
ll
OPEN ACCESS
iScience

Article
Integrating Systems Biology and an Ex VivoHuman
Tumor Model Elucidates PD-1 Blockade Response
Dynamics
Munisha Smalley,

Michelle

Przedborski,

Saravanan

Thiyagarajan, ...,

Pradip Majumder,

Mohammad

Kohandel, Aaron

Goldman

kohandel@uwaterloo.ca (M.K.)

agoldman@bwh.harvard.edu

(A.G.)

HIGHLIGHTS
Computational strategy to

study anticancer immune

checkpoint blockade,

ex vivo

PD-1 blockade-induced T

helper type 1 (Th1)

stratifies tumor biopsies,

ex vivo

Systems biology links

drug effect to dynamic

intratumor T cell

proliferation

In silico sensitivity

analyses of PD-1 blockade

predict Th1-induced

antitumor effects

Smalley et al., iScience 23,
101229
June 26, 2020 ª 2020 The
Authors.

https://doi.org/10.1016/

j.isci.2020.101229

mailto:kohandel@uwaterloo.ca
mailto:agoldman@bwh.harvard.edu
https://doi.org/10.1016/j.isci.2020.101229
https://doi.org/10.1016/j.isci.2020.101229
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101229&domain=pdf


iScience

Article

Integrating Systems Biology and an Ex Vivo
Human Tumor Model Elucidates
PD-1 Blockade Response Dynamics

Munisha Smalley,1,2,3 Michelle Przedborski,4 Saravanan Thiyagarajan,1 Moriah Pellowe,4 Amit Verma,5

Nilesh Brijwani,1 Debika Datta,1 Misti Jain,1 Basavaraja U. Shanthappa,1 Vidushi Kapoor,1

Kodaganur S. Gopinath,6 D.C. Doval,7 K.S. Sabitha,8 Gaspar Taroncher-Oldenburg,9 Biswanath Majumder,1

Pradip Majumder,1 Mohammad Kohandel,4,10,* and Aaron Goldman2,3,10,11,*

SUMMARY

Ex vivo human tumor models have emerged as promising, yet complex tools to
study cancer immunotherapy response dynamics. Here, we present a strategy
that integrates empirical data from an ex vivo human system with computational
models to interpret the response dynamics of a clinically prescribed PD-1 inhibi-
tor, nivolumab, in head and neck squamous cell carcinoma (HNSCC) biopsies
(N = 50). Using biological assays, we show that drug-induced variance stratifies
samples by T helper type 1 (Th1)-related pathways. We then built a systems
biology network and mathematical framework of local and global sensitivity an-
alyses to simulate and estimate antitumor phenotypes, which implicate a dynamic
role for the induction of Th1-related cytokines and T cell proliferation patterns.
Together, we describe a multi-disciplinary strategy to analyze and interpret the
response dynamics of PD-1 blockade using heterogeneous ex vivo data and in sil-
ico simulations, which could provide researchers a powerful toolset to interro-
gate immune checkpoint inhibitors.

INTRODUCTION

Cancer immunotherapies—therapies that harness the body’s own immune system to fight cancer—have

revolutionized cancer treatment over the past decade. A number of modalities, including immunomodu-

latory antibodies, adoptive immune cell transfer, and cancer vaccines have been clinically tested and

brought to market. However, and despite their dramatic effect on survival rates and elimination of terminal

disease in some patients, clinical success of cancer immunotherapies remains highly variable and notori-

ously unpredictable (Garon, 2017; Zhang and Chen, 2018). This variability and unpredictability of outcome

is thought to be most likely driven by patient-specific biology (Kakimi et al., 2017; Wayteck et al., 2014), and

in particular by interactions of the patient’s immune system with the tumor (Spitzer et al., 2017). Predicting

such interactions and studying them across heterogeneous tumors remains one of the biggest challenges

in the space (Cristescu et al., 2018).

A key factor contributing to this state of affairs is a lack of well-established translational strategies and

platforms that integrate inter- and intra- patient tumor heterogeneity, recapitulate cancer and stromal

cell biology, recreate the tumor microenvironment and its underlying 3-dimensional architecture, and

reproduce the immune compartment (Tannock and Hickman, 2016). Although current approaches to

interrogate drugs, including in vitro, in vivo, and ex vivo preclinical models, have made great strides

in addressing one or several of the above issues (Garnett et al., 2012; Samson et al., 2004; Sharma

et al., 2010), most are limited by their inability to capture the full biological context of the native tumor

at the individual patient level, which include the spatial arrangement of cell heterogeneity (Bertotti and

Trusolino, 2013; Dhandapani and Goldman, 2017; Ruggeri et al., 2014; Samson et al., 2004). Indeed,

ex vivo platforms are now routinely deployed to correlate empirical data with therapy response (Jahnke

et al., 2014; Karekla et al., 2017; Silva et al., 2017). However, a paucity of literature has described mean-

ingful analytical approaches to interpret intratumor immune biology with response dynamics of immune

checkpoint blockade when clinical or therapy response is unknown. Indeed, such information could help
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fuel interrogation strategies and advance programs for pre-clinical investigation of cancer immuno-

therapy, such as checkpoint inhibitors.

We previously described a multi-compartment ex vivo platform, which preserves the cellular architecture

and heterogeneity of solid tumors with a high degree of morphologic and kinase signaling fidelity (Ma-

jumder et al., 2015). The platform incorporates autologous peripheral constituents including immune cells

and the patient’s autologous plasma, which are explanted into a culture well containing tumor matrix pro-

teins that match the grade or stage, and indication of each tumor type. To this, anticancer drugs are intro-

duced to the co-culture for up to 3 days (Figure 1A). The utility of this platform for interrogating the biology

of emerging cancer immunotherapies has yet to be tested, which requires interrogation of the immune

compartment including a compatible and comprehensive analytical strategy to interpret the data.

Nivolumab (Opdivo) is one of two predominant US Food and Drug Administration-approved immune check-

point inhibitors that targets programmed cell death protein 1 (PD-1). Pharmacodynamics (response dynamics)

of PD-1 inhibitors are poorly understood, and therapy response to PD-1 inhibitors vary dramatically from patient

to patient. Themost widely explored biomarkers for predicting responders to PD-1 inhibitors are the expression

level of programmed death-ligand 1 (PD-L1) and tumor mutational burden (TMB), which track to overall clinical

response rates of 27% and 58%, respectively (Ferris et al., 2018; Goodman et al., 2017). Despite these advances,

Figure 1. Profiling Spatiotemporal Immune Fidelity Ex Vivo, Comparing T0 with Unstimulated Vehicle Control (TCIgG4)

(A) Schematic of the ex vivo tumormodel. Surgically resected or biopsied tumor tissue is obtained along with patient-matched whole blood (i.e., time 0 h, T0).

Following manual fragmentation, tissue is plated into individual tissue culture wells coated with indication- and grade-matched tumor matrix proteins along

with autologous serum and peripheral bloodmononuclear cells. Vehicle control or nivolumab was introduced to culture and interrogated for either 48 or 72 h

(Tc). Illustration by Wendy Chadbourne, 2018, Inky Mouse Studios, www.inkymousestudios.com.

(B) Representative bright-field image from immunohistochemistry of three unique patient samples matching between T0 and Tc. Scale bar, 40 mm.

(C) Pairwise, Spearman correlation analysis was performed using IHC pathology scores of CD8, CD68, and PD-L1 between T0 and TC. Spearman rho was

calculated to determine correlation between the two time points. p Value <0.05 indicates the correlation is statistically significant.

(D) Schematic shows the different phenotypic response assays that are employed to study tumor phenotype and culture media during the ex vivo culture.

(E) Flow cytometry was used to quantify the regulatory T cell (T-reg) population in all patient tumor samples. Right panel plots the percentage of T-regs in the

total population. Boxes indicate the highest and lowest T-reg expressing patient samples (T-regHi and T-regLo).

(F) Box and whisker plot quantifies the IL-10 protein expression from the tissue culture media (pg/mL), determined by Luminex, in T-regHi and T-regLo patient

samples (see [E]) *p < 0.05 by Mann-Whitney U test.

(G) Box and whisker plot shows the percent expression of IFNg in CD8+ T cells determined by flow cytometry in T-regHi and T-regLo patient samples, which

were grouped from (E), **p < 0.01 by Mann-Whitney U test.

See also Figure S1 contains patient demographic data.
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PD-1 inhibitors are still prescribed for patients with low or negative PD-L1 levels or low TMB because positive

clinical benefit to anti-PD-1 drugs remain better when compared with chemotherapy (Ferris et al., 2018;

Goodman et al., 2017). It is increasingly clear that a robust approach to study and interpret response dynamics

of immune checkpoint inhibitors using completely humanmodelsmay shift the course of drug development and

our understanding for the mechanisms that confer response or resistance in the clinic.

Here, we describe a multi-pronged strategy to interrogate the response dynamics of the PD-1 checkpoint

inhibitor, nivolumab, using our ex vivo system with human head and neck squamous cell carcinoma

(HNSCC) biopsies (N = 50) where actual clinical response is unknown. First, we explored the fidelity of

the platform for interrogating immuno-oncology drugs by establishing spatial distribution of immune cells

and functional tumor-immune biology over the course of culture and examined these features across the

lymphoid and myeloid compartments. Second, we describe a stratification method that considers patient-

wide heterogeneity integrating drug-induced variance to compare the effect of nivolumab in subgroups of

tumor samples with shared response dynamic profiles. Third and finally, we describe the use of a systems

biology framework and mathematical simulations of local and global sensitivities to estimate the contribu-

tion of starting and drug-induced values from the empirical data as they impact ‘‘anti-tumor’’ effects. The

approach outlined here provides both an unbiased picture for the downstream effects of PD-1 checkpoint

blockade and an interdisciplinary analytical methodology to interrogate response dynamics from hetero-

geneous ex vivo data, which could be applied to other similar pre-clinical cancer immunotherapy models.

