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We have developed a method for extracting anatomical shape models from n-dimensional images using an image analysis
framework we call Shells and Spheres. This framework utilizes a set of spherical operators centered at each image pixel, grown
to reach, but not cross, the nearest object boundary by incorporating “shells” of pixel intensity values while analyzing intensity
mean, variance, and first-order moment. Pairs of spheres on opposite sides of putative boundaries are then analyzed to determine
boundary reflectance which is used to further constrain sphere size, establishing a consensus as to boundary location. The centers
of a subset of spheres identified as medial (touching at least two boundaries) are connected to identify the interior of a particular
anatomical structure. For the automated 3D algorithm, the only manual interaction consists of tracing a single contour on a 2D
slice to optimize parameters, and identifying an initial point within the target structure.

1. Introduction

The framework of Shells and Spheres described in this
paper is based on a set of spheres called a sphere map.
A sphere map consists of exactly one sphere centered at
each image pixel, whose radius can be adjusted. Calculations
denoted as Variable-Scale Statistics (VSSs) are performed
on populations of pixels within spheres, as well as popu-
lations of adjacent and overlapping spheres. Memory and
computational requirements are kept reasonable by storing
only a relatively small, fixed number of VSSs at every
pixel, many of which can be updated incrementally when
growing or shrinking spheres. The ultimate goal of adjusting
radii is to produce a sphere map in which each sphere is
as large as possible without crossing a boundary. In the
optimized sphere, the sphere map is thus equivalent to
what is commonly known as a distance map [1], that is,
the distance to the nearest boundary. Though the task is
trivial with binary images, where definitive boundaries are
known, it presents a challenge when boundaries are difficult
to determine due to noise and tissue inhomogeneity. Our
approach is well suited to this challenge, with the caveat that

the correctness of segmentation of real images is generally
subjective.

Many conventional methods for image processing con-
sider a region of fixed size and shape, usually referred to
as a kernel, especially when used for convolution. Other
common approaches define dynamic regions adjoining
boundaries using deformable contours [2] or level sets [3].
Our approach, instead, uses a set of spheres whose individual
radii are optimized using VSS operators to achieve maximum
discrimination between adjoining image regions. Not only
do such spheres provide highly representative populations
for boundary detection, but those spheres that touch at least
two boundaries are also medial, providing a basis for medial
feature extraction. Unlike Gaussian blurring, commonly
used in multiscale analysis [4], Shells and Spheres preserves
sharp boundaries with increasing scale. This paper presents
the notation and basic operators of Shells and Spheres for
computing VSS. Using this framework, a wide variety of
algorithms for sphere map optimization are possible, and we
present two such algorithm, a trivial one for noiseless images
and a practical one for real medial images with noise. We
then extend this algorithm to include methods to identify
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boundary and medial locations, followed by an application
of that extended algorithm to image segmentation.

A primary goal of the research presented here is to
extract medial ridges from images. The lineage of the medial
approach may be traced to the medial axis (otherwise known
as the symmetric axis or skeleton) introduced on binary
images by Blum and developed [5–7]. Pizer extended the
medial axis to gray-scale images, producing a graded measure
called medialness, which links the aperture of the boundary
measurement to the radius of the medial axis to produce
what has been called a core. A core is a locus in a space whose
coordinates are position, radius, and associated orientations
[8, 9]. Methods involving these continuous loci of medial
primitives have proven particularly robust against noise and
variation in target shapes [10]. Models including discrete loci
of medial primitives have also provided the framework for
a class of active shape models known as deformable m-reps
(sampled medial representations) [11], as well as a statistical
approach using pairs of detected boundary points known as
core atoms developed previously by Stetten and Pizer [12].
An excellent review of medial approaches and theory may be
found in a recent text by Siddiqi and Pizer [13].

The following sections will present the fundamental
framework and basic operators of Shells and Spheres, as
well as a detailed description of the two algorithms just
mentioned. A summary of the experimental validation
already published elsewhere is also included, and a brief
discussion.

2. Shells and Spheres Framework

We begin by defining our notation. Shells and Spheres is
inherently n-dimensional. For brevity, we use the term sphere
regardless of image dimension, instead of the dimension-
specific terms disk (circle), sphere, or hypersphere. Figures are
presented in 2D for ease of illustration.

Since the framework of Shells and Spheres is used to
gather statistics on dynamic populations of pixels, we adopt
a hybrid form of notation derived from standard set theory
and statistics. We denote vectors by lowercase bold-faced
letters (x), scalars by lowercase italic letters (r), and sets
by uppercase letters (S). We use Z to denote the set of all
integers, and Ω ⊂ Zn to denote the set of all pixel locations in
a sampled n-dimensional image.

