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The atypical chemokine receptor-2 does not alter corneal graft survival
but regulates early stage of corneal graft-induced lymphangiogenesis
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Abstract

Purpose To re-evaluate the role of the atypical chemokine receptor-2 (ACKR2) in corneal graft rejection and investigate the
effect of ACKR2 on inflammation-associated lymphangiogenesis using murine orthotopic corneal transplantation.

Methods Corneal grafts were performed and evaluated in the settings of syngeneic, allogeneic and single antigen (HY-antigen)
disparity pairings. Corneal vessels were quantified in whole mounts from WT, ACKR2™~ and F4/807 ACKR2 ™~ mice that
received syngeneic or allogeneic grafts using anti-CD31 and anti-Lyve-1 antibodies.

Results Syngeneic corneal grafts in WT and ACKR2 ™~ mice were 100% accepted. Fully histo-incompatible allogeneic grafts
were rapidly rejected (100%) with similar tempo in both WT and ACKR2 ™~ hosts. Around 50% of single-antigen (HY) disparity
grafts rejected at a slow but similar tempo (60 days) in WT and ACKR2 '~ mice. Prior to grafting, F4/80"ACKR2 " mice had
lower baseline levels of limbal blood and lymphatic vessels compared to ACKR2 ™~ mice. Syngeneic grafts, but not allogeneic
grafts, in ACKR2™" and F4/80 " ACKR2 ™ mice induced higher levels of lymphatic sprouting and infiltration of Lyve-1* cells
during the early (3d) post-graft (pg) stage but lymphatic density was similar to WT grafted mice by 7d pg.

Conclusions Our results indicate that the chemokine scavenger receptor, ACKR2, has no role to play in the survival of allogeneic
grafts. A minor role in regulation of lymphangiogenesis in the early stage of wound healing in syngeneic grafts is suggested, but
this effect is probably masked by the more pronounced lymphangiogenic inflammatory response in allogeneic grafts. No
additional effect was observed with the deletion of the resident macrophage gene, F4/80.
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Introduction

, Corneal allograft rejection is predominantly mediated through
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the indirect pathway of allorecognition whereby newly re-
cruited host antigen presenting cells (APC) process and pres-
ent corneal alloantigens to naive host T cells. The activation of
an allospecific Thl response then promotes the rejection of
corneal allograft [reviewed in [1]]. Unlike allografts, syngene-
ic corneal grafts performed in naive hosts are accepted indef-
initely [2]. However, despite different outcomes, both corneal
syngeneic and allogeneic grafts induce corneal hem- and
lymph-angiogenesis which are considered to significantly af-
fect the fate of the graft or the success of a second graft [3, 4].

The atypical chemokine receptor-2 (ACKR2, formerly
known as D6) is a chemokine decoy receptor expressed main-
ly on afferent lymphatic endothelial cells (LEC) and innate-
like B cells as well as some other leukocyte subsets such as
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dendritic cells (DC), macrophages and neutrophils [5] and has
also recently been identified on a stromal fibroblastic popula-
tion in the murine mammary gland [6]. Chemokine decoy
receptors, such as ACKR2, have similar structures to conven-
tional chemokine receptors, but they behave anomalously by
binding chemokine ligands which fail to initiate G-protein-
dependent signalling. Instead, engaged ligands are degraded
after internalisation, and, in the case of ACKR2, the receptor is
recycled back to the cell surface [5, 7]. ACKR2 recognises
most pro-inflammatory CC chemokines with different affinity,
but does not recognise homeostatic chemokines [5]. In this
way, ACKR?2 is regarded as a chemokine scavenger that reg-
ulates pro-inflammatory CC chemokine levels which in turn
modulate immune responses.

