalance caused our 
model to bias significantly toward detecting non-nodule states 
given that those are the majority of states. The balanced dataset 
contains a total of 2,296 states, with 1,148 nodule states and 1,148 
non-nodule states. It was created by retrieving nodule states from 
every patient with a nodule and random non-nodule states from 
all patients. For every epoch during the training, 20% of the train-
ing set is separated for cross-validation.

For our model, the sensitivity, specificity, accuracy, positive 
predictive value (PPV), and negative predictive value (NPV) were 
computed as follows:

Sensitivity or true positive rate:
  

Specificity or true negative rate:
  

TPR= TP
TP+FN

TNR= TN
TN+FP

Accuracy:
  

PPV:
  

NPV:

  

where TP, FP, TN, and FN stand for true positive, false positive, 
true negative, and false negative, respectively.

resUlTs

As shown in Figures  4 and 5, for both loss and accuracy we 
observed a steady improvement. In Figure 4, showing the loss 
value over time, or epochs, there is a steady decline to approxi-
mately zero. A similar pattern holds with accuracy, in Figure 5, 
but with the steady increase to a value of one, meaning perfect 
score. Both graphs were generated from training on 70% of the 
dataset (1,607 states) and cross-validating on 20% of that (321 
states). As observed in both graphs, the model is “learning”, 
however there still remains considerable volatility as shown by 
the validation curves.

The conclusive results from the training and testing for our 
model is detailed in Table 2 The test sample size was 30% of the 
dataset (668 states).

The testing results listed in Table 2 are based on a cutoff value 
of 0.5. Given our model is a binary classifier, this means that for 
any state that it predicts, the likelihood of nodule is at least 0.5. 
Figure  6 illustrates how the sensitivity and specificity vary as 
functions of cutoff values for both training and testing results.

TP+TN
TP+FN+TN+FP

PPV= TP
TP+FP

NPV= TN
TN+FN

https://www.frontiersin.org/Oncology/
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FigUre 6 | Sensitivity and specificity as a function of cutoff, the likelihood a 
state has a nodule.

TaBle 2 | The sensitivity, specificity, accuracy, positive predictive value (PPV), 
and negative predictive value (NPV) PPV results are listed for our reinforcement 
model from training and from testing.

accuracy sensitivity specificity PPV nPV

Training 99.1% 99.2% 99.1% 99.1% 99.2%
Test 64.4% 58.9% 55.3% 54.2.6% 60.0%

FigUre 5 | Training and validation accuracy is shown for the training data for 
120 epochs. Blue line corresponds to training accuracy and orange line 
corresponds to validation accuracy.
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DiscUssiOn

In this study, we present a robust non-invasive method to predict 
the presence of lung nodules, a common precursor to lung cancer, 
from lung CT scans using a RL method. A major advantage of this 
approach is that it allows to develop novel and unpredictable solu-
tions to complex problems. From the results of our training using 

the LUNA dataset, we were able to achieve superb sensitivity, 
specificity, accuracy, PPV, and NPV (all greater than 99%). While 
the metrics for the testing dataset were lower, they were consist-
ent. In both data size and number of trials, we achieved similar 
results. This consistency suggests that our research approach of 
using RL with non-pre-processed data is reproducible. Moreover, 
given the nature of RL, the model will only continue to improve 
with time and more data.

The way in which RL algorithms continue to improve depends 
not only on the quality of the dataset, but also more importantly its 
size. In the training of the AlphaGo, it was trained on master-level 
human players, instead of picking up the best strategies to win 
from scratch (8). In addition, the RL algorithm learned through 
more than 30 million human-on-human games. Factoring in 
hardware, AlphaGo required $25 million in computer hardware 
(17), it was trained on master-level human players (8).

Although the tasks of playing a game of Go is very different 
from detecting lung nodules, an inference we can draw is that 
reinforcement learning algorithms, such as AlphaGo, require 
substantial data to train. Given the original dataset’s small size, 
there is an inherent difficulty in capturing the huge variability and 
structural differences in the lung volumes of human beings. With 
only 888 CT scans and approximately 1,148 nodule states in our 
dataset, with 70% of that being used for training, the lesson we have 
learned is that our model needs a significant amount of more data. 
This is evidenced by the tremendous amount of data and hardware 
needed to train AlphaGo to reach super human performance.