Given an n-dimensional image with intensities f (x) for
x ∈ Ω, we define a sphere map, which assigns the radius r(x),
the radius of a sphere centered at pixel x. We define a sphere
to be an n-dimensional neighborhood of pixels that lie within
a radius r of a center point. We use an integer value for r, such
that a sphere of radius r centered at a pixel x is given by

Sr(x) = {y : round
(∣∣y − x

∣
∣) ≤ r, y ∈ Ω

}
, (1)

where Sr(x) is a sphere of radius r centered at image pixel
x, and y is a pixel within that sphere. Note the shorthand
notation for the subscript r, meaning r(x), the radius of
the particular sphere at x as given by the sphere map. In
some instances, the reader will encounter an example with a
different subscript, such as S1(x), meaning a sphere of radius
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Figure 1: Each pixel is shown as a number indicating its integer
distance from the central pixel. If we denote the central pixel as x,
then pixels labeled n are members of the set Hn(x). For example, the
pixels labeled “3” (shown in bold) comprise the shell H3(x).

1, irrespective of r(x). By definition, x ∈ Sr(x) for all x, even
when r(x) = 0, and hence Sr(x) is always nonempty.

A shell is a set of all pixels whose distance to the center
rounds to a given radius, defined for radius r as

Hr(x) = {y : round
(∣∣y − x

∣
∣) = r, y ∈ Ω

}
. (2)

Shells are nonoverlapping such that for concentric shells,

Hp(x)∩Hq(x) = ∅, p /= q. (3)

Additionally, shells are space filling, and thus a sphere of
radius r may be formed from a union of shells,

Sr(x) =
r⋃

k=0

Hk(x). (4)

Figure 1 illustrates the distribution of pixels in a series of
concentric shells surrounding a central pixel in a 2D image.
Each pixel is labeled with its integer radius from the central
pixel (labeled “x”). The shell H3(x) is shown as the pixels
labeled “3” in bold.

Figure 2 shows an image containing two noiseless objects
with pixel intensities of 1 and 9, respectively. Note that pixels
in this case are represented by their intensity. The boundary
between the image objects is identified by a straight dashed
line. Pixel x is surrounded by a concentric set of four shells
H0(x), H1(x), H2(x), and H3(x), shown separated by dashed
circles. Shell H3(x) is truncated by the edge of the image.
The union of all four shells is Sr(x), shown enclosed by a
solid circle, also truncated by the edge of the image, with a
radius governed by the value of r(x) = 3 in the sphere map.
Similarly, on the other side of the boundary, pixel y with an
intensity value of 9 has three shells whose union Sr(y) has a
radius r(y) = 2. Both Sr(x) and Sr(y) touch but do not cross
the boundary and are therefore correctly optimized.

The correctly optimized sphere map of the image in
Figure 2 is shown in Figure 3, with each pixel represented by
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Figure 2: Noiseless image with boundary between two objects.
Correctly scaled spheres Sr(x) with r(x) = 3 and Sr(y) with r(y) = 2
touch, but do not cross, the boundary. Numbers indicate pixel
intensity.
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Figure 3: Correctly optimized sphere map of the image in Figure 2.
Numbers indicate the integer radius of the sphere at each pixel.
Pixels x and y are labeled as before.

the radius of the sphere centered at that pixel. Note the linear
increase in sphere radius with distance from the boundary
and the fact that the radius equals zero adjacent to the
boundary.

3. Variable Scale Statistics

We derive a number of statistics at pixel x (and every other
pixel), calculated on the intensities of pixels within the sphere
Sr(x). Since these statistics depend on the radii of the spheres,
we call them Variable Scale Statistics (VSS). We denote as
primary statistics those VSS at x calculated using only the
population of pixels within Sr(x). Higher-order secondary
statistics are VSS derived from multiple spheres.

4. Primary Statistics

The primary statistics at pixel x concern only the population
of pixels within the sphere Sr(x). Thus the mean at pixel x is
the mean intensity of all pixels within the population Sr(x) at
its current radius, defined as

μ(x) = 1
|Sr(x)|

∑

y∈Sr (x)

f
(

y
)
, (5)

where |Sr(x)| is the number of pixels in Sr(x) and f (y) is the
image intensity at pixel y.

The variance at pixel x is defined as

σ2(x) = 1
|Sr(x)| − 1

∑

y∈Sr (x)

[
f
(

y
)− μ(x)

]2, |Sr(x)| > 1.

(6)

Variance may only be calculated when |Sr(x)| > 1, since
when r(x) = 0 there is only one pixel in Sr(x) and variance is
not defined. The standard deviation σ(x) of the intensities of
the set of pixels within the sphere centered at pixel x is simply
the square root of the variance.

The first-order moment of intensities within Sr(x) is given
by

m(x) =
∑

y∈Sr (x)

(
y − x

)
f
(

y
)
. (7)

Due to the finite extent of an image’s domain Ω, a sphere
may be truncated by one or more edges of the image
(e.g, S3(x) in Figure 2). Unlike conventional kernels, which
usually require pixel values outside the image to be arbitrarily
defined, our spherical sets simply exclude such locations
from calculations. Thus, truncation will not adversely affect
μ(x) or σ(x), other than by reducing the sample size; it
will not bias the result by introducing some arbitrary values
for pixels outside the image. The first-order moment of a
truncated sphere, however, does exhibit an edge effect, due to
its asymmetrical pixel distribution. We compensate for this
by defining a measure, VSS gradient, which corrects the first-
order moment of intensities to remove the edge effect. Given
the center of mass of pixel locations in sphere Sr(x),

c(x) = 1
|Sr(x)|

∑

y∈Sr (x)

y, (8)

the VSS gradient∇ f (x) is defined as

∇ f (x) = 1
|Sr(x)|

[
m(x)− μ(x)(c(x)− x)

]
. (9)

Note that for nontruncated spheres c(x) = x and VSS
gradient is equivalent to the moment vector normalized to
the number of pixels, m(x)/|Sr(x)|. For truncated spheres,
the VSS gradient does not suffer from the edge effects
typical of convolution kernels used to measure gradient (see
Figure 4).