Several studies have shown that ACKR2 is involved in the
efficient resolution of inflammation. The absence of ACKR2
leads to more severe inflammatory disease associated with
increased chemokine and leukocyte infiltrations [5, 8—10].
Furthermore, in a previous study, deletion of ACKR2 was
reported to be associated with significantly increased rejection
of corneal syngeneic grafts with nearly 60% of ACKR2 ™"~
mice rejecting their syngrafts at 1 week post-surgery [11].
This is a surprising result since ACKR2™~ mice are fully
histo-compatible with wild-type littermate mice and are in
effect syngeneic grafts. However, the effect was ascribed to
an elevated innate immune response in ACKR2™~ mice
which, under sterile conditions of transplant surgery, implies
involvement of damage-associated molecular patterns
(DAMPS) [12]. Specifically, it was suggested that ACKR2
expressed by DC plays a role in modifying DC behaviour by
promoting maturation and allosensitisation [11]. However, de-
spite showing an impaired allospecific T cell response in
ACKR2™~ mice, allograft survival was not different between
WTand ACKR2 ™ mice [11], suggesting that any such effect
only affected syngeneic grafts.

An alternative role for ACKR2 function in the innate im-
mune system has recently been suggested. ACKR2 regulates
the embryonic development of lymphatic vessels, and that
deletion of ACKR2 eventually leads to increased lymphatic
vessel density in adult mice in a range of tissues including the
skin, diaphragm, and lymph nodes [13]. This phenotype was
associated with increased proximity of pro-lymphangiogenic
macrophages to LEC in ACKR2 ™™ mice [13]. However, it is
not clear whether ACKR?2 is involved in inflammation-
associated lymphangiogenesis in adult mice.

In view of the recognised importance of both chemokines
[14] and lymphangiogenesis [4] in corneal graft rejection, we
have re-investigated the role of ACKR2 in mouse corneal
graft survival using ACKR2-deficient mice. In addition, in
view of the proposed role of macrophages and DC in this
process [11, 13], we have also evaluated corneal neovascular-
isation in ACKR2:F4/80 double gene deficient mice. F4/80 is
expressed predominantly on resident tissue, suppressive
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macrophages and a subset of DC [15, 16]. We compared syn-
geneic, fully MHC incompatible allogeneic and single antigen
disparity (HY) graft survival in WT and ACKR2™" mice and
evaluated blood and lymphatic corneal vessel growth in all
groups of mice with syngeneic or allogeneic corneal grafts.
We observed no difference in corneal graft survival between
WTand ACKR2 ™ in all settings tested while there was only a
transient (first 3 days post-graft, [pg]) pro-lymphangiogenic
effect on corneal vessels in ACKR2 ™~ mice. We are therefore
unable to confirm a significant role for ACKR?2 in the regula-
tion of innate immune responses in the setting of murine cor-
neal graft or in corneal syn- or allo-graft rejection.

Materials and methods
Mice

ACKR2™~ (background C57BL/6, H2b) and WT (H2b) litter-
mates were used for all experiments. F4/80” mice (kindly
provided by Professor Siamon Gordon, University of Oxford,
UK) were crossed with ACKR2 ™" mice to produce double
knockout F4/80""ACKR2 ™~ mice (background C57BL/6,
H2%). Female Balb/c (H2%) mice were used as donors for al-
logeneic corneal grafts. Syngeneic grafts were performed in
WT to WT and ACKR2™~ to ACKR2™~ combinations. All
mice were bred and kept at the Medical Research Facility,
University of Aberdeen. Sex-matched 6—8-week-old mice
were used in all experiments. All animals were treated in ac-
cordance with guidelines of the Association for Research in
Vision and Ophthalmology (ARVO) Statement for the use of
animals in ophthalmic and vision research and the regulations
of the Animals (Scientific Procedures) Act 1986.

Orthotopic corneal transplantation

The mouse full-thickness orthotopic corneal transplantation
was performed as described previously [17, 18]. Briefly, do-
nor cornea marked with a 2.0 mm trephine was excised and
sutured onto a 1.5-mm graft bed by one continuous suture
using 11-0 Ethilon (Ethicon, New Jersey, USA). Grafted cor-
neas were examined and monitored under an operating micro-
scope after the procedure and corneal graft opacity scored as
described previously [18]. Corneal graft opacity scores greater
than or equal to 2 were considered as rejected grafts [18].