RESULTS

Testing for Preservation of the Tumor-Immune Contexture, Ex Vivo, across Multiple

Biological Assays

We deployed an ex vivo tumor culture system comprising live tissue fragments, which contain intact tumor,

stroma, and infiltrated immune cells, as well as patient-autologous peripheral immune cells supplied in the

culture media with plasma ligands (Figure 1A). We hypothesized that this system would provide a suitable

substrate to interrogate rapidly induced intratumor response dynamics of immune checkpoint inhibitors.

To test this hypothesis, we first explored fidelity of the tumor-immune contexture during ex vivo culture

in unstimulated conditions (IgG4 vehicle control). We obtained tumor samples frompatients with advanced

and late stage HNSCC (Figure S1) and tested preservation of the tumor-immune microenvironment. Pri-

marily, we examined retention of protein expression patterns, as well as lymphocyte infiltration and spatial

heterogeneity between T0, which is defined as the time when the tumor arrives at the laboratory (24–36 h

from resection or biopsy in the clinic), and TC, which is defined as the period 48–72 h after ex vivo culture. In

this case, TC is in the absence of exogenous stimuli (i.e., IgG4 control). First, we tested for retention of tu-

mor-resident T-cells (CD8), macrophages (CD68), and tumor markers, such as PD-L1 over the course of the

ex vivo culture. Using immunohistochemistry (IHC) and pathology scoring, we determined there was a high

degree of concordance between T0 and TC during culture, indicated by Spearman correlation (Figures 1B

and 1C). In confirmation of these data, we analyzed tissue fragments by flow cytometry (Figure S2A) and

quantified spatial arrangement of lymphocytes in the tumor versus stroma at both T0 and TC, detecting

a similar degree of preservation (Figures S2B–S2D).

Next, we deployedmultiple biological assays including flow cytometry of tumor tissue fragments, multiplex

cytokine analysis of the tissue culture supernatant, and IHC to ask whether expected biological networks

were retained post culture. First, as a cross-technology validation, we confirmed that expression of CD8

in IHC overlapped with the expression patterns of CD8 in flow cytometry from the same patient samples

(quantified as deviation from the mean), suggesting consistency across different assays performed (Figures

S3A and S3B). Next, we segregated patient samples based on expression levels of Foxp3 from IHC, a

biomarker of immune suppressive T-reg cells, separating samples into two cohorts: high-expressing (Fox-

p3Hi) and low-expressing (Foxp3Lo). We confirmed cohort membership by showing the Foxp3Hi subset con-

tained significantly more Foxp3+ T-reg cells compared with the Foxp3Lo cohort (p < 0.05) as determined by

a different biological assay, flow cytometry (Figures S3C and S3D).

Finally, we tested whether we could recapitulate in vivo signaling mechanisms that contribute to lympho-

cyte lineage differentiation. For example, microenvironments enriched for T-reg cells are also enriched for

IL-10 cytokines and often inversely correlate to the abundance of IFNg+ CD8+ T cells (Saraiva and O’Garra,

2010). We used flow cytometry to first segregate the biopsies into two cohorts—high T-reg (T-regHi) and

low T-reg (T-regLo) abundance—based on CD4Hi, CD25Hi, and CD127Lo expression (Figures 1D and 1E).
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We confirmed the relationship between IL-10 expression and T-reg abundance, which was significantly

higher in the culture supernatant of T-regHi tumor samples than in the T-regLo ones (p < 0.05) (Figure 1F).

As expected, IFNg+ CD8+ T cells were significantly lower in the T-regHi tumor samples than in the T-regLo

ones (Figures 1F and 1G). Taken together, these data describe the level to which the ex vivo tumor culture

preserves the tumor-immune contexture including biological networks and cross-assay fidelity.

PD-1 Blockade-Induced Variance Identifies T Helper Type 1 as Conferring theGreatest Impact

on Patient-to-Patient Heterogeneity

Ex vivo human tumormodels pose a unique challengebecause of the interpatient and intratumor heterogeneity.

Thus, interpreting the data from ex vivo and organoid clinical explant models in the context of cancer immuno-

therapies remains a major challenge in cancer research (Dhandapani andGoldman, 2017; Maciejko et al., 2017).

Given the range and diversity of phenotypes and drug-induced effects, we sought to deploy a method of

stratifying the heterogeneous patient samples into smaller cohorts based on drug effect. To do this, we

performed a variance calculation for control and treatment groups to detect the change in variance of pro-

tein expression patterns between samples after drug pressure. Data were transformed to log2 Z-scores to

obtain mean of 0 and standard deviation of 1. The variance across all patient samples for each biomarker or

signature within a treatment was calculated and vehicle variance was subtracted to obtain the change in

variance. Using this method, we could determine whether the drug had a large impact on patient-to-pa-

tient response heterogeneity (i.e., positive change in variance) or whether the drug had little to no impact

across patient samples compared with the vehicle control vis-á-vis a negative change in variance (Fig-

ure 2A). Using this strategy we determined that PD-1 blockade induced a high degree of interpatient

Figure 2. Drug-Induced Patient Variance as a Method to Stratify Heterogeneous Samples Pin Points a Role for the Th1-Related Pathway

(A) Schematic shows analysis workflow to determine drug-induced variance.

(B–D) Waterfall plots show the change in variance of cytokines, and gene and protein immune cell signatures in the vehicle control versus drug pressure from

NanoString (A), flow cytometry (B), cytokine profiling (C), and immunohistochemistry (D). Calculation for variance can be found in the Transparent Methods

section. Positive values indicate protein expressions that are more variable from patient to patient under nivolumab pressure compared with the vehicle

control, i.e., the drug has the effect of creating high degree of phenotypic heterogeneity across all the patient samples. Negative values indicate those

proteins signatures that are less variable across all patient samples under nivolumab pressure compared with the vehicle control, i.e., nivolumab has the

effect of normalizing phenotype across patient samples relative to the vehicle.

(E) Schematic shows the clinical study reported in Chen et al. and Riaz et al.

(F) Waterfall plots show the measurable change of Th1 gene transcription signature in data obtained from Chen et al. and Riaz et al.

ll
OPEN ACCESS

4 iScience 23, 101229, June 26, 2020

iScience
Article



heterogeneity in T helper type 1 (Th1)-related pathways indicated by the positive change in variance of

IFNg and IL-12 (Athie-Morales et al., 2004) cytokine expression levels and CD8+ IFNg+ T cells (Ekkens

et al., 2007) analyzed by flow cytometry, which was confirmed by IHC for CD8 (positive change in variance

compared with the vehicle IgG4 control) (Figures 2B–2E).

To provide a translational impact to these findings, we obtained gene expression data from patients bio-

psied before treatment or while on-treatment, of PD-1 checkpoint therapy (Chen et al., 2016; Riaz et al.,

2017) (Figure 2F) and examined Th1 gene expression profiles in the clinical dataset. We determined that

a shift in the expression of Th1-related genes associated with better clinical response, as evidenced by

the change in Th1 gene expression Z score in the waterfall plot (Figure 2F). Although this finding was ex-

pected, it supports the hypothesis that patient-to-patient drug-induced variability observed ex vivo, pri-

marily in the expression of Th1-related phenotypes, may be a reasonable approach to stratify the hetero-

geneous ex vivo samples and study response dynamic profiles of the diverging subgroups, which may

provide some information for features of ‘‘response’’ versus ‘‘resistance.’’

To this end, we asked whether expected biological pathways in the Th1 pathway were conserved or per-

turbed; we determined that, although expected biological networks, such as IFNg, IL-12, and Th1

signaling cascade (Athie-Morales et al., 2004; Kieper et al., 2001) are retained in the vehicle control

cohort (Figures 3A–3C), these same biological networks could not be recapitulated, or reasonably

Figure 3. Th-1 Related Pathway Is Not Simultaneously Activated under Drug Pressure, Ex Vivo

(A) Histogram shows IFNg concentration (pg/mL) in the culture supernatant from the vehicle-treated cohort of all 50

patient samples determined as a mean expression at 24, 48, and 72 h culture. Boxes indicate patient samples that are

stratified into the highest and lowest IFNg expression (IFNgHI and IFNgLo).

(B) Box plot shows IL-12p70 cytokine concentration in the culture media of IFNgHI and IFNgLo cohorts, ***p < 0.001 by

Mann-Whitney U test.

(C) Histogram shows expression of CD8 in tumor tissue of IFNgHI and IFNgLo cohorts determined by IHC, *p < 0.05 by

Mann-Whitney U test.

(D) Waterfall plot shows log2 fold change in IFNg concentration in culture media comparing nivolumab with vehicle IgG4.

Colored boxes indicate the patient samples with the largest increase and decrease in IFNg expression after PD-1 drug

exposure (IFNgInduced and IFNgReduced, respectively).

(E) Box plot shows IL-12p70 cytokine concentration in the culture media of IFNgInduced and IFNgReduced cohorts, n.s.

indicates sample sets are not significantly different by Mann-Whitney U test.

(F) Histogram shows expression of CD8 in tumor tissue of IFNgInduced and IFNgReduced cohorts determined by IHC, n.s.

indicates sample sets are not significantly different by Mann-Whitney U test.
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‘‘linked together’’ after PD-1 blockade (Figures 3D–3F), which suggested that some biological mecha-

nisms may not be able to be captured ex vivo in such a short culture period (i.e., up to 72 h) and there-

fore a more unbiased approach to stratify and study response dynamics should be employed for hetero-

geneous datasets.