All of the above primary statistics depend only on the
pixels within a given sphere. As a sphere grows or shrinks, its
primary statistics can be computed incrementally by adding
or removing shells, significantly reducing computational
load during sphere map optimization.

5. Secondary Statistics

We define secondary statistics as higher order VSS derived
by combining multiple spheres to perform more complex
analyses of neighborhoods. One such neighborhood that is
useful in these computations,

S−1(x) = {y : x ∈ Sr
(

y
)}

, (10)
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(a) (b)

Figure 4: (a) Synthetic noiseless image. (b) Corresponding vertical component of the VSS gradient (radius = 3 for all spheres). Note there
are no edge effects, such as those seen with conventional gradient calculations.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

x 

Figure 5: The S−1(x) set of spheres that contain pixel x, adjacent to
the boundary between two noiseless regions (same as Figure 2) with
respective intensities of 1 and 9.

is the set of all pixels whose spheres contain x. The −1
superscript in S−1(x) is used to impart the flavor of an inverse
function. Since spheres adjust their radii individually, the
number of spheres that contain a given pixel varies widely.
However, since it is always true that x ∈ Sr(x), it is also
always true that x ∈ S−1(x); every pixel is contained by its
own sphere.

Given a correctly optimized sphere map, S−1(x) will
consist entirely of pixels from the same object as pixel x.
Figure 5 shows members of one such S−1(x) set, consisting
of three pixels (bold), whose spheres each contain x. Notice
that all three spheres touch but do not cross the boundary, so
they are correctly optimized. (There would be other spheres
as well in a correctly optimized S−1(x).)

Secondary statistics are derived from populations of
spheres such as S−1(x). Thus, μμ(x), the mean of means at
pixel x is defined as

μμ(x) = 1
|S−1(x)|

∑

y∈S−1(x)

μ
(

y
)
, (11)

which is the mean of the mean intensities for all the
spheres in S−1(x). In a noiseless image containing distinct
homogeneous regions, the correctly optimized sphere map
yields values for μμ(x) identical to the original intensity
image f (x). In a noisy image, as will be shown, μμ(x) yields a
an image with reduced noise but with sharp boundaries.
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Figure 6: Image with noise. Pixel x is deterred from extending its
sphere across the boundary because its mean is an outlier in the
population S−1(y).

Likewise, σμ(x), the standard deviation of the mean
intensities for the spheres in S−1(x) is defined as

σμ(x)

=
⎡

⎣ 1
|S−1(x)| − 1

∑

y∈S−1(x)

[
μ
(

y
)− μμ(x)

]2

⎤

⎦

1
2

,
∣
∣S−1(x)

∣
∣ > 1.

(12)

Note that, as with σ(x), the above definition of σμ(x) is given
only for |S−1(x)| > 1, since at least two samples are required
for variance or standard deviation to be meaningful. For
noiseless images, a correct sphere map will yield a value of
zero for σμ(x) at every pixel.

We can now compute zμ(x | y), the z-value for the sphere
x to belong to the set of spheres that already include y. We
define zμ(x | y) as

zμ
(

x | y
) =

∣
∣
∣μ(x)− μμ

(
y
)∣∣
∣

σμ
(

y
) , (13)

to provide a measure of how well Sr(x) fits into the current
S−1(y) set. The justification is that in an optimized sphere
map, if Sr(x) were to justifiably contain pixel y, then μ(x)
should fall within the distribution of means for all spheres
that already contain y. This concept is illustrated in Figure 6,
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which shows pixel x attempting to extend its sphere across
the boundary to include pixel y. We have included noise in
the image to demonstrate that a high z-value could be used
to stop the growth of Sr(x) at the boundary, even in the
presence of such noise. It should be noted that the utility of
this statistic is dependent on a reasonable initialization of the
sphere map, such that the percentage of spheres already not
crossing boundaries is high enough to lend statistical validity
to μμ(y) and σμ(y).

6. Noiseless Sphere Map
Optimization Algorithm

Armed with the primary and secondary statistics just
described, we are ready to develop algorithms to optimize a
sphere map, that is, to set the correct radius of each sphere
S(x) in an image such that it reaches, but does not cross, the
nearest boundary. We will develop two such algorithms here.
The first is designed to optimize a sphere map on a noiseless
image, a far simpler task than optimizing a sphere map for a
real image.