Corneal whole mount

Preparation of corneal whole mount was performed as previ-
ously described with modifications [17, 19]. The corneas in-
cluding corneal limbus were excised together with the lens
and fixed immediately in 4% paraformaldehyde at 4 °C for
30 min. The lens and iris were then removed from the corneas
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and the corneas were incubated in methanol for 20 min at
room temperature. Permeabilization was performed by incu-
bating the corneas in 0.3% Triton X-100 overnight at 4 °C.
The corneas were then blocked with 10% normal mouse se-
rum for 30 min at room temperature before incubated with rat
anti-mouse CD31 (550274, BD Bioscience) and rabbit anti-
mouse Lyve-1 (ab14917, Abcam, UK) antibodies diluted in
PBS-BGEN (3% BSA, 0.25% gelatine, 5 mM EDTA and
0.025% IGEPAL CA-630 equivalent to Nonidet-P40) over-
night at 4 °C. Directly conjugated secondary antibodies
Alexa Fluor 555 goat anti-rat IgG (A21434, Invitrogen) and
Alexa Fluor 488 goat anti-rabbit IgG (A11070, Invitrogen)
diluted in PBS-BGEN were then incubated with the cornea
for 2 h at room temperature. Corneas were washed 5 x 5 min
between incubations with PBS. After staining, the corneas
were mounted with Hydromount and imaged with Zeiss slide
scanner (Zeiss Axio Scan.Z1, Zeiss, Jena, Germany).

Vessel quantification

Images acquired from corneal whole mounts were then
analysed by the Volocity software (PerkinElmer, MA, USA)
for areas of vessel coverage. The area of blood and lymphatic
vessels was determined as between outer corneal limbal vessel
arcade to the innermost end of newly formed vessels. For
quantification of lymphangiogenesis, the numbers of sprouts
and loops per cornea were quantified in a masked manner
using the Image]J software (National Institute of Health,
USA) with the plug-in Lymphatic Vessel Analysis Protocol
(LVAP).

Statistical analysis

GraphPad Prism (GraphPad Software, USA) was used for all
statistical analysis. Log-rank test was used for comparison of
corneal graft survival. For vessel quantifications, one-way
ANOVA was used with Bonferroni post-test analysis.
Statistical significance was considered when p < 0.05.

Results

Survival of murine corneal syngeneic and allogeneic
grafts are unaffected by deletion of ACKR2

Syngeneic corneal grafts in naive WT mice survive indefinite-
ly [2, 20]. To confirm that deletion of ACKR2 alters graft
survival in mice, we grafted sex-matched respective WT and
ACKR2 ™"~ donor corneas. No difference in graft survival or
opacity score was observed in any combination of syngeneic
graft for the duration of the experiment (60 days) (Fig. 1a).
Furthermore, corneal graft opacity scores demonstrated that
both WT and ACKR2 ™~ mice experienced similar levels of
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Fig. 1 Corneal syngeneic and allogeneic graft survival and opacity
scores. WT and ACKR2™™ mice were grafted with sex-matched
syngeneic or allogeneic (Balb/c) corneal grafts, and corneal opacity was
scored at intervals post-surgery. (a) Corneal graft survival in WT and
ACKR2 ™~ mice. Corneal opacity scores of syngenelc grafts (b) and
allogeneic grafts (c). Syngeneic grafts: nV' =8, nA“¥R27" =7,
allogeneic grafts: nV' =15, nA®KR>"~ =28, Statlstlcal analysis was
performed using Log-rank test for graft survivals and one-way analysis
of variance (ANOVA) for corneal opacity scores

transient corneal opacification during the first week post-
syngraft (Fig. 1b). This transient effect is known to be due to
infiltration of innate immune cells caused by the surgery and
by temporary distress of corneal endothelial cells [17, 18]. By
the third week, all syngrafts were clear (Fig. 1b).

Fully mismatched, donor corneal allografts (Balb/c, H29)
to WT (C57BL/6, H2®) and ACKR2 ™ recipients (H2®)
were rapidly rejected with peak of rejection incidence oc-
curring at day 13—18 pg and corneal opacity scores reaching
3 to 4 (Fig. 1a, ¢).