In Silico Simulation Implicates Dynamic Th1-Related Molecular Pathways in the Anticancer

Effects of PD-1 Blockade

A major advance in the pre-clinical study of cancer immunotherapies is the integration of response dy-

namics with antitumor effects. Here, and in the absence of matched-patient clinical information, we

wanted to infer how drug-induced response dynamics may link to putative anticancer effects of PD-1

blockade. We integrated the empirical ex vivo data, including initial starting concentrations and the dy-

namic range and changes of different Th1-related cell types and cytokines, into an in silico model. First,

we developed a systems biology network comprising a tumor cell population along with five key inter-

acting T cell populations and four key cytokines involved in T helper cell differentiation and activation

(Figure 4). We then performed numerical simulations to investigate the sensitivity of the model’s

response to initial conditions and parameter values. The model consisted of 17 coupled ordinary differ-

ential equations (ODEs), which describe the time evolution of the cytokine concentrations, T cell popu-

lations, tumor cell population, and PD1 and PD-L1 levels (and the interaction of the latter with nivolu-

mab). The 17 ODEs were parameterized by 47 distinct kinetic parameters (Supplemental Information).

Summarized by the schematic in Figure 5, we then developed simulations of local and global sensitivity

analysis to infer the effect of PD-1 blockade, the role of Th1-related cytokines and cell markers, and anti-

tumor phenotypes. To do this, we used the ex vivo data in the context of nivolumab to determine the

values of the model parameters, which was done by setting the initial T cell populations to the average

of all patients (vehicle IgG4) and by setting the initial cytokine levels to values within the range of

average G SD of all patients (vehicle IgG4). Then, we integrated the nivolumab-treated cytokine data

at the 24-h intervals (72 h total culture) and the T cell populations from flow cytometry to develop

both a local and global sensitivity analysis (Supplemental Information).

Local sensitivity analysis was then conducted around the nominal parameter set to determine how small

perturbations to the parameter values affect the strength of the response (defined as the increased

assumed death of cancer cells) to treatment with nivolumab by varying one parameter at a time. The result-

ing relative sensitivities indicated that the efficiency of cytotoxic T cells at killing cancer cells (parameter 14),

as well as kinetic parameters related to the proliferation rate of the cancer cells and the CD8+ cytotoxic

T cells (parameters 4, 5, and 8), had the highest sensitivities and thus the largest effect on the strength

of the response to treatment (Figures 6A and 6B). In the radial plots, a higher sensitivity value is indicated

by a larger distance from the origin (center of the plot). Thus, as Figure 6A shows, most of the parameters

corresponded to a small sensitivity value, except for those emphasized above.

Although small perturbations to single kinetic parameters affected the strength of the response to treat-

ment, they were not enough to change the nature of the response to the treatment. Thus, we next per-

formed global sensitivity analysis, which involved randomly changing all the initial cytokine levels and/or

initial T cell populations and/or values of the kinetic parameters of the model simultaneously.

We determined that varying all the initial protein levels was not sufficient to induce a ‘‘non-response’’

phenotype; however, the strength of the response to treatment (as indicated by the final cancer cell pop-

ulation size) showed a power-law dependence on the initial IL-12 level of the form ~C72f½IL� 12��b; b> 0,

where ~C72 is the size of the cancer cell population at t = 72 h. In the model, the production of Th1 cells

is dependent on IL-12 levels, which indicates that, as observed experimentally, an increase in Th1 levels

may correlate with a stronger response to treatment. To investigate this point further, we kept the kinetic

parameters, initial protein levels, and initial relative T cell populations fixed at their nominal values and var-

ied only the initial cancer population level. We found that, when the initial cancer cell population comprises

less than approximately 75% of the tumor biopsy, increased Th1 levels correlate with stronger treatment

response. This trend is likely driven by the production of IL-12 by dendritic cells, which are assumed to

be proportional to the cancer cell population. However, when the initial cancer population level exceeds

more than approximately 75% of the tumor biopsy, the complex interplay between Th1 and Th2 cytokines

produced by the cancer cells ultimately leads to decreasing response to treatment, despite increasing Th1

levels (Figure 6C, right side of the dashed vertical line).
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Although changing the initial proportion of cancer cells comprising the biopsy affected the strength of the

response to treatment, it did not induce a non-response phenotype for the nominal parameter set, even

when the initial cancer population comprised up to 90% of the tumor cell population. To induce a non-

response phenotype, it was necessary to change the initial relative T cell populations. In particular, by vary-

ing both the initial protein levels and initial relative T cell populations, while keeping all other parameters

fixed at their nominal values, we could induce a simulated non-response phenotype. In this way, we found

that the size of the cancer cell population at t = 72 h showed the highest sensitivity to the initial CD8+ cyto-

toxic T cell level, followed by the initial naive CD8+ T cell level (Figure 6D).

Finally, in an attempt to capture the heterogeneity in patient tumor microenvironment and response to

treatment, we varied all the kinetic parameters, initial cytokine and PD-L1 levels, and initial T cell levels

simultaneously. We used multi-parametric sensitivity analysis (MPSA) (Cho et al., 2003; Hornberger and

Figure 4. Systems and In Silico Strategy to Study Th1-Related Phenotypes in the PD-1/PD-L1 Network

Systems biology model, illustrating interactions between cell populations, cytokines, and PD-1 and PD-L1. Naive CD4+ T

helper cells (Th0) differentiate into CD4+ Th1 or CD4+ Th2 cells, which is influenced by Th1 cytokines (IL-12 and IFNg) and

Th2 cytokines (IL-4, IL-6). CD4+ Th1 cells influence the differentiation of naive CD8+ cells into CD8+ cytotoxic (Tc) T cells,

which kill cancer cells. Cancer cells express PD-L1, which can bind to PD-1 expressed by CD4+ Th1, CD4+ Th2, and CD8+

Tc cells, thus inhibiting them.
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Spear, 1981; Zi et al., 2005), which evaluates the parameter (and initial condition) sensitivities based on Kol-

mogorov-Smirnov statistics, returning sensitivity values between 0 and 1. A larger parameter sensitivity in-

dicates that the corresponding parameter variation has a large impact on the model output (Zi, 2011). The

results are presented in Figures 6E and 6F. Based on theMPSA sensitivities, the treatment response is most

sensitive to the following kinetic parameters and initial conditions: the efficiency of cytotoxic T cells at

killing cancer cells (parameter 14), the initial cytotoxic CD8+ T cell level, the rate of production of IFNg

by cytotoxic T cells (parameter 47), the initial naive CD8+ T cell level, the IL-4-independent growth rate

of Th2 cells (parameter 6), the net proliferation rate of Th1 cells (parameter 3), the initial IL-6 level, and

the half-maximal IFNg concentration for IFNg-dependent differentiation of naive CD4+ T cells into Th1

cells (parameter 25). These results reinforce the experimental observation that the variability in patient

response is connected to the upregulation of Th1 levels.

Taken together, we report the integration of biological and mathematical strategies to interpret the

response dynamics of PD-1 blockade in heterogeneous solid human tumor biopsies where matched-pa-

tient clinical information is missing. This approach took into consideration biological fidelity of the

ex vivo system, methods of stratifying samples to identify drug-induced variability and systems biology ap-

proaches that can subsequently simulate key pathways contributing to antitumor phenotypes.

DISCUSSION

Predicting clinical response to therapy is a ‘‘holy grail’’ in the quest for durable, sustainable cures for can-

cer. Numerous preclinical and translational methods, including in vitro and ex vivo models, have been

developed in the past decade to help guide our understanding for the clinical activity of immunotherapy

(Jenkins et al., 2018; Meijer et al., 2017). Indeed, syngeneic animal models, which contain a full immune

complex, are used to study cancer immunotherapies in a pre-clinical context, yet they often fall short in

recreating the human response to drugs and immunotherapies as they lack critical lymphocytes (Day

et al., 2015). Organotypic tumor spheroid models, on the other hand, recreate murine drug responses

(Jenkins et al., 2018). Indeed, three of the most important aspects of assessing drug response in immu-

notherapy have been recently suggested as (1) the native spatial arrangement of the immune cells (Yuan,

2016), (2) autologous factors to recreate the host environment (Dhandapani and Goldman, 2017; Jackson

and Thomas, 2017), and (3) clinically relevant integration of data to correlate response dynamics with pre-

dicted success or failure of a drug (Meijer et al., 2017). However, there remains a limited understanding

for the biological and translational interpretations of data arising from ex vivo cancer immunotherapy

models. To this end, our work provides a methodology to study adaptive immune responses using mul-

tiple biological and computational approaches, which elucidate pathways and signatures at the protein

level. Ex vivo tumor systems in collaboration with systems biology and computational models could

Figure 5. Integrating Ex Vivo Data into In Silico Analysis

Schematic showing the procedure to integrate nivolumab-treated ex vivo empirical evidences in silico for local and global

sensitivity analyses.
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therefore be a powerful toolset to investigate and understand ‘‘dynamic drug response’’ of human

tumors.

Here, we described an analytical approach that leverages an ex vivo model to study phenotypic ‘‘reflex’’ to

anticancer immune checkpoint inhibitors. Importantly, we described preservation of the spatial tumor-im-

mune contexture and conservation for the complex signaling networks between immune and tumor cells

using autologous factors, which are unique to each patient. One question that remains open is the role

that systemic lymphocytes (i.e., PBMCs) contribute to the ex vivo culture system. In a separate set of exper-

iments using breast cancer samples, we determined that PBMCs will infiltrate the tumor fragment at a rate of

1%–2% of the total tumor CD45+ population, which becomesmore variable when PD-1 checkpoint inhibitors

are added (data not shown). This observation leads us to the conclusion that PBMCsmay influence the spatial

arrangement of immune cells in the tumor fragment and alter the immunobiology in response to PD-1

blockade. Indeed, in the present study induction of T helper cells, particularly Th1, was a putative indication

for the conversion of an immune-deficient tumor into one that exhibited multiple inflammation-like features,

including induction of pro-inflammatory cytokines. A more complete interrogation, in a separate study, is

worthwhile in order to understand how exogenous immune cells influence the drug response, ex vivo.