A noiseless image consists of a set of objects, each
containing a set of pixels of uniform intensity. Figure 7(a)
shows an example of a synthetically generated noiseless
image. Object boundaries can easily be determined in such
images by detecting any change in intensity between pixels.
Our noiseless algorithm functions simply by growing each
sphere S(x) in the image until it contains a pixel y in its next
outer shell, y ∈ Hr+1(x), with a different intensity value than
that of pixel x, resulting in a nonzero variance σ2(x). This
process produces a sphere map containing the correct radii
of all spheres within the image, shown in Figure 7(b), whose
intensity represents r(x). Notice the bright ridges within
and between objects, representing medial ridges, where
spheres touch at least two boundary points. The noiseless
algorithm is useful for finding medial ridges in cases where
an unambiguous segmentation has already been obtained.
We have used it, for example, on manual segmentations of
the amygdala in the magnetic resonance (MR) images of the
human brain, to determine medial parameters of shape for
diagnosis of depression [14, 15].

7. Real Image Segmentation Algorithm

Real images contain noise and therefore require greater
finesse and complexity in establishing the optimal sphere
map. The Shells and Spheres framework lends itself to the
design of many different algorithms for this purpose. We
present here in detail one such algorithm that was the subject
of the masters and doctoral dissertations of [16, 17].

The algorithm takes the form of a six-step process, with
Steps 1–4 optimizing the sphere map, Step 5 finding medial
pixels, and Step 6 producing a segmentation of the target
object. Step 1 uses VSS gradient to detect boundaries and
creates an initial approximation of the correct sphere map,
from which acceptable statistical values can be obtained
for use in subsequent steps. Step 2 utilizes the pronounced
discrepancy in pixel variance between spheres that have

incorrectly grown across boundaries and those that have not,
to reduce the size of incorrect spheres, placing them correctly
within their appropriate image objects. Step 3 introduces
specialized boundary indicators, known as outposts, designed
to stop spheres from crossing into a new image object, using
information extracted from population testing between
spheres in adjacent objects. These outposts influence the
radii of nearby spheres, resizing them to adhere to a
consensus on boundary location. Step 4 revisits variance
calculation using the current sphere map, which is more
accurate than the sphere map previously available. The
new variance measure is applied to spheres, encouraging
them to fully grow within their respective image objects,
effectively smoothing the radius image and sharpening its
boundaries (as defined by all spheres of radius 0 or 1). Step 5
identifies medial pixels, that is, those whose spheres touch
at least two boundaries. Given a seed point within the target
object, Step 6 locates the nearest medial pixel and connects
neighboring medial pixels, combining their corresponding
spheres to produce a segmentation. The following sections
describe each step in detail.

Step 1 (VSS Gradient-Based Radius Approximation). As
previously illustrated, it is trivial to optimize the sphere map
for a noiseless image by growing spheres until a new intensity
value is detected. When analyzing real images, however, this
approach will fail, because intensity variation due to noise
may be indistinguishable from an object boundary, especially
within small spheres. For illustrative purposes, we consider
the previous synthetic image with Gaussian noise added,
shown in Figure 8.

Steps 2, 3, and 4 depend on there already existing a sphere
map that is at least somewhat accurate, because those steps
make use of secondary VSS, based on collections of existing
spheres. For Step 1 to accomplish this first attempt at an
accurate sphere map, all spheres are first set to r(x) = 0
and are then allowed to grow until a persistent increase in
VSS gradient magnitude (9) is detected over a continuous
range of sphere sizes. Unlike conventional gradient measured
with a fixed-scale kernel, the VSS gradient depends locally
on r(x) and is based on the first-order moment of intensity
normalized by the number of pixels in the sphere. Thus
the VSS gradient can be expected to increase monotonically
as a sphere grows past a boundary, since the first-order
moment favors the outer pixels. A persistent increase in VSS
gradient for g consecutive steps is sought, indicating that
a boundary has been crossed, whereupon r(x) is reset to
the radius just before the increase in VSS gradient began.
Empirically, it has been found that a value of g = 5
performs well for both MRI and CT cardiac data to achieve
a reasonable first approximation of the optimized sphere
map. We found Step 1 to be effective at growing spheres past
tissue inhomogeneity and noise. However, spheres may not
stop exactly on the boundary because of the effect of noise
on the detection of consistent gradient increase. Using VSS
gradient to govern sphere growth can also fail completely
for a sphere that encounters two opposing boundaries
simultaneously, as their contributions to the gradient may
cancel.
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(a) (b)

Figure 7: (a) An example noiseless image. (b) The sphere map created by the noiseless algorithm, represented as an image where each pixel
x has an intensity value equivalent to the radius of its sphere S(x).

Figure 8: Synthetic test image from Figure 7(a) with gaussian noise
added.
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Figure 9: A height map of the variance σ2(x) after Step 1 is
applied to the image in Figure 8, showing large spikes where spheres
encounter two boundaries at once, canceling VSS gradient and
growing too large.
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Figure 10: Illustration of K−1(x) containing 7 pixels (bold), each of
whose spheres would place its reflector across the boundary at x.