Rejection rate of single antigen (HY-antigen) disparity
corneal grafts is not different between WT
and ACKR2™~ mice

Fully mismatched corneal allograft induces strong innate and
adaptive immune responses involving inflammatory
chemokines [14]. ACKR2 has been shown to down-regulate
the inflammatory response and contribute to the resolution of
inflammation by clearance of inflammatory chemokines in
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various inflammatory models [5], in part by facilitating lymph
flow and migration of APC during inflammation [21, 22]. The
lack of effect of ACKR2 in corneal syngeneic and allogeneic
graft rejection was therefore surprising. However, it is possi-
ble that the strength of the alloreaction in fully mismatched
corneal allograft has overwhelmed any possible effect of
ACKR?2 in chemokine regulation. Therefore, we evaluated
graft survival in a single disparity, non-MHC pairing (HY-
antigen) group by grafting male donor corneas to female re-
cipients, comparing M-F WT grafts with M-F ACKR2 ™"~
grafts on the C57BL/6 background. In this experiment, a
milder rejection tempo was observed with graft rejection com-
mencing 2 weeks post-surgery and approximately 50% of
grafts rejected by 60d pg (Fig. 2a). However, there was no
difference in corneal opacity or graft survival rate between
WT and ACKR2 ™" mice (Fig. 2a, b). As the corneal opacity
scores, as well as the immunological status of recipient mice
vary significantly between mice that accepted or rejected cor-
neal grafts, the recipient mice were grouped into “rejectors”
and “acceptors” according to corneal graft outcomes by day
60 pg and corneal opacity scores were re-analysed. When
“rejectors” only were evaluated, the tempo of rejection was
slightly increased in single disparity grafts but the absence of
AKCR2 did not alter the rejection rate (Fig. 2¢, d). Therefore,
these findings indicate that ACKR2 does not play a significant
role in the rejection or survival of corneal grafts.
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Fig. 2 Corneal graft survival and opacity scores of HY-antigen disparity
group. Female WT and ACKR2™™ mice were grafted with strain-matched
male donor corneas and corneal opacity was scored at intervals post-
surgery. (a) Corneal graft survival of HY-antigen disparity grafts in WT
and ACKR2”7™ mice nVT=22, n®“¥RZ7"=19). (b) Overall corneal
opacity scores of WT and ACKR2™™ mice receiving HY-antigen
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Absence of ACKR2 leads to accelerated corneal
lymphangiogenesis

Corneal graft rejection is associated with significant corneal
vascularisation, including lymphangiogenesis [23]. ACKR2 is
involved in regulating the establishment of lymphatic vessels
during embryonic development mediated in part by pro-
lymphangiogenic macrophages residing close to the develop-
ing lymphatics [13]. We sought to investigate whether
ACKR2 is also required for regulating corneal
inflammation-associated lymphangiogenesis during corneal
graft. The cornea is normally avascular with vessels present
only at the peripheral corneal limbus. Inflammation-
associated corneal neovascularisation leads to the invasion
of blood and lymphatic vessels towards the centre of cornea.
Furthermore, macrophages play important roles in promoting
corneal inflammation-associated lymphangiogenesis and
studies have reported that the macrophage surface protein,
F4/80, is required for ensuring the basal resting limbal lym-
phatic vessel numbers [24]. Lack of F4/80 has also been
shown to be associated with a significantly reduced level of
lymphangiogenesis in a model of corneal suture-induced neo-
vascularisation [24]. Therefore, to investigate the role of
ACKR2 and its association with macrophages in corneal
lymphangiogenesis, quantification of corneal neovascularisa-
tion after corneal syngraft and allograft was performed in WT,
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compared between WT and ACKR2™" mice. Statistical analysis was
performed using Log-rank test for corneal graft survival and one-way
ANOVA for corneal opacity scores



Graefes Arch Clin Exp Ophthalmol (2018) 256:1875-1882

1879

ACKR27" and F4/80"ACKR2”" mice. First, the baseline
amount of limbal vessels in normal, non-transplanted mice
was quantified by corneal whole mount imaging of CD31
and Lyve-1 staining and analysed by the Volocity software
for area covered by blood and lymphatic vessels, respectively
(Fig. 3a). Our data show that the levels of WT and ACRR2
corneal limbal vessels in the unchallenged eye were similar,
whereas F4/80"ACKR2 ™~ mice had reduced levels of both
blood (p <0.01) and lymphatic vessels (p <0.05) (Fig. 3a).
Corneal graft induced marked vascularisation as expected

a C

but no difference in either blood or lymphatic vessel growth
(measured by area at d3 and d7) was observed in any of the
mice (Fig. 3b).