Identifying checkpoint inhibitor-induced cell death in human ex vivomodels is undescribed and remains a

challenge in this space. In a study published by Jenkins et al., they used mouse-derived organotypic tumor

spheroids (MDOTS), showing that immune-mediated cell death can be observed in a time frame of 5–

6 days (Jenkins et al., 2018). However, in the same study, the observations were not recapitulated in a similar

time frame using patient-derived organotypic tumor spheroids (PDOTS). Interestingly, Jenkins et al.

described a change in the immune biology after exposure to PD-1 inhibitors, vis-á-vis changes to the cyto-

kine expression profile within 72 h. This is not different from our findings. Indeed, we demonstrate that, in

the absence of obvious cell death signals after treatment with PD-1 blockade in human samples, we do

Figure 6. Local Sensitivity Analyses (LSA) and Global Sensitivity Analyses (GSA) Integrate Th1-Related

Phenotypes to Simulate Antitumor Effect of PD-1 Blockade

(A) Relative sensitivities determined by LSA for the top 15 kinetic parameters (indicated by parameter number).

(B) Relative sensitivities determined by LSA for initial cytokine levels and initial T cell populations. For (A) and (B), the Log10

of the absolute value of the relative sensitivities are presented for visual clarity.

(C) Decrease in cancer cell population at t = 72 h with PD-1 blockade as a function of Th1 induction, obtained by changing

only the initial cancer cell population. Initial cancer cell population comprises less than 75% of the tumor for points to the

left of the dashed vertical line.

(D) MPSA sensitivities determined by GSA for the initial protein levels and initial relative T cell populations.

(E) MPSA sensitivities determined by GSA for the top 20 kinetic parameters (indicated by parameter number).

(F) MPSA sensitivities determined by GSA for the initial cytokine levels and T cell populations. In (E) and (F), all protein

levels, initial T cell populations, initial cancer cell population, and kinetic parameters were varied.
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observe changes to the immune biology. Importantly, we demonstrate, for the first time, how this informa-

tion can be leveraged with computational models to estimate the antitumor effects in vivo. Such an

approach could help researchers understand anticancer effects of immunotherapy, leveraging changes

to the immunobiology in the absence of obvious cell death markers.

Translational tools that recapitulate the human microenvironment are urgently needed to advance cancer

research and drug development, particularly in the era of immunotherapy (Dhandapani and Goldman,

2017; Jackson and Thomas, 2017). While interrogating the effect of PD-1 blockade, we used an unbiased

approach to dissect the response dynamics to PD-1 inhibition. Our expectation that we would be able

to link known biological pathways to one another under drug pressure (e.g., IFNg, IL-12, CD8+ T cell expan-

sion) was thwarted when we applied nivolumab and attempted to elucidate molecular biology via IFNg in-

duction. Instead, we concluded that, although established biological mechanisms are preserved in the

vehicle control groups, interpatient heterogeneity—and likely also the result of time in culture—

confounded our ability to recapitulate known lymphocyte lineage differentiations and signaling relation-

ships. For this reason, we determined that a more useful strategy was to examine drug-induced changes

in variance across patient samples and use that information to guide a response dynamics approach, first.

Subsequently, features of response and resistance could be bridged with response dynamics and drug-

induced interpatient heterogeneity using variance of immunemarkers. In taking such an unbiased, integra-

tive approach we successfully recapitulated biological features that have been previously described in the

literature (e.g., acute phase reaction cytokines and induction of Th1-associated genes).

To estimate the anticancer effects of PD-1 blockade based on changes to immunobiology, we integrated

the empirical ex vivo data into an in silicomodel. We first determined a set of nominal parameter values to

match the average patient data, then we performed local and global sensitivity analysis to elucidate the

parameters that were most important for influencing the treatment response. We found that local sensi-

tivity analysis, in which the parameters are perturbed individually by small values around one parameter

set, did not capture the variability in the untreated patient data. Since biological model inputs such as ki-

netic parameters and initial concentrations are thought to vary within a large range in different cell types

and cellular environments (Zi, 2011), and are therefore expected to be highly variable between patients, it

was necessary to vary several parameters simultaneously to capture the experimentally observed variability

in treatment response. Importantly, in doing so, the in silicomodel reproduced the experimental observa-

tion that Th1 induction correlated with increased treatment response (under certain initial conditions). It

should be noted that, although these results agree with experimental observations, only a subset of im-

mune cell populations were included in the model and several simplifying assumptions were made to

reduce the complexity of the model. In future work, we will relax some of these assumptions and include

additional cytokines and immune cell populations and investigate potential resistance mechanisms to

PD-1 blockade. Overall, these in silico data demonstrate the complexity of response dynamic changes

that occur under nivolumab pressure, thus emphasizing the need for integrating multiple parameters pro-

filed in an ex vivo model to inform the effect of immunotherapy intervention.

Limitations of the Study

Further prospective evaluation is necessary. For instance, human papillomavirus (HPV) positivity in patients with

HNSCC has been shown to correlate with a survival advantage (Benson et al., 2014). The HPV status of the

HNSCC samples in this study is unknown, but HPV infections have been described at relatively low frequency

in the same demographic population that our samples were obtained (Southern India) (Bandhary et al., 2018).

If known, HPV status could allow for a better segregation and understanding of PD-1 blockade response dy-

namics. In addition, our evidence that spatial heterogeneity can provide unique information about the drug

response role of CD4+ and CD8+ T cells could be expanded to understand their localization within the tumor.

For example, intratumoral and stromal lymphocyte heterogeneity could provide functional information in the

context of other solid tumors such asbreast (Mani et al., 2016). Future studies that integrate these types of analyt-

ical features, which can be associated with the same patient’s response in the clinic, could provide novel infor-

mation about the behavior of patient-specific response to PD-1 blockade.

Resource Availability

Lead Contact

Further information and requests for resources, additional data and reagents should be directed to and will

be fulfilled by the Lead Contact: Dr. Aaron Goldman (agoldman@bwh.harvard.edu).
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Materials Availability

New materials were not generated in the course of this study.

Data and Code Availability

Code related to simulated treatment protocols for the ex vivo experiments with specified inputs and out-

puts, as well as comments throughout the code, can be found at https://github.com/mprzedborski/ex-

vivo-PD1-blockade. Raw data used for analysis and simulations will be available upon request.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101229.
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N 50
Age in years, median (range) 54 (21-80)
Gender

Male 20 40%
Female 29 58%

Not Reported 1 2%
Tumor Stage

T4N2M0 37 74%
T3N0M0 1 2%
T3N1M0 1 2%
T3N2M0 1 2%
T4N1M0 3 6%

Not Reported 7 14%
Tumor Site

Palate 2 4%
Maxilla 2 4%
Tongue 5 10%

Lower alveolus 10 20%
Buccal Mucosa 25 50%

Others 6 12%

Figure S1: Patient demographics head and neck squamous cell carcinoma (N=50). Related to Figure
1.
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Figure S2: Profiling spatio-temporal immune fidelity comparing T0 with unstimulated vehicle control
(IgG4). Related to Figure 1. A. tSNE visualization of the tumor infiltrated immune population in baseline
(T0) and the ex-vivo vehicle control (IgG4) culture (48h) for 3 patient samples. The data is generated
from flow cytometry of 3000 merged events for each sample with further sub-gating of the main T-cell
populations. B. Representative H&E from HNSCC tumors at 200X magnification. Yellow line demar-
cates tumor (T) from stroma (S). Arrowheads indicate lymphocytes, shown as examples. Scale bar =
40mm. C-D. Blinded quantification by a clinical pathologist was performed to determine the percent (%)
of tumor infiltrated lymphocytes (TIL) (B) or stromal lymphocytes (C). Linear regression and correlation
of TIL and stromal lymphocytes in a pair-wise fashion of T0 (baseline), and the patient-matched TC
Vehicle.
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Figure S3: Testing preservation of immuno-biology by cross-analyzing multiple assays after culture,
ex vivo. Related to Figure 2. A. Schematic shows the different molecular and biological assays that
are employed to study tumor phenotype and culture media cytokines. B. Graph overlays the % CD8
protein expression determined by flow cytometry and immunohistochemistry (IHC). Data plotted as
deviation from the mean of the respective analysis (IHC or flow), N=50 patient samples on x-axis. C.
Histogram shows distribution of Foxp3 expression from the vehicle-treated cohort of 50 patient samples
as determined by blinded quantification of IHC staining intensity by clinical pathology. Boxes indicate
the highest and lowest Foxp3 expressing patient samples (Foxp3Hi and Lo). D. Histogram quantifies
the % Foxp3 expression from T-reg cells determined by flow cytometry in the grouped patient samples
Foxp3Hi and Foxp3Lo (Fig. Panel C).
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Transparent methods

1 Systems biology model

Given the experimental measurements of cytokine expression and relative T-cell populations in ex-vivo
human tumor cultures, and taking into account well-established immune cell interactions in the literature,
we developed the interaction network depicted in Figure 4 of the manuscript.

An explanation of each of the cellular and protein species appearing in Figure 4 is presented in
Table S1, along with its variable representation in the mathematical equations.

Table S1: Cellular and protein species in the interaction network in Figure 4.

Cellular species Description Mathematical representation
CD4+ Th0 Naive helper (CD4+) T-cell population TN4

CD4+ Th1 Type 1 helper T-cell population Th1
CD4+ Th2 Type 2 helper T-cell population Th2

Naive CD8+ Naive cytotoxic (CD8+) T-cell population TN8

CD8+ Tc Cytotoxic (CD8+) T-cell population Tc
DC Dendritic cell population –

Cancer Cancer cell population C
Protein species Description Mathematical representation

IL-4 Concentration of interleukin 4 [IL-4]
IL-6 Concentration of interleukin 6 [IL-6]
IL-12 Concentration of interleukin 12 [IL-12]
IFNγ Concentration of interferon gamma [IFNγ]
PD-1 Concentration of programmed cell death protein 1 [PD-1]

PD-L1 Concentration of programmed death-ligand 1 [PD-L1]
PD-1:PD-L1 Concentration of PD-1:PD-L1 protein complex [PD-1:PD-L1]

Drug species Description Mathematical representation
Nivolumab Concentration of the PD-1 inhibitor Nivolumab [A]

– Concentration of Nivolumab:PD-1 complex [A : PD-1]

Below we explain each interaction in the network, along with its mathematical formulation, in addition
to the key assumptions in the model. For each cellular species, it is assumed that cells proliferate via
mitosis and die at rates that are proportional to their population size.