Step 2 (Variance-Constrained Radius Reduction). After
Step 1, three possible states exist for each sphere: The sphere
can be too large, too small, or the correct size (i.e., it touches
the nearest boundary but does not cross it). The most glaring
error in the sphere map after Step 1 is the presence of large-
scale spheres that have incorrectly grown past boundaries.
As previously mentioned, this type of error typically occurs
when a growing sphere contacts multiple boundaries at
once, which indicates that the sphere lies on the medial
manifold (the locus of centers of spheres lying within an
object that touch at least two boundaries). In such a case, the
contributions to the VSS gradient from multiple boundaries
may cancel, allowing the sphere to grow much larger than
its correct radius. Such spheres, luckily, have variance values
that are orders of magnitude higher than those that remain
within a single object.

Figure 9 shows a height map of variance values σ2(x) for
all spheres after applying Step 1 to the synthetic image with
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Figure 11: (a) Diagram of an object with intensity 1 between two regions of intensity 9, showing set S−1(b) of pixels (bold) whose spheres
contain pixel b. This set produces an s(b) vector (see text) along which the furthest bold pixel m is the center of a medial sphere (circle
in bold) touching both boundaries (dashed lines). (b) Image of a 2D slice through a CT scan of the aorta with contrast showing an actual
S−1(b) set (purple), the resulting s(b) vector, and the medial manifold (dashed curve) on which the furthest sphere along s(b) must lie.

added noise shown in Figure 8. The flat “floor” section of
the height map is the variance of the uniform noise added
to the image, which has a value near 200. Spheres crossing
boundaries, however, have a much larger variance than
spheres that correctly remain within the object boundaries,
extending to a value of nearly 16000. This large dynamic
range can be exploited to shrink the spheres that grow too
large. All spheres with a variance above a certain threshold
αs are shrunk by decrementing r(x) until σ2(x) < αs. (The
subscript “s” stands for shrink.) The threshold αs is defined
as

αs = μσ2 + βsσσ2 , (14)

where μσ2 and σσ2 are the mean and standard deviation,
respectively, of the variance of all the spheres in the current
sphere map. The positive constant βs thus represents the
number of standard deviations above the mean permitted
for a sphere’s variance without the sphere being required to
shrink. The exact value of this parameter is not particularly
critical, as the difference between the spheres that grew much
too large and the others is very large. We found typical value
for βs to be 0.2, although as will be described below the value
was optimized for individual data sets. Reducing the radius
of pixels with extremely high variance corrects a majority of
the spheres that have incorrectly grown past boundaries.This
global threshold for σ2(x) is not ideal, because it assumes
a constant expected variance throughout the image. This
expectation is likely untrue, given factors such as tissue
inhomogeneity and nonuniform noise, and ongoing work is
exploring ways around this problem. It should also be noted
that σ2(x), and thus the threshold αs, depend on the current
sphere map, r(x), which is not yet fully optimized at this
step. This deficiency is addressed by returning to variance in
Step 4, once a more accurate r(x) is available.

Step 3 (Reflectance and Outposts). Following Step 2, many
spheres are correctly sized and face each other across
boundaries. This sets the stage for the use of secondary VSS
to differentiate regions on opposite sides of those boundaries.
Likely boundary candidates are identified for a given sphere

at location x by finding a pixel y in its Hr+1(x) shell with
a high value for zμ(x | y). As already discussed, and
illustrated in Figure 6, such a sphere will detect growth past
a boundary by finding itself unlike the S−1(y) population of
spheres containing the pixel y just across the boundary. The
sphere at x is said to place a reflector at such a location, a
metaphorical construct denoting a vote by the sphere at x for
the pixel y as being across the nearest boundary. Note that we
do not vote for pixel y as a boundary itself. Instead, pixels on
each side of a detected boundary are marked by each other as
being accros the boundary. Thus, referring again to Figure 6,
Sr(x) could place a reflector at pixel y. The set of reflectors
placed by a given sphere Sr(x) is denoted,K(x). In the present
algorithm the constraint |K(x)| = 1 is applied, limiting each
sphere to placing only one reflector, for reasons discussed
below. This constraint leads to the definition of K(x) as

K(x) =
⎧
⎨

⎩y : y = argmax
y∈Hr+1(x)

zμ
(

x | y
)
⎫
⎬

⎭. (15)

If a boundary exists just beyond the outer shell of Sr(x), it
will be located at the pixel y for which the highest zμ(x | y)
is calculated. If multiple object boundaries exist just beyond
the outer shell of Sr(x), the boundary producing the largest
zμ(x | y) will be marked with a reflector.Each pixel may
contain reflectors placed by a number of spheres. The set of
spheres that have placed reflectors at a pixel x is defined as

K−1(x) = {y : x ∈ K
(

y
)}

, (16)

invoking the same inverse notation used for S−1(x) in (10).
A set of spheres placing their reflectors across a boundary
at pixel x is shown in Figure 11. The number of reflectors
|K−1(x)| at a given pixel is referred to as the reflector count.
For example, in Figure 10, the reflector count |K−1(x)| =
7.A reflector placed by y at x has an inherent direction
governed by the vector (y − x). The vector sum of the
directions of all of the reflectors at x is denoted, the reflectance
k(x), defined by

k(x) = 1∣
∣∣K−1(x)