The process of lymphangiogenesis progresses through spe-
cific morphological stages including development of initial
lymphatic sprouts, formation of lymphatic network/loops
and finally maturation and remodelling of lymphatic vessels
[25]. We therefore wished to determine whether ACKR2 or
F4/80 had any effect on these processes during corneal graft
rejection. We found that ACKR2 ™™ mice developed greater

€ s g 2001 e 2 150y 200+

= * 2 | 8 . ©

° — s o + — g

4 aa S 150- — b a S 150-

= ok [

s Ko ofe & & A —% 2, 1004 ° °

2 3 P a % % a - g o _ﬁ_ o5
EE a £ 100{ © A& s « 100

8 2% See 3 3 o g

g a i = 504 © aA o

: 14 ,g 50- 2 5 501 o

8 ol r r r r r S kS Eo 2

& @S @ zZ lvr—rv—r— g ola r ' 04 ,
¥ ¥ RN dgg' < & & <
Blood v. Lymphatic v. v v
bNA Blood v.

£ 104

=
G g 4

X @_ﬁ )

©

g o o i g Idg

XY Yhe

F

g 0

>

S Fgasg 4“0435” &
3 3 3 ¥

day 3 day 7 day 3 day 7
Syngraft Allograft
. e

_ Lymphatic v. i i
& o 200 200
E 101 g g
T g ® 2 8 ° 5 10 © &
X - X & % S 104 g a4 § 1501 o
g o o % Y o° A§ %’ -3 100 % % _E_
g oo, % % % cg- 100+ a é’_ 1 x
g * ﬁ o a i ‘g'_ o 50 ° a
& 2 50+ s 7
3 e s
17 S o 4
(4 T T T T T T T T T T T T
2 QLR EL DL L Z o 0-

& < &« & < & <

® ¥ © ¥ & & < & @«

day 3 day 7 day 3 day 7 v v

Syngraft Allograft day 3 day 7

Fig. 3 Quantification of normal corneal limbal vascularisation and
neovascularisation post corneal graft. Corneal whole mounts were
prepared from naive or grafted (syngeneic and allogeneic) WT,
ACKR2™" (ACKR2), F4/80 "ACKR2™" (FA) mice and stained with
anti-CD31 and anti-Lyve-1 antibodies for blood and lymphatic vessels,
respectively. Corneal vascularisation was quantified by area covered by
vessels (a, b) and corneal lymphangiogenesis was further assessed by
lymphatic sprouts, loops and corneal infiltration of individual Lyve-1*
cells (¢, e). (a) Quantification of normal corneal limbal blood and
lymphatic vessels (n" T/nACKRZ7 = g P80 /7ACKRZT= _ 5y ()
Quantification of blood and lymphatic vessels at day 3 (n=35) and day

7 (n=4) post-corneal syngeneic and allogeneic graft. (¢) Evaluation of
corneal lymphangiogenesis in syngeneic corneal grafts by lymphatic
sprouts, corneal infiltration of individual Lyve-1* cells and lymphatic
loops formation (n®3 =5, n%7 =4). (d) Representative images of
corneal syngeneic graft at day 3 pg stained with anti-Lyve-1 antibody.
Corneal infiltration of individual Lyve-1" cells is indicated by white
arrows. Scale bar represents 250 pm. (e) Evaluation of
lymphangiogenesis in corneal allografts at day 3 (»=5) and day 7 pg
(n=4). Statistical significance was determined using one-way ANOVA,
*p<0.05, ¥*p <0.01, #*p <0.001
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numbers of sprouts compared to WT mice at 3 days post-
syngeneic corneal graft (p <0.05; Fig. 3c, d) and a similar
trend between WT and F4/80"ACKR2 ™~ was observed (p
<0.001; Fig. 3¢, d). However, no additional effect was seen in
ACKR2 ™™ mice with co-deletion of F4/80 (Fig. 3c, d).
Interestingly, the numbers of single Lyve-1* cells (Fig. 3d,
arrow) in the corneas followed the same trend in syngrafts at
3d pg in that both ACKR2™™ (p<0.05) and F4/80'
“ACKR2 ™" mice (p<0.01) showed increased infiltration of
these cells compared to WT mice (Fig. 3¢, d). These differ-
ences were not recapitulated in mice with syngeneic grafts at
7d pg as suggested by similar number of loops between WT,
ACKR2" and F4/80""ACKR2™'~ mice (Fig. 3¢).
Furthermore, no difference in lymphangiogenic sprouts or
loops was observed in allogeneic grafts at any time point be-
tween WT and ACKR2 ™~ or F4/80"ACKR2 " mice (Fig.
3e). Thus, in the syngrafted ACKR2 ™~ and F4/80 "ACKR2 ™’
" mice, we have observed an accelerated initial lymphatic
sprouting response together with increased abundance of
Lyve-1" individual cells. However, this did not lead to an
increase in overall lymphatic vessel density.