1. Time evolution of naive helper (CD4+) T-cell population:

dTN4

dt
= n4TN4 −

(
d1-12TN4

[IL-12]

qdIL12 + [IL-12]
+ d1-IFNTN4

[IFNγ]

qIFN -1 + [IFNγ]

)(
s1

s1 + [PD-1 : PD-L1]

)
−

(
d2TN4

[IL-4]

qdIL4 + [IL-4]

)(
s2

s2 + [PD-1 : PD-L1]

)
(1)

The first term describes the net proliferation of TN4 cells. The next two terms describe the differ-
entiation of TN4 cells into Th1 cells in the presence of IL-12 (Yates et al., 2000) (term 2) and IFNγ
(Diehl and Rincón, 2002) (term 3). Both of these differentiation processes are inhibited by the
PD-1:PD-L1 complex (Freeman et al., 2006; Okazaki and Honjo, 2006; Sznol and Chen, 2013).
The last term describes the differentiation of TN4 cells into Th2 cells in the presence of IL-4 (Diehl
and Rincón, 2002; Yates et al., 2000), which is inhibited by the PD-1:PD-L1 complex (Freeman
et al., 2006; Okazaki and Honjo, 2006; Sznol and Chen, 2013).
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2. Time evolution of type 1 helper T-cell population:

dTh1
dt

= n1Th1 +

(
d1-12TN4

[IL-12]

qdIL12 + [IL-12]
+ d1-IFNTN4

[IFNγ]

qIFN -1 + [IFNγ]

)(
s1

s1 + [PD-1 : PD-L1]

)
(2)

The first term describes the net proliferation of Th1 cells. The remaining terms describe the
increase in the Th1 cell population due to the differentiation of TN4 cells into Th1 cells in the
presence of IL-12 (Yates et al., 2000) (term 2) and IFNγ (Diehl and Rincón, 2002) (term 3), which
is inhibited by the PD-1:PD-L1 complex (Freeman et al., 2006; Okazaki and Honjo, 2006; Sznol
and Chen, 2013).

3. Time evolution of type 2 helper T-cell population:

dTh2
dt

=

(
g2Th2 + g2-4Th2

[IL-4]

qgIL4 + [IL-4]

)(
rIFN

rIFN + [IFNγ]

)
+

(
d2TN4

[IL-4]

qdIL4 + [IL-4]

)(
s2

s2 + [PD-1 : PD-L1]

)
− δ2Th2 (3)

The first term describes the proliferation of Th2 cells due to mitosis, which is upregulated by IL-4
(Diehl and Rincón, 2002; Yates et al., 2000) (term 2). However, this cell proliferation is inhibited
by IFNγ (Fishman and Perelson, 1994). The next term describes the increase in Th2 population
resulting from the differentiation of TN4 cells into Th2 cells in the presence of IL-4 (Diehl and
Rincón, 2002; Yates et al., 2000) (term 3), which is inhibited by the PD-1:PD-L1 (Freeman et al.,
2006; Okazaki and Honjo, 2006; Sznol and Chen, 2013) complex. The last term describes natural
death of the Th2 cells.

4. Time evolution of naive cytotoxic (CD8+) T-cell population:

dTN8

dt
= n8TN8 − dcTN8

(
Th1

q1 + Th1

)(
sC

sC + [PD-1 : PD-L1]

)
(4)

The first term describes the net proliferation of TN8 cells. The second term describes the differ-
entiation of TN8 cells into Tc cells in the presence of Th1 (Ridge et al., 1998; Sakaguchi, 2000),
which is inhibited by the PD-1:PD-L1 complex (Freeman et al., 2006; Okazaki and Honjo, 2006;
Sznol and Chen, 2013).

5. Time evolution of cytotoxic (CD8+) T-cell population:

dTc
dt

= ncTc + gc−12Tc
[IL− 12]

qgIL12 + [IL− 12]
+ dcTN8

(
Th1

q1 + Th1

)(
sc

sc + [PD-1 : PD-L1]

)
(5)

The first term describes the net proliferation of Tc cells, which is upregulated by IL-12 (Lasek
et al., 2014) (term 2). The third term describes the increase in the Tc cell population due to the
differentiation of TN8 cells into Tc cells in the presence of DCs that have been activated by Th1
(Ridge et al., 1998; Sakaguchi, 2000). This differentiation process is inhibited by the PD-1:PD-L1
complex (Freeman et al., 2006; Okazaki and Honjo, 2006; Sznol and Chen, 2013).

6. Time evolution of cancer cell population:

dC

dt
= nCanC − kcCTc (6)

The first term describes the net proliferation of cancer cells and the second term describes the
killing of cancer cells by Tc cells through mechanisms such as granzyme/perforin-induced apop-
tosis (Freeman et al., 2006; Trapani and Smyth, 2002).
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7. Time evolution of IFN-γ concentration:

d[IFNγ]

dt
= p1-IFNTh1

(
rIL4

rIL4 + [IL-4]

)(
rIL6

rIL6 + [IL-6]

)
+ pc-IFNTc − δIFN [IFNγ] (7)

Term one describes the secretion of IFNγ by Th1 cells (Diehl and Rincón, 2002; Fishman and
Perelson, 1994; Yates et al., 2000), which is inhibited by IL-4 (Fishman and Perelson, 1999) and
IL-6 (Diehl and Rincón, 2002). The second term describes the secretion of IFNγ by Tc cells
(Freeman et al., 2006), and the third term describes the natural decay of IFNγ.

8. Time evolution of IL-4 concentration:

d[IL-4]

dt
= p2-4Th2 + p2-4-6Th2

(
[IL-6]

qIL6 + [IL-6]

)
− δIL4[IL-4] (8)

The first term describes the secretion of IL-4 by Th2 cells (Diehl and Rincón, 2002; Fishman and
Perelson, 1994; Yates et al., 2000). The second term describes the additional secretion of IL-4
by Th2 cells in the presence of IL-6 (Diehl and Rincón, 2002; Romagnani, 1997). The third term
describes the natural decay of IL-4.

9. Time evolution of IL-6 concentration:

d[IL-6]

dt
= p2-6Th2 + pCan-6C − δIL6[IL-6] (9)

Term one describes the secretion of IL-6 by Th2 cells (Fishman and Perelson, 1994). Antigen
presenting cells produce IL-6 (Diehl and Rincón, 2002; Rincón et al., 1997) and we assume that
the number of antigen presenting cells is directly proportional to the number of cancer cells (term
2). The third term describes the natural decay of IL-6.

10. Time evolution of IL-12 concentration:

d[IL-12]

dt
= pCan-12C + p1-12Th1 − δIL12[IL-12] (10)

Term one describes the production of IL-12 by DCs, which we assume to be directly proportional
to the number of cancer cells (Rincón et al., 1997). Term two describes the additional production
of IL-12 by DCs that are activated by Th1 cells (Macatonia et al., 1995). The third term describes
the natural decay of IL-12.

11. PD-1 concentration and its time evolution:

[PD-1] = ρ (Th1 + Th2 + Tc) (11)
d[PD-1]

dt
= ρ

(
dTh1
dt

+
dTh2
dt

+
dTc
dt

)
− β+[PD-1][PD-L1] + β−[PD-1 : PD-L1]

− α+[PD-1][A] + α−[A : PD-1] (12)

PD-1 is expressed on all activated T-cells, i.e. Th1, Th2, and Tc (Freeman et al., 2006; Sznol
and Chen, 2013), thus the total concentration of PD-1 is proportional to the sum of the T-cell
populations, as indicated in Equation (11). We make the simplifying assumption that the same
amount of PD-1 is expressed on all types of T-cells, thus the proportionality constants for each
population are the same.

The time evolution of PD-1 is described by Equation (12). The first three terms describe the
change in the PD-1 levels due to changing T-cell populations. The fourth term describes the bind-
ing of PD-1 to PD-L1 to form the PD-1:PD-L1 complex and the fifth term describes the dissociation

6



of the PD-1:PD-L1 complex (Freeman et al., 2006). The last two terms describe, respectively, the
binding of PD-1 to Nivolumab and the dissociation of the Nivolumab:PD-1 complex (Sznol and
Chen, 2013).

12. PD-L1 concentration and its time evolution:

[PD-L1] = λ (Th1 + Th2 + Tc + C) + λCan-IFNC

(
[IFNγ]

qIFN -PDL1 + [IFNγ]

)
(13)

d[PD-L1]

dt
= λ

(
dTh1
dt

+
dTh2
dt

+
dTc
dt

+
dC

dt

)
+ λCan-IFN

dC

dt

(
[IFNγ]

qIFN -PDL1 + [IFNγ]

)
− β+[PD-1][PD-L1] + β−[PD-1 : PD-L1] (14)

PD-L1 is expressed on all activated T cells, i.e. Th1, Th2, Tc (Freeman et al., 2006; Okazaki and
Honjo, 2006) as well as cancer cells (Freeman et al., 2006; Okazaki and Honjo, 2006; Sznol and
Chen, 2013), thus the total concentration of PD-L1 is in part proportional to the sum of the T-cell
and cancer cell populations, as indicated by the first four terms in Equation (13). We make the
simplifying assumption that the PD-L1 expression is identical for all types of cells. In addition, the
expression of PD-L1 by cancer cells is upregulated by IFNγ (Freeman et al., 2006; Okazaki and
Honjo, 2006; Sznol and Chen, 2013), as indicated by the fifth term in Equation (13).