∣
∣∣

∑

y∈K−1(x)

y − x
∣∣y − x

∣∣ . (17)
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This measure provides the average orientation of the K−1(x)
population, which describes a direction generally normal
to the boundary, pointing to the center of the region
represented by K−1(x). Since it was decided that each sphere
will contribute exactly one reflector, reflector density and
reflectance are normalized over the image. Therefore, reflec-
tor count can be used to differentiate between significant
collections of reflectors correctly placed at boundaries and
sparse distributions of reflectors incorrectly placed in the
interior of objects. To denote pixels containing a significant
number of reflectors, the term outpost is adopted, since such
pixels serve as border markers and face each other across
boundaries much the same way that military outposts of
opposing armies face each other across the battle line.The
set of all pixels in an image chosen to be outposts is denoted
by P. In the present algorithm this set is found in two steps.
First, the set of primary outposts P′ is established, containing
all pixels with zero radius and at least κ reflectors, that is,

P′ = {x :
∣
∣K−1(x)

∣
∣ ≥ κ, r(x) = 0

}
. (18)

For the results presented in this paper, κ = 4. To increase the
density of outposts along the boundaries, a set of secondary
outposts P′′ is generated, containing all pixels with zero
radius that adjoin an outpost in P′ and have at least λ
reflectors, where λ < κ,

P′′ = {x :
∣
∣K−1(x)

∣
∣ ≥ λ, H1(x)∩ P′ /=∅, r(x) = 0

}
.
(19)

For the results presented, λ = 2. By combining the sets of
primary and secondary outposts, the set of all outposts,

P = P′ ∪ P′′ (20)

is formed.Each outpost y ∈ P has a reflectance k(y). A sphere
at x can distinguish whether a given outpost is on its side
of the boundary, constituting a friendly outpost, or the other
side of the boundary, constituting an enemy outpost, based on
the direction of the outpost’s reflectance. The set of enemy
outposts (those with reflectance facing x) within the sphere
of radius r(x) is defined as

Er(x) = {y : y ∈ P ∩ Sr(x), k
(

y
) · (y − x

)
< 0
}

, (21)

where the sign of the dot product determines the direction of
k(y) relative to x.In governing the growth of a sphere, enemy
outposts are to be avoided, while friendly outposts can be
included. More specifically, enemy outposts should stop the
growth of spheres, as they represent a different image region
than the one in which the sphere resides, while friendly
outposts do not. Step 3 uses the number of enemy outposts
to adjust the sphere size as follows: If the pixel contains no
enemy outposts in its next shell out, Hr+1(x), the sphere
grows until it does. That is,

if |Er+1(x)| = 0, increase r(x) until |Er+1(x)| > 0. (22)

If the number of enemy outposts included in the set Sr(x) is
greater than γ, the radius is decreased until this is no longer
true, that is,

if |Er+1(x)| > γ, reduce r(x) until |Er(x)| ≤ γ. (23)

In the present implementation, γ = 2. This value prevents
lone pixels that have been improperly labeled as outposts
from incorrectly causing spheres to shrink.After Step 2, in
which incorrectly large spheres have been adjusted to a more
correct size, the most pressing problem with the sphere map
is the scattered effects of noise on r(x). Step 3 focuses on
spheres that have incorrectly stopped growth at image noise,
or grown slightly too large across their nearest boundary. The
effect of these outpost-driven operations is that significant
densities of reflectors placed by correctly-sized spheres along
boundaries are used to govern the size of other spheres,
sweeping incorrect reflectors from the within objects to the
boundaries (since a sphere’s reflector is redistributed when its
radius is altered). Since each sphere places only one reflector,
some pixels along object boundaries may remain unmarked,
leading to a somewhat sparse collection of outposts along
boundaries. This will not adversely effect the evolution of
the sphere map, however, due to another advantage of our
spherical operator design. Because most spheres are large
relative to the spacing of outposts along the boundary, their
growth will be stopped and they tend not to “leak” or
“bleed” across boundaries, as some conventional deformable
contours are prone to do.

Step 4 (Variance-Constrained Scale Growth). At this point
in the analysis, our sphere map has achieved a configuration
generally representative of the shapes within the image, but
it still retains adverse effects from noise and suboptimal
boundary detection. Although Step 3 results in a reasonably
accurate r(x), some spheres still may not quite reach bound-
aries, due to pixels being incorrectly labeled as outposts.
These false outposts will stop spheres in the interior of image
objects, leading to potential errors in segmentation. As an
added measure to force spheres to grow maximally within
their objects, we return to variance a second time, calculated
in the same manner as in Step 2, but used to grown now
rather than to shrink.A second global variance threshold for
variance, αg , similar to αs described above, is calculated as

αg = μσ2 + βgσσ2 , (24)

where μσ2 and σσ2 again are the mean and standard deviation,
respectively, of the variance throughout the image (the
subscript “g” stands for grow). The threshold αg is used
to smooth the boundaries in the radius image by forcing
spheres to grow up to the actual boundary using the
current, more accurate variance σ2(x). The value of r(x)
is incremented for all spheres while their internal variance
σ2(x) < αg . This creates a sphere map that more accurately
matches the contours of objects in the image.At this point the
sphere map is considered optimized.