Discussion

The role of ACKR2 in various inflammatory models is con-
sidered to be a general one of limiting excessive inflammation
and promoting inflammatory resolution by “scavenging” in-
flammatory chemokines [5, 8-10]. Few studies have ad-
dressed the role of ACKR2 in allo-immunity [11, 26, 27].
Deletion of ACKR2 had a protective effect in graft-versus-
host disease attributed to increased numbers and enhanced
immunosuppressive activity of Ly6C"&" monocytes [26]
while a pro-inflammatory effect was observed in syngeneic
but not allogeneic corneal grafts [11]. It was further proposed
in this study that ACKR2 promoted DC maturation and T cell
activation [11]. Thus, ACKR2 appears to promote innate im-
munity and in its absence the tempo of corneal allograft rejec-
tion might be expected to be reduced, while syngeneic grafts
performed under sterile conditions should not be rejected.
Counter-intuitively, syngeneic corneal grafts, which are uni-
versally accepted in uninfected mice [2, 18, 20] were reported
to be rejected in ACKR2™~ mice while allogeneic corneal
graft showed no difference in rejection rates between in WT
and ACKR2™" mice [11].

In view of the importance of chemokines to the corneal
graft rejection process, not least because of possible transla-
tional and therapeutic implications, we considered it important
to revisit the role of ACKR2 in corneal graft rejection. Using
three different donor and recipient combinations (syngeneic,
allogeneic and HY-antigen disparity), our data report no dif-
ference in corneal graft survival between WT and ACKR2 ™~
mice (Figs. 1 and 2). Importantly, in the previous study,
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C57BL/6 WT donor corneas were used for both WT and
ACKR2™" mice in syngeneic corneal grafts thus introducing
an antigen disparity which may have affected their results
[11]. However, the graft rejection rate did not follow the pat-
tern of a single antigen disparity (see Fig. 2 herein) but was
rather that of primary endothelial cell failure [18]. Differences
in technique may explain the difference between the results of
the present study and those of Hajrasouliha et al. [11]. No
information is provided on the use of littermate controls in
the previous study [11]. In addition, corneal grafts performed
using interrupted sutures, as used in the previous study [11],
cause significantly greater trauma and subsequent corneal
opacity at week 1 pg compared to a continuous suture tech-
nique used here [18] and lead to greater inflammation and
subsequent stress especially to the corneal endothelial cells
[18]. Such technical issues will have a significant impact on
innate immune activation.