It is worth noting that AlphaGo’s performance is based on how 
well it performed against human players. Similarly, our model 
performance is based on how well it performed against at least 
three radiologists in detecting lung nodules. As described by 
Armato et al. (9) how a given lesion was classified as a nodule 
was determined by a consensus of at least three of the four radi-
ologists. A significant variability is observed when comparing 
the number of lesions classified as a nodule by one radiologist 
versus at least three radiologists. For the lesions identified in all 
the scans, 928 lesions were classified as nodules ≥3 mm by all four 
radiologists and 2,669 lesions were classified as a nodule ≥3 mm 
by at least one radiologist. This means for nodules ≥3 mm, the 
false discovery rate for a given individual radiologist is 65.2% (9). 
In contrast, despite the overfitting, our model classification yields 
a false discovery rate of 44.7% on the validation dataset, which is 
an improvement compared to an individual radiologist.

Given the very high training results, the question of overfitting 
arises. With a small dataset, the underlying probability distribu-
tion of lung nodules is not sufficient to create a fully generalizable 
model, especially given it is based on RL. As with most parametric 
tests, a fundamental assumption of samples is that they adequately 
capture the variance of the population they represent. With small 
datasets, depending on the variable, a random subset of the data 
may not adequately capture the variance of the overall dataset. 
With the LUNA dataset, this is particularly an issue given the fact 
that it is very high dimensional and our model requires signifi-
cantly more data to capture the true variance of its countless vari-
ables. Most CT image datasets comprise of thousands of images, 
as compared to the millions of games in AlphaGo, and thus the 
comparison is not quite the same. We employed dropout and 
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data augmentation to increase the generalizability of our model 
in response to the overfitting. Together these two approaches have 
minimally dampened the effect. An alternate approach we also 
experimented with was to reduce the network size, however, this 
approach resulted in significant volatility in the training and vali-
dation results. Regardless of the overfitting, the performance on 
the validation data set indicates that our model achieves enough 
generalization to compete with a human radiologist and could 
serve as a second reader.

A strength of our research approach is the lack of pre-
processing. It is known that medical imaging, including CT 
images, can be very heterogeneous. From the number of image 
slices, scanning machine used, and scanning parameters used, the 
image data for each patient is very disparate. A significant nega-
tive byproduct of this heterogeneity is the astronomical number 
of insignificant features generated that are unrelated to one’s 
outcome of interest, such as the presence of lung nodules. For a 
machine learning algorithm to contend with this either the data 
size has to exponentially increase or many of the insignificant 
features have to be pre-processed out by filtering for only the 
relevant features. The former option of increasing the dataset 
is impractical, as the LUNA dataset is already one of the largest 
and most comprehensive image datasets. Hence, most, if not all, 
approaches in the current literature on CAD systems for lung 
nodule detection take the second option of pre-processing. From 
using various filters, masks, and general pre-processing tools, 
these methods heavily curate and alter the raw medical image 
data. As a result, this can create an infinite number of variations of 
the original dataset, and such a subjective practice makes it very 
difficult to reproduce any of the experimental results. We choose 

to use data without pre-processing to ensure that our results are 
reproducible.

Our work highlights the promise of using RL for lung nodule 
detection. There are several practical applications of this model, 
one of which is to serve as a second opinion or learning system 
for radiologists and trainees in identifying lung nodules. A strong 
appeal of using a RL approach is that the model is always in a 
learning state. With every new patient, the model expands its 
learning by factoring in the new information and building upon 
its probabilistic memory of historical information from previous 
patients. This phenomenon is what allowed the artificial intel-
ligence model AlphaGo to keep improving after each match, 
eventually beating each player after several matches, including 
the reigning world champion. Likewise, we expect that our model 
will continue to improve as it observes more and more cases.

aUThOr cOnTriBUTiOns

IA and GH: carried out primary experiments of project. GG, 
MK, and XM: provided guidance on methodology and overall 
project. YL, WM, and BN: provided lab and technical support. 
JD: generated research ideas, provided guidance on methodology 
and overall project, and reviewed manuscript.

FUnDing

Research reported in this publication was supported by the 
National Institute of Biomedical Imaging and Bioengineering 
of the National Institutes of Health under Award Number 
R01EB022589.

reFerences
1. Moyer VA; U.S. Preventive Services Task Force. Screening for lung cancer: U.S. 

Preventive Services Task Force Recommendation Statement. Ann Intern Med 
(2014) 160(5):330–8. doi:10.7326/M13-2771 

2. CDC – Lung Cancer. Available from: https://www.cdc.gov/cancer/lung/index.htm 
(Accessed: January 2, 2018).

3. Cancer Moonshot. National Cancer Institute. Available from: https://www.
cancer.gov/research/key-initiatives/moonshot-cancer-initiative (Accessed: 
December 6, 2017).

4. Swensen SJ, Jett JR, Hartman TE, Midthun DE, Mandrekar SJ, Hillman SL, 
et al. CT screening for lung cancer: five-year prospective experience. Radiology 
(2005) 235(1):259–65. doi:10.1148/radiol.2351041662 

5. Midthun DE. Early detection of lung cancer. F1000Res (2016) 5:Faculty of 
1000 Ltd. doi:10.12688/f1000research.7313.1 

6. Caroline C. Lung cancer screening with low dose CT. Radiol Clin North Am 
(2014) 52(1):27–46. doi:10.1016/j.rcl.2013.08.006 

7. Saba L, Caddeo G, Mallarini G. Computer-aided detection of pulmo-
nary nodules in computed tomography: analysis and review of the 
literature. J Comput Assist Tomogr (2007) 31(4):611–9. doi:10.1097/rct. 
0b013e31802e29bf 

8. Gibney E. Self-taught AI is best yet at strategy game go. Nat News (2017) 
550:16–7. doi:10.1038/nature.2017.22858 

9. Armato SG III, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, 
Reeves AP, et al. The Lung Image Database Consortium (LIDC) and Image 
Database Resource Initiative (IDRI): a completed reference database of 
lung nodules on CT scans. Med Phys (2011) 38(2):915–31. doi:10.1118/1. 
3528204 

10. Akkus Z, Ali I, Sedlář J, Kline TL, Agrawal JP, Parney IF, et al. Predicting 1p19q 
Chromosomal Deletion of Low-Grade Gliomas from MR Images Using Deep 
Learning. (2016). Available from: https://arxiv.org/abs/1611.06939 (Accessed: 
August 15, 2017).

11. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al. 
Human-level control through deep reinforcement learning. Nature (2015) 
518(7540):529–33. doi:10.1038/nature14236 

12. Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: a survey. 
J Artif Intell Res (1996) 4:237–85. 

13. van Otterlo M, Wiering M. Reinforcement Learning and Markov Decision Processes. 
Reinforcement Learning. Berlin, Heidelberg: Springer (2012). p. 3–42.

14. Christopher JC, Dayan P. Q-learning. Mach Learn (1992) 8(3–4):279–92.  
doi:10.1023/A:1022676722315 

15. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolu-
tional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger  KQ, editors. 
Advances in Neural Information Processing Systems 25. New York: Curran Associates, 
Inc. (2012). p. 1097–105.

16. Chollet F. Keras. Github (2015). Available from: https://github.com/fchollet/keras 
(Accessed: January 2, 2016).

17. Sutton RS. Introduction: the challenge of reinforcement learning. Mach Learn 
(1992) 8(3–4):225–7. doi:10.1023/A:1022620604568 

Disclaimer: The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the National Institutes of Health.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2018 Ali, Hart, Gunabushanam, Liang, Muhammad, Nartowt, Kane, 
Ma and Deng. This is an open-access article distributed under the terms of the Creative 
Commons Attribution License (CC BY). The use, distribution or reproduction in 
other forums is permitted, provided the original author(s) and the copyright owner 
are credited and that the original publication in this journal is cited, in accordance 
with accepted academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms.

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive
https://doi.org/10.7326/M13-2771
https://www.cdc.gov/cancer/lung/index.htm
https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative
https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative
https://doi.org/10.1148/radiol.2351041662
https://doi.org/10.12688/f1000research.7313.1
https://doi.org/10.1016/j.rcl.2013.08.006
https://doi.org/10.1097/rct.0b013e31802e29bf
https://doi.org/10.1097/rct.0b013e31802e29bf
https://doi.org/10.1038/nature.2017.22858
https://doi.org/10.1118/1.3528204
https://doi.org/10.1118/1.3528204
https://arxiv.org/abs/1611.06939
https://doi.org/10.1038/nature14236
https://doi.org/10.1023/A:1022676722315
https://github.com/fchollet/keras
https://doi.org/10.1023/A:1022620604568
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Lung Nodule Detection via Deep Reinforcement Learning
	Introduction
	Materials and Methods
	Lung Nodule Data
	Data Normalization
	Reinforcement Learning
	Convolutional Neural Networks (CNNs)
	Input Layer
	Convolutional Layer
	Activation Layer
	Pooling Layer
	Fully Connected Layer

	Data Augmentation

	Implementation and Experiments
	Implementation
	Experimentation

	Results
	Discussion
	Author Contributions
	Funding
	References