Step 5 (Medial Pixel Identification). Given the optimized
sphere map r(x), the next goal is to extract medial pixels. To
facilitate this, a dense set of boundary pixels B is first defined,
as those whose spheres have radius 0 or 1,

B = {x : r(x) ≤ 1}. (25)

The sets S−1(b) for all boundary pixels b ∈ B can be used
to find pixels on the medial manifold, whose spheres touch
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two boundaries while still lying completely within the object.
Recall that the S−1(b) set for pixel b contains all spheres in
the sphere map that themselves contain pixel b (10). Given
a correct sphere map, this set will necessarily contain at
least one sphere that touches both the boundary that pixel
b borders as well as an opposing boundary across the object
region (and also across the sphere) from pixel b. Figure 11(a)
shows such a medial pixel (labeled “m”) on the medial
manifold of an object of intensity 1, between two regions
of intensity 9.To find such medial pixels within S−1(b), we
first define an orientation s(b), roughly orthogonal to the
boundary, as the vector sum of the normalized offsets relative
to b for pixels within S−1(b) as

s(b) = 1
|S−1(b)|

∑

y∈S−1(b)

y − b
∣
∣y − b

∣
∣ . (26)

For each boundary pixel b ∈ B, the pixel m ∈ S−1(b) that
is furthest from the boundary along s(b) is identified as a
medial pixel, as depicted in Figure 12(a). The set of all medial
pixels M in the image is thus

M =
⎧
⎨

⎩m : m = argmax
y∈S−1(b)

((
y − b

) · s(b)
)
, b ∈ B

⎫
⎬

⎭. (27)

Figure 11(b) shows an actual S−1(b) set for a pixel b on the
boundary of the aorta in a 2D slice through a computed
tomography (CT) scan with contrast. The furthest pixel
along vector s(b) lies on that medial manifold (dashed
line).Selecting a single pixel from each S−1(b) set overlooks
a potentially large number of additional medial pixels on the
outer edge of each set, especially for a concave boundary
point such as shown in Figure 12. One can, however, be
certain that each S−1(b) set contains a minimum of one
medial pixel, as the center of the largest sphere in the
direction roughly orthogonal to the boundary. The set M
derived taking advantage of this fact is a sparse but reliable set
of pixels on the various medial manifolds within the image.

Step 6 (Medial Flood-Fill Segmentation). To segment a
particular object, a seed pixel p ∈ M on that object’s medial
manifold is needed. To find it, a sample pixel is manually
selected by the user, and a search is conducted for the closest
medial pixel by iterating through successive shells moving
radially outward from the selected pixel. The first medial
pixel encountered is accepted as p. A flood fill operator is
then used to find a connected subsetC ⊆M. Pixels belonging
in C are found iteratively using a series of sets Ci starting with
C0, a set containing just the seed pixel p. At each subsequent
step i+1, the set Ci+1 is created by adding medial pixels within
a radius m of pixels already in set Ci. More precisely, Ci is
defined recursively as

C0 =
{

p
}

,

Ci+1{x : x ∈M, Sm(x)∩ Ci /=∅}.
(28)

For the results presented, radius m was dynamically set to
m(x) = r(x)/2 as this causes the algorithm to search halfway

from the medial manifold to the boundary for new medial
pixels to include, therefore staying within the designated
object. When a final step f adds no new pixels, such that

Cf = Cf−1, (29)

the flood-fill is complete, as the set of connected medial
pixels within the object is the current pixel collection, or

C = Cf . (30)

The union of the set of spheres centered at these medial pixels
effectively segments the object by including all of the pixels
designated as within the object. These spheres, centered on
the medial manifold, extend to all points on the boundary.

8. Results

The present paper is the first disclosure in a journal article
of the detailed mathematics of Shells and Spheres. Validation
of the particular algorithm just described has already been
published [18], so we only summarize those results briefly
here. Figure 12 shows a segmentation of the aorta on a
2D slice through a throracic CT scan with contrast. On
the left, the raw CT data is shown to have considerable
noise. On the right, the mean of means image μμ(x) exhibits
greatly reduced noise while maintaining sharp boundaries
and significant detail. The aorta has been segmented (purple)
by initializing a flood-fill operation with a single-seed point
near its medial manifold.

Figure 13(a) shows a 3D segmentation of the aorta using
the same algorithm (which is inherently n-dimensional). The
top portion shows the raw CT data and the bottom shows a
surface rendering of the segmented aorta as the union of all
the medial spheres.

Figure 13(b) shows the results of segmenting the heart
in 3D magnetic resonance (MR) data. In this case, we
performed parameter optimization using a single manual
tracing on a 2D slice selected from a 3D image data set,
to find optimum values for βs and βg , used to compute
the thresholds for variance-based shrinking and growing in
Steps 2 and 4 of the algorithm, respectively. Otherwise, the
algorithm is completely automatic.