Although we observed no difference in corneal graft rejec-
tion rates linked to ACKR2, the possibility that the process of
lymphangiogenesis was altered could not be excluded, partic-
ularly since such changes had been observed in embryonic
skin tissues in AKCR2™™ mice [13]. Overall, the level of
peri-corneal limbal lymphatic vessels in resting ACKR2 ™~
mice was not different from naive WT mice (Fig. 3a). This
finding was not unexpected as the naive corneal tissues are
avascular with a narrow circumferential ring of limbal blood
and lymphatic vessels. Whereas shown in the previous study,
deletion of ACKR?2 altered the density of lymphatic vessel
network [13]. However, in agreement with a previous study
in F4/80~ mice [24], we observed that the levels of blood and
lymphatic vessels at the corneal limbus in naive F4/80~
“ACKR2™" mice were significantly reduced compared to
WT and ACKR2™" mice (Fig. 3a). This suggests that F4/
80" macrophages are likely required for the development of
normal corneal limbal vessels. Further support for this concept
has been shown in the embryonic skin of WT and ACKR2 ™~
mice where two distinct populations of macrophages were
identified namely CD11b"F4/80"°Lyve-1~ and CD11b'°F4/
80"Lyve-1" with the latter population expressing higher pro-
angiogenic transcripts [13]. Moreover, previously reported ex-
periments of corneal suture-induced lymphangiogenesis also
revealed significant suppression of lymphangiogenesis in F4/
80" mice compared to WT mice implicating an important
role of F4/80* macrophages in corneal lymphangiogenesis
[24]. In contrast, we found that after corneal syngeneic graft,
F4/807"ACKR2 ™~ mice had increased numbers of lymphatic
sprouts and increased infiltration of single corneal Lyve-1"
cells compared to WT mice (Fig. 3¢). Thus, our data suggest
that the absence of AKCR2 promoted the recruitment of Lyve-
1"F4/80" cells which may be capable of promoting the initial
lymphatic sprouting and rescued the phenotype of impaired
lymphangiogenesis in F4/807 mice as reported before [24].
The process of postnatal lymphangiogenesis is known to
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involve the proliferation and differentiation of LEC after acti-
vation by pro-lymphangiogenic stimuli (e.g., vascular endo-
thelial growth factors) and resulting in the sprouting of
existing lymphatics [28]. However, increasing evidence sup-
ports the notion that bone marrow-derived lymphatic endothe-
lial progenitor cells might differentiate into LEC and contrib-
ute to postnatal de novo lymphovasculogenesis in certain tis-
sues during inflammatory response [23, 29-31]. Moreover,
these cells may also play a paracrine role in promoting
lymphangiogenesis by producing pro-lymphangiogenic cyto-
kines [30]. The effect of ACKR2 and F4/80 was transient and
restricted to the early stages of injury since no differences
were observed at 7d pg in syngeneic grafts (Fig. 3c). It has
been previously shown that syngeneic and allogeneic corneal
grafts displayed similarly increased levels of chemokines as
well as inflammatory cytokines at early time points (within
1 week pg) [32]. Thereafter, chemokine and cytokine levels
remained high in the allogeneic group only, whereas in the
syngeneic group, these levels declined significantly [32].
Furthermore, our findings coincide with a recent report that
deletion of ACKR2 led to accelerated development of mam-
mary gland branching associated with macrophage recruit-
ment [6]. It was further shown that ACKR?2 is differentially
expressed in the mammary gland during different biological
stages with maximum expression correlating with increased
branching and macrophage recruitment in ACKR2 ™~ mice
[6]. In addition, in vitro experiments demonstrated up-
regulation of ACKR2 expression upon exposure to IFN-y
and IL-6 [22]. Therefore, ACKR2 in the current model is
likely to function by regulating levels of inflammatory
chemokines which in turn affects the recruitment of pro-
lymphangiogenic Lyve-1* cells during early time points (3d
pg) after syngeneic grafts rather than allogeneic grafts.
However at later time points where chemokine levels fall sig-
nificantly in WT mice, ACKR2 may be less effective. Thus,
together with our data, suggests that while ACKR2 may exert
variable function during different stages of inflammation, we
show here that ACKR2 plays a specific regulatory role of
early inflammation-associated lymphangiogenesis in adult
mouse.

Interestingly, this effect of ACKR2 on lymphangiogenesis
was observed in early stages of inflammation of syngeneic
grafts but not allogeneic grafts (Fig. 3e). Since the alloimmune
response is more prominent and long lasting compared to the
immune response to syngeneic grafts (which is, in effect, sim-
ilar to an autologous corneal wounding response), we suggest
that the strength of alloimmune response may mask a more
subtle effect on simple wound healing responses.
Alternatively, there may be an early suppression of lymph
vessel sprouting mediated by the adaptive alloimmune re-
sponse. This may merit further investigations.

In summary, we report that in contrast to a previous study
[11], ACKR2 does not have a role to play in regulating corneal

allograft responses. There is a minor effect mediated by
ACKR?2 during the early stages of lymphangiogenesis in cor-
neal wound healing type responses, but this effect does not
change final outcome of the transplanted corneal grafts.
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