The time evolution of PD-L1 is described by Equation (14). The first five terms describe the change
in PD-L1 levels due to changing T-cell and cancer cell populations. We make the simplifying
assumption that the proteins reach their steady state values instantaneously with respect to the
time scale of the changes in cell populations (i.e. the cell division rate) so that d[IFNγ]

dt
≈ 0. The last

two terms describe the binding of PD-1 to PD-L1 and the dissociation of the PD-1:PD-L1 complex
(Freeman et al., 2006), respectively.

13. Time evolution of PD-1:PD-L1 complex concentration:

d[PD-1 : PD-L1]

dt
= β+[PD-1][PD-L1] − β−[PD-1 : PD-L1] (15)

The first term describes the binding of PD-1 to PD-L1 and the second term describes the dissoci-
ation of the PD-1:PD-L1 complex (Freeman et al., 2006).

14. Time evolution of free Nivolumab concentration:

d[A]

dt
= Ã(t) − α+[A][PD-1] + α−[A : PD-1] − δA[A] (16)

The first term describes the introduction of Nivolumab into the system, which may be time-
dependent, depending on the treatment schedule. The second term describes the binding of
PD-1 to Nivolumab, resulting in the formation of the Nivolumab:PD-1 complex, and the third term
describes the dissociation of the Nivolumab:PD-1 complex (Sznol and Chen, 2013). We make the
assumption that the dissociation constant Kα ≡ α−/α+ � Kβ ≡ β−/β+ so that Nivolumab has a
higher binding affinity for PD-1 than PD-L1 does, which allows the drug to displace PD-L1 from
the PD-1:PD-L1 complex. Further, in simulations we assume that the rate of association of PD-1
is equivalent for Nivolumab and PD-L1, i.e. α+ = β+, which removes a kinetic parameter from the
system. The fourth term in the equation describes the natural decay of Nivolumab.
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15. Time evolution of Nivolumab:PD-1 complex concentration:

d[A : PD-1]

dt
= α+[A][PD-1] − α−[A : PD-1] (17)

The first term describes the binding of Nivolumab with PD-1 to form the Nivolumab:PD-1 complex,
and the second term describes the dissociation of the drug complex (Sznol and Chen, 2013).

In Table S2 we give a description of the kinetic parameters that appear in the above equations in the
mathematical model.

Table S2: Description of the kinetic parameters in the systes biology model. Related to the interaction
network in Figure 4.

Number Name Description

1 n4 Net proliferation rate of TN4 cells

2 n8 Net proliferation rate of TN8 cells

3 n1 Net proliferation rate of Th1 cells

4 nc IL12-independent net proliferation rate of Tc cells

5 nCan Net proliferation rate of cancer cells

6 g2 IL4-independent growth rate of Th2 cells

7 g2-4 IL4-dependent growth rate of Th2 cells

8 gc-12 IL12-dependent growth rate of Tc cells

9 δ2 Death rate of Th2 cells

10 d1-IFN IFNγ-dependent differentiation rate of TN4 cells into Th1 cells

11 d1-12 IL12-dependent differentiation rate of TN4 cells into Th1 cells

12 d2 IL4-dependent differentiation rate of TN4 cells into Th2 cells

13 dc Rate of differentiation of TN8 cells into Tc cells

14 kc Rate of cancer cell killing by Tc cells

15 p1-IFN Rate of production of IFNγ by Th1 cells

16 p2-4-6 IL6-dependent production of IL-4 by Th2 cells

17 pCan−6
Rate of production of IL-6 by antigen presenting cells
(assumed proportional to the number of cancer cells)

18 pCan−12
Rate of production of IL-12 by DCs

(assumed proportional to the number of cancer cells)

19 δIFN Decay rate of IFNγ

20 δIL4 Decay rate of IL-4

21 δIL6 Decay rate of IL-6

22 δIL12 Decay rate of IL-12

23 δA Decay rate of Nivolumab

24 q1 Half-maximal Th1 cell population for TN8 differentiation into Tc cells
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25 qIFN -1
Half-maximal IFNγ concentration for IFNγ-dependent differentiation of TN4 cells

into Th1 cells

26 qIFN -PDL1
Half-maximal IFNγ concentration for IFNγ-dependent PD-L1 expression by

cancer cells

27 qgIL4 Half-maximal IL-4 concentration for IL4-dependent proliferation of Th2 cells

28 qdIL4
Half-maximal IL-4 concentration for IL4-dependent differentiation of TN4 cells

into Th2 cells

29 qIL6
Half-maximal IL-6 concentration for IL6-dependent production of IL-4 by Th2

cells

30 qdIL12
Half-maximal IL-12 concentration for IL12-dependent differentiation of TN4 cells

into Th1 cells

31 qgIL12 Half-maximal IL-12 concentration for IL12-dependent proliferation of Tc cells

32 rIFN
Half-maximal IFNγ concentration for IFNγ-dependent inhibition of Th2

proliferation

33 rIL4
Half-maximal IL-4 concentration for IL4-dependent inhibition of IFNγ production

by Th1 cells

34 rIL6
Half-maximal IL-6 concentration for IL6-dependent inhibition of IFNγ production

by Th1 cells

35 ρ Per-cell expression level of PD-1

36 λ Per-cell expression level of PD-L1

37 λCan-IFN IFNγ-dependent PD-L1 expression per cancer cell

38 β+ Rate of association of PD-1 and PD-L1

39 β− Rate of dissociation of PD-1:PD-L1 complex

40 α− Rate of dissociation of Nivolumab:PD-1 complex

41 s1
Half-maximal PD-1:PD-L1 concentration for inhibition of TN4 differentiation into

Th1 cells

42 s2
Half-maximal PD-1:PD-L1 concentration for inhibition of TN4 differentiation into

Th2 cells

43 sc
Half-maximal PD-1:PD-L1 concentration for inhibition of TN8 differentiation into

Tc cells

44 p1-12 Rate of IL-12 production by Th1 cells

45 p2-4 Rate of IL6-independent production of IL-4 by Th2 cells

46 p2-6 Rate of IL-6 production by Th2 cells

47 pc-IFN Rate of IFNγ production by Tc cells

2 Systems biology parameter values

In Table S3, we present the numerical values of the parameters and initial conditions (protein levels and
relative T-cell populations) that match to the average patient data (see “nominal value” column), as well
as the corresponding units (see “units” column). We use the abbreviation “min” to denote a timescale
of minutes. We also present a range for each parameter which was used for searching the parameter
space with Matlab’s genetic algorithm to match the average patient data as well as for performing the
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global sensitivity analysis (see “range” column). The ranges presented for the protein levels and T-cell
fractions that were obtained from the patient data are set by the minimum and maximum experimentally
measured values for all patients, and were used for the global sensitivity analysis. When using the
genetic algorithm to match the average patient data, the T-cell fractions were set to the average of all
patients without treatment, and the protein levels were sampled from a range set by the average +/- one
standard deviation, as explained in the main text.

We note that parameters 44-47 do not have a specified range since they were calculated at the
beginning of each simulation by assuming the initial protein levels are steady state protein levels (Equa-
tions 7-10) using the initial T-cell population values, and additionally imposing the constraint that all
parameters are non-negative. Thus with the local and global sensitivity analysis, it was necessary to
re-calculate parameters 44-47 for each simulation.

To ensure that Nivolumab has a higher binding affinity for PD-1 than PD-L1 does, we also imposed
the constraint (parameter 40 < 0.1 parameter 39) for each simulation.

Additionally, we note that the PD-1 and PD-L1 concentrations were initialized for each simulation
using Equations 11 and 13, respectively, with the initial cell populations and relevant protein level.
Finally we point out that in an initial analysis, we used a larger upper bound for the net proliferation rate
of cancer cells, parameter 5. In some cases, this led to nonphysical growth of the cancer population
over the three day treatment window when there was no treatment response. In these cases, the
model output was most sensitive to parameters controlling the CD8+ cytotoxic T-cell population and its
efficiency at killing the cancer cells. We present additional important notes below the table.

Table S3: Values and ranges of the kinetic parameters, initial protein levels, and initial T-cell populations
used for local and global sensitivity analysis. Related to Figures 5 and 6.

Parameter Nominal value Range Units Reference

1 2.5 × 10−1 ln(2)/20 − ln(2) day−1

estimated from
(Fishman and Perelson, 1994)
(Fishman and Perelson, 1999)

2 3.5 × 10−2 ln(2)/20 − ln(2) day−1

estimated from
(Fishman and Perelson, 1994)
(Fishman and Perelson, 1999)

3 4.8 × 10−2 ln(2)/20 − ln(2) day−1

estimated from
(Fishman and Perelson, 1994)
(Fishman and Perelson, 1999)

4 4.1 × 10−2 ln(2)/20 − ln(2) day−1

estimated from
(Fishman and Perelson, 1994)
(Fishman and Perelson, 1999)

5 7.0 × 10−3 ln(2)/100 − ln(2)/10 day−1 estimated

6 3.8 × 10−2 ln(2)/20 − ln(2) day−1

estimated from
(Fishman and Perelson, 1994)
(Fishman and Perelson, 1999)

7 3.5 × 10−2 ln(2)/20 − ln(2) day−1

estimated from
(Fishman and Perelson, 1994)
(Fishman and Perelson, 1999)

8 3.6 × 10−2 ln(2)/20 − ln(2) day−1

estimated from
(Fishman and Perelson, 1994)
(Fishman and Perelson, 1999)
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9 1.2 × 10−2 ln(2)/60 − ln(2)/7 day−1

estimated from
(Fishman and Perelson, 1994)
(Fishman and Perelson, 1999)

10 1.9 × 10−1 ln(2)/20 − ln(2) day−1 estimated from
(Morel et al., 1992)

11 3.6 × 10−2 ln(2)/20 − ln(2) day−1 estimated from
(Morel et al., 1992)

12 2.1 × 10−2 ln(2)/20 − ln(2) day−1 estimated from
(Morel et al., 1992)

13 2.3 × 10−2 ln(2)/20 − ln(2) day−1 estimated from
(Morel et al., 1992)

14 1.1 × 10−5 10−5 − 10−1 Tc cell−1· day−1 estimated

15 1.3 × 10−3 6.5 × 10−4 − 1.7 × 10−2 pg/mL
Th1 cell · day

estimated

16 1.6 × 10−4 1.4 × 10−7 − 1.4×−2 pg/mL
Th2 cell · day

estimated

17 1.8 × 10−2 7.2 × 10−3 − 7.2 × 10−1 pg/mL
cancer cell · day

estimated

18 1.2 × 10−3 1.2 × 10−3 − 1.4 × 10−2 pg/mL
cancer cell · day

estimated from
(Lai and Friedman, 2017)

19 ln(2)/1000 ln(2)/1000 − ln(2)/60 min−1 estimated from
(Fishman and Perelson, 1999)

20 7.0 × 10−4 ln(2)/1000 − ln(2)/60 min−1 estimated from
(Fishman and Perelson, 1999)

21 ln(2)/1000 ln(2)/1000 − ln(2)/60 min−1 estimated from
(Fishman and Perelson, 1999)

22 4.8 × 10−4 ln(2)/1440 − ln(2)/600 min−1 estimated from
(Lai and Friedman, 2017)

23 4.8 × 10−2 ln(2)/15 − ln(2)/10 day−1 estimated from
(Lai and Friedman, 2017)

24 1.6 × 102 1 − 105 Th1 cells estimated

25 4.0 × 10−1 10−3 − 102 [IFNγ] (pg/mL) estimated

26 6.3 × 10−1 10−3 − 102 [IFNγ] (pg/mL) estimated

27 4.03 10−3 − 103 [IL-4] (pg/mL) estimated

28 8.4 × 10−1 10−3 − 103 [IL-4] (pg/mL) estimated

29 1.3 × 102 102 − 104 [IL-6] (pg/mL) estimated

30 6.3 × 10−3 10−3 − 102 [IL-12] (pg/mL) estimated

31 3.4 × 10−2 10−3 − 102 [IL-12] (pg/mL) estimated

32 8.9 × 10−2 10−3 − 102 [IFNγ] (pg/mL) estimated

33 7.5 × 10−1 10−1 − 103 [IL-4] (pg/mL) estimated

34 1.4 × 102 102 − 104 [IL-6] (pg/mL) estimated

35 9.9 10−6 − 101 (pg/mL)/T-cell estimated from
(Lai and Friedman, 2017)
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36 1.0 × 101 10−6 − 101 (pg/mL)/cell estimated from
(Lai and Friedman, 2017)

37 1.8 × 10−4 10−10 − 10−1 (pg/mL)/cancer cell estimated from
(Lai and Friedman, 2017)

38 1.7 × 10−3 1.4 × 10−4 − 1.4 × 10−1
(
(pg/mL) · day

)−1 estimated

39 1.5 1.4 − 1.4 × 102 day−1 estimated

40 3.5 × 10−3 1.4 × 10−3 − 1.4 × 10−1
(
(pg/mL) · day

)−1 estimated

41 4.9 × 101 10−3 − 105 [PD-1 : PD-L1]
(pg/mL) estimated

42 2.1 10−3 − 105 [PD-1 : PD-L1]
(pg/mL) estimated

43 1.9 × 101 10−3 − 105 [PD-1 : PD-L1]
(pg/mL) estimated

44 7.7 × 10−5 see text
pg/mL

Th2 cell · day
–

45 3.7 × 10−6 see text
pg/mL

Th2 cell · day
–

46 1.1 × 10−1 see text
pg/mL

Tc cell · day
–

47 3.0 × 10−8 see text
pg/mL

Tc cell · day
–

Protein Nominal value Range Units Reference

IFNγ 0.45 0.18 − 482.31 pg/mL patient data

IL-12 1.54 1.82 − 11.44 pg/mL patient data

IL-6 3339.16 149.15 − 35884.0 pg/mL patient data

IL-4 0.11 0.10 − 61.37 pg/mL patient data

Cell fraction Nominal value Range Units Reference

Cancer fraction 0.81 0.1 − 0.9* – estimated

TN8 fraction 0.65 0.21−0.97 – patient data

Tc fraction 0.10 0.0−0.59 – patient data

CD4+ fraction 0.25 0.01−0.69** – patient data

Th1 fraction 3.9 × 10−4 0 − 0.99 – estimated

Th2 fraction 8.6 × 10−4 0 − 0.99*** – estimated

*The tumor is assumed to consist of a population of cancer cells and a population of immune cells.
Thus with the nominal values given in Table 3, 81% of the tumor is cancer cells and the remaining 19%
is the total immune cell population.
**The total immune cell population consists of naive CD8+ T-cells (TN8), CD8+ cytotoxic T-cells (Tc), and
a population of CD4+ cells, thus we always impose the constraint (TN8 fraction + Tc fraction + CD4+
fraction) = 1.
***The CD4+ fraction is further subdivided into naive helper CD4+ T-cells (TN4), type 1 helper T-cells
(Th1) and type 2 helper T-cells (Th2), thus we always impose the constraint (Th1 fraction + Th2 fraction
+ TN4 fraction) = 1.
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3 Ex vivo Culture

HNSCC patients were recruited from multiple hospitals in India with approval from institutional review
board (IRB) and institutional ethical committee (IEC). Patient-consented tumor biopsies or surgical tis-
sues, in addition to blood specimens were transported to Mitra Biotech, Bangalore in a transport con-
tainer (Crēdo CubeTM (Peli Bio Thermal, Plymouth MN) in transport buffer containing a defined tissue
culture media recipe (described in detail below) and processed within 24-48 h post-excision. The time of
excision was captured on surgical reports. Both blood and tissue samples were shipped in temperature-
controlled containers, also containing temperature-loggers to maintain a temperature of 4-7◦C. Details
of patient demography collected are outlined in Supplemental Figure 1. Quality control (QC) of the
sample include: (1) absence of blood hemolysis, (2) arrival of patient tumors and blood specimens at
a temperature range of 4-7◦C (3) a minimum tumor content, which is evaluated by a clinical pathologist
on HE-stained FFPE tissue (T0 tissue), of 20%. Approximately 50% of samples that arrived at the lab
were deemed suitable, by the quality control criteria described above, to be further processed in the ex
vivo system. Tumor tissues were then moved from the transport chamber into warmed (37◦C) tissue
culture media (recipe described in detail below), dissected into uniform slices using manual fragmenta-
tion procedures. Tissue slices were maintained in customized tumor matrix protein (TMP) coated plates
as described earlier (Brijwani et al., 2017; Majumder et al., 2015). Briefly, TMP were previously identi-
fied using a tandem liquid chromatography mass spectrometry (LC/MS) approach which elucidated the
varying concentrations of each protein that are typically found within head and neck tumors derived from
human patients. Sterile recombinant human TMP are then coated onto tissue culture plates and used
for the tissue culture procedure, outlined in Figure 1A. Tissue fragments (approximately 300 µm - 2 mm
in size) were then placed into each well of a 48-well plate coated in TMP and incubated with 500 µl
of tissue culture media (RPMI containing 20% fetal bovine serum, 2% autologous patient serum, peni-
cillin, streptomycin. 1 Insulin-Transferrin-Selenium (ITS, Life Technologies. 41400-045), 1 GlutaMAX
(Life Technologies. 35050-061) and 1 penicillin, streptomycin and amphotericin B (Life Technologies.
15140-122). Drug (described below) was then incubated with each tissue fragment. Experiments were
performed in replicate of a maximum of four individual tissue fragments receiving drug and a mini-
mum of three for up to 72 hours. Tissue culture media and drug removed and replaced every 24 hours.
Tissue culture supernatants were collected at 0 hours (baseline) & 48-72 hours post-culture in the pres-
ence of protease and phosphatase inhibitors and stored at -80◦C until further analysis. Similarly, tumor
slices were collected at 0 hour (baseline) & post-culture, placed in RNAlater (Ambion, Thermo-Fisher
Scientific) and processed for subsequent analyses (described in detail in each section below).

4 Drugs

The anti-PD-1 antibody, nivolumab (Opdivo, Bristol Myers Squibb) was dissolved into a 1x phosphate
buffered saline (PBS) at pH7.2 and stored in aliquots at -80◦C for one-time use (i.e. not repeated
freeze/thawed). Isotype control antibody (Ultra-LEAFTM Purified Human IgG4 Isotype Control, Biole-
gend catalog # 403702) was used to compare as a vehicle control or negative control against the test
antibody, i.e. nivolumab. IgG4 control and nivolumab were used at the concentration of 132 µg/ml. This
dose was selected based on the published clinical cmax area under the curve (Brahmer et al., 2010).

5 Multiplex Cytokine Analysis

The tissue culture supernatants (25 µl) were used to measure the secreted profile of cytokine analytes,
incubated with 25 µl of beads for 1 h and 25 µl biotinylated detection antibody for 30 min. The complex
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was spiked with 25 µl of Streptavidin-PE and analyzed for cytokine profiling using Luminex200 (Lu-
minex, USA) platform. The cell-free supernatant (25 µl) was run on one or multiple Millipore Milliplex
plates, customized for the analytes selected. For each plate, a set of standard curves was run to en-
sure accurate evaluation of the concentration of each analyte and the integrity of the assay. Each plate
was read on the Luminex 200. Concentrations of each analyte was interpolated from their respective
standard curve using the Milliplex Analyst software (Millipore, USA). Data from multiple plates were
compiled and analyte fold changes, relative to vehicle controls, was calculated using an appropriate
graphing and statistical software.

6 Enzymatic Dissociation of Tumor Tissues

For flow cytometric analysis, tumor tissues post-culture ex vivo in the presence of vehicle (IgG4) or
nivolumab were subject to single cell dissociation. Tissue slices were transferred into gentle MACS C
tube in FBS free media containing enzyme mix (Enzyme H, Enzyme R, and Enzyme A) (Tumor Dissoci-
ation Kit, Miltenyi Biotec, USA). Tissue slices were dissociated using the h tumor 01.01, h tumor 02.01
and h tumor 03.01 dissociation programs in gentle MACS Dissociator (Miltenyi Biotec). The enzyme
mix was inactivated after incubation at 37◦C for 30 min. The single cell suspension was passed through
70 µm strainer, washed and resuspended in FACS buffer (2% FBS in PBS) for subsequent staining.

7 Flow Cytometry

Following enzymatic dissociation, single cell suspensions from T0 baseline and T72 culture (72 hours
post culture vehicle control) obtained from culture were stained with the following antibodies: anti-CD45
AF700 (clone 560566), anti-CD4 Pe-Cy7 (557852), anti CD8-APC-H7(641400), anti-CD14 PE-Cy5.5
(562692), anti-Foxp3 PE (560082), all from BD Bioscience, anti-CD3 BV510 (317332, Biolegend). The
live cells were gated using Live-Dead Blue fixable cell stain method (L23105, Thermo Fisher Scientific).
Flow cytometry acquisition was performed in BD LSR Fortessa. To assess the phenotypic modulation
post treatment with the test arms, single cell suspensions obtained following enzymatic dissociation
were divided in two parts: one part was stained with a CD8 panel and the other with a T-reg panel.
The following antibodies were used for flow cytometry analysis: CD8 cocktail (anti- IFNγ FITC/ anti-
CD69 PE/ anti-CD8 PerCP-CyTM5.5/ anti-CD3 APC, 346048, BD Bioscience), T-reg Cocktail (anti-CD4
FITC/ anti-CD25 PE-Cy7/ anti-CD127 Alexa Fluor 647,560249, BD Bioscience) and anti-Foxp3 PE
(560082, BD Bioscience). All antibodies were used according to manufacturers instructions along with
recommended buffers. Flow cytometry acquisition was performed in BD FACS Canto II (BD Bioscience).
All data were analysed using FlowJo software. For tSNE plots for T0 baseline vs T72 comparison, cells
were first gated on live and singlets, then down-sampled and concatenated prior to visualization with
the built in tSNE module in FlowJo. The settings for computation were as follows: iterations = 1000;
perplexity = 20, learning rate = 200, theta = 0.5.

8 Immunohistochemistry

Tissue sections were deparaffinized followed by rehydration and soaked in Antigen Unmasking Solu-
tion (Vector Labs) for 10 minutes followed by retrieval. Following protein blocking, FFPE tissue sec-
tions were incubated with appropriate primary antibodies (anti-Ki-67, Dako, envision kit, 1:400, and
anti-caspase 3c (rabbit) from CST, 1:600 dilution). Validated positive and negative controls were in-
cluded for every IHC assay. Each IHC result was evaluated by two independent experts and any
differences in observation both experts came to a consensus as described previously (Bressenot et al.,
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2009; Vaira et al., 2010). Antibodies used: anti-human CD8 antibody (rabbit polyclonal, Abcam, cat
Ab4055,1:300 dilution), anti-human-PD-L1 antibody (rabbit monoclonal, Cell Signaling Technology, cat#
13684, clone E1L3N, 1:100 dilution) and anti-human FoxP3 antibody (mouse monoclonal, Abcam, UK,
cat# ab22510, 1:100 dilution). A compatible secondary antibody (100 µl) was incubated for an opti-
mized time period in humidified condition (Signal stain(R) Boost IHC detection reagent HRP Rabbit,
Cell Signaling Technology- 8114s or Signal stain(R) Boost IHC detection reagent HRP Mouse Cell
Signaling Technology- 8125s wherever applicable). Staining was visualized with freshly prepared DAB
+ Chromogen followed by DAB detection system (Vector Lab). Slides were counterstained in Harris
hematoxylin (Merck-6092530121730), dehydrated through graded ethanol solutions, cleared in xylene
and cover slipped. IHC slides were examined using a light microscope (DM2500, Leica, USA) and
quantified by scoring the level of positivity and intensity on a scale of 0-100 by a clinical pathologist. All
slides were examined independently by two experienced histopathologists in a blinded fashion. Repre-
sentative images were captured in 200X magnification using Leicas inbuilt camera (DFC 450 C).

9 Bioinformatics

Published data used for analysis from either NanoString (Chen et al. (Chen et al., 2016)) or RNA
Seq (Riaz et al. (Riaz et al., 2017)) were obtained from the published supplemental data or GEO
accession: GSE91061, respectively. The Riaz et al data set was filtered for samples that did not
have the exact pre/on treatment pair and for nave-immune checkpoint inhibitor treated patient samples,
resulting in a total of 17 samples used for analysis in this study. The genes used to identify a Th1-related
phenotype were compiled from various literature sources and include: CASP1, CCL3, CCL4, CCRI1,
CCR2, CCR5, CD38, CLU, CD55, CSF2, CTLA4, CXCR3, GATA3, IFNG, NKFBIA, IL12RB2, LTA,
PRF1, CCL5, SPP1, STAT1, STAT4, TBX21, TNF. The variance calculation for control and treatment
groups was performed to detect the change in variance of a gene signature between samples after drug
pressure. Data was transformed to log2 Z-scores to obtain mean of 0 and standard deviation of 1. To
calculate the same in Cytokines, Flow Cytometry and IHC datasets a small value of 0.1 was added to
the data before log2 transformation to prevent infinite values after log, keeping the rest of the analysis
the same.

10 Statistical Analysis

1-sample Kolmogorov-Smirnov test was used to assess the data distribution normality. A non-parametric
Mann-Whitney U test was used to determine statistical significance with a two-tailed p-value. Spear-
man rho was calculated to determine the correlation coefficient between paired samples in the data
sets from Figure 1C. GraphPad Prism v 7.0 was used to perform statistical calculations.

11 Mathematical modeling and numerical simulations

The interactions between different immune cell populations, between immune cells and cytokines, and
between immune cells and cancer cells that were included in the systems biology model are well es-
tablished in the literature (see Section 1 for more details).

We briefly describe here the cell populations comprising the model and the main interactions. The
model consists of a population of nave CD4+ helper T-cells (CD4+ Th0), type1 helper T-cells (CD4+
Th1), type 2 helper T-cells (CD4+ Th2), nave CD8+ cytotoxic T-cells (nave CD8+), CD8+ cytotoxic T-
cells (CD8+ Tc), and a cancer cell population. Cell proliferation and natural death are assumed for all
cell populations in the model. Additionally, the CD4+ Th0 cells can differentiate into either CD4+ Th1
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cells or CD4+ Th2 cells. The first differentiation process is mediated by the cytokines IL-4 and IL-6.
IL-12 and IFNγ mediate the second differentiation process. Nave CD8+ cells differentiate into CD8+
Tc cells in the presence of CD4+ Th1 cells, and the proliferation rate of CD8+ Tc cells is increased
by IL-12 expression level. CD8+ Tc cells kill the cancer cells. All activated T-cells (CD4+ Th1, CD4+
Th2, CD8+ Tc) express PD-1 and PD-L1. Cancer cells also express PD-L1, which is mediated by IFNγ
expression. PD-1 and PD-L1 form a protein complex which inhibits all T-cell differentiation processes.
The production of cytokines depends on the T-cell populations and cancer cell population, and there are
several feedback loops which affect the production rates. We refer the reader to Section 1 for specific
details.

To determine the values of the nominal parameters, we used the MATLAB genetic algorithm with
the ode15s solver to integrate the system of coupled ODEs, while simulating the treatment protocol
and forcing the simulated cytokine and T-cell populations to match to the average patient data. While
performing the parameter search using MATLAB genetic algorithm, the parameter ranges were set to
previously reported biologically relevant ranges when possible (see Section 1 for more details). To
simulate the 72-hour treatment protocol on the model system we administered 132 µg/ml of nivolumab
at t=0 h, t=24 h, and t=48 h. Drug washout between subsequent doses of nivolumab was simulated by
setting the free drug level to zero immediately before administering the next dose. Over the treatment
window, the cytokine expression levels were forced to lie between average +/- one standard deviation
of the patient data (with nivolumab treatment) at t=24 h, 48 h, and 72 h, and the T-cell populations were
forced to lie between average +/- one standard deviation at t=72 h (with nivolumab treatment). Using
this approach, it is conceivable that there could be many sets of parameters that fit the average patient
data. The nominal parameter set that we obtained is presented in Table 3 below.

To perform the local sensitivity analysis, each kinetic parameter was varied one-at-a-time by +1%,
and the system was subsequently simulated with the perturbed parameter value. The relative sensitivity,
S, was then calculated using the following equation,

S =
(C̃72 − C72)/C72

(p̃− p)/p
,

where p is the nominal parameter value, p̃ is the perturbed parameter value, C72 is the size of the cancer
cell population after the 72-hour treatment protocol with the nominal parameter set, and C̃72 is the size
of the cancer cell population after the 72-hour treatment protocol with the perturbed parameter set. This
process was repeated for all parameters in the model, as well as for the initial cytokine levels and initial
T-cell populations.

To efficiently sample the parameter space (i.e. to generate the parameter sets and initial conditions)
for the global sensitivity analysis, the Latin hypercube sampling method (McKay et al., 1979) was used.
The ranges of the kinetic parameters, initial cytokine levels, and initial T-cell levels used for the Latin
hypercube sampling are presented in Table 3 below; the ranges for initial cytokine levels and initial
T-cell levels were set by the lowest and highest values expressed in the untreated patient data. In
order to elucidate which patient features were necessary to capture the variability in patient response
to treatment, the global sensitivity analysis was conducted in several steps. First, the kinetic parameters
in the model were held fixed to the nominal values used for the local sensitivity analysis and the initial
T-cell populations were fixed to the average values of the patient data (without treatment). Several
thousand treatment simulations were then performed, where the initial cytokine