To test the accuracy of the 3D segmentation, a validation
study was conducted to compare it to three manual seg-
mentations. Each segmentation was produced by a different
user. Figure 14 shows the Dice Similarity Coefficient (DSC)
values for our automated segmentation compared to the
manual segmentations, as well as the DSC values for the
manual segmentations compared to each other. The DSC
produces the value 1 for identical segmentation and 0
for segmentations that do not overlap at all. It can be
seen that our automated segmentation matches the manual
segmentations with a DSC between 0.83 and 0.86. It should
be noted that a DSC of 0.70 is considered excellent agreement
in the literature [19], although the definition of sufficient
accuracy is, of course, specific to the application. While the
manual segmentations produced slightly higher agreement
with each other than with the automated segmentation, it
is believed that a significant portion of this discrepancy
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(a) (b)

Figure 12: (a) Two-dimensional sagital slice through computer tomography (CT) data of thorax with vascular contrast used in preliminary
testing of our algorithm. (b) Mean of means μμ(x) image showing reduced noise and sharp boundaries, automated segmentation of aorta
highlighted (purple) created from a single-seed point.
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Figure 13: (a) 3D contrast-enhanced CT scan of the aorta (top
left), and the same scan with an overlaid 3D segmentation (bottom
left) achieved using the Shells and Spheres framework. (b) Surface
rendering of a Shells and Spheres segmentation of the right heart
with labeled Right Ventricle (RV) and Right Ventricular Outflow
Tract (RVOT), shown from three different perspectives.

is due to the difficulty for the algorithm in defining the
extent of the “right heart” along the continuum of the
circulatory system, rather than the boundaries of the vessels
themselves. Subject 3 elected to include less of the branching
vasculature connected to the main cardiac structures, which
led to greater agreement with the automated segmentation
and less agreement with the other manual segmentations.
Despite the variation in manual segmentations, our system
still demonstrated reliable segmentation results.

Subject 1

Subject 2

Subject 1 Subject 2 Subject 3

S&S 0.83 0.84 0.86

∗
∗∗

0.91 0.88

0.89

Figure 14: Table of DSC values comparing segmentations produced
by 3 independent subjects and our Shells and Spheres algorithm.

Comparison with other segmentation techniques is
always desirable, but problematic in view of the enormous
number of methods that have been developed. We compared
our method against two other techniques, an active contour
method and intesity thresholding. We present those results
in the following section.

Segmentations of the RVOT in our 3D ovine MRI
data sets were produced with a widely used geodesic active
contour method implemented in the Insight Toolkit ITK-
SNAP software package [20]. As before, the DSC was used
to show agreement to the manual 3D segmentations of the
RVOT produced by our three experts. Results of comparing
the active contour method to our Shells and Spheres method
can be seen in Figure 15.

This graph shows the mean segmentation agreement to
all expert segmentations over ten ovine MRI data sets for the
active contour method and our Shells and Spheres method.
The error bars were determined by the Standard Error of the
Mean (SEM).

We can see that the Shells and Spheres segmentation
system performed slightly better than the active contour
method, but the high degree of overlap of the respective
SEM values indicates roughly equivalent performance. An
independent-samples t-test showed that the two means were
not significantly different (P-value = .741). We conclude that
Shells and Spheres can match this current clinical state
of the art-automated segmentation method. Furthermore,
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Figure 15: Bar graph showing the mean 3D segmentation agree-
ment to all expert segmentations over all data sets for both ITK-
SNAP active contour method (blue) and the Shells and Spheres
method (maroon). Error bars show the standard error of the mean
(SEM).

the minimal manual input required by the Shells and Spheres
algorithm at the onset of analysis (tracing a single 2D
slice for parameter optimization) represents considerable
less time and effort on the part of the human operator
than the continual supervision necessary for the active
contour method. Additionally, our system is designed to
require only skills and expertise inherent to the clinical
professional, rather than expecting a medical professional
to gain algorithmic or mathematical expertise to effectively
perform the active contour segmentation.

Intensity thresholding coupled with a flood-fill from
a manually placed seed point was also explored as a
common technique for comparison to our segmentation
system, but the prevalence of partial-volume effects and
tissue inhomogeneity in MRI images made this method
incapable of segmenting the RVOT in our data sets, due to
bleeding of the floodfill regardless of threshold parameters.
Without a high degree of manual postprocessing, this
method produced a failed segmentation (DSC < 0.70 for all
expert segmentations) on each of our MRI data sets.

9. Discussion

The Shells and Spheres framework for image analysis and
the associated n-dimensional algorithms described here
represent a novel system to facilitate image segmentation.
Advantages include preservation of sharp boundaries while
including large populations of pixels from both sides of
the boundaries for statistical analysis. The primary statistics
exhibit no edge effect and can be efficiently computed
by adding and subtracting shells while optimizing the
sphere map. Because the framework is truly n-dimensional,
volumetric segmentation occurs in 3D, not slice by slice,
lending a natural anatomical appearance to the visualized
surface. Finally, the algorithm presented yields useful medial
features for further analysis, which is highly relevant to
understanding anatomical shape.

We have presented just two example algorithms. Many
others are possible. One that is currently under development

introduces a new secondary statistic, a variation on the
Student’s t-test, incorporating mean and variance in a
way that further sharpens boundary detection. Subsequent
determination of the medial manifold uses the divergence
of the unit direction to the nearest boundary [21], an
adaptation of concepts recently developed by Dimitrov et al.
[22] which are particularly robust in the presence of noise
and efficient to compute when incorporated into the Shells
and Spheres framework.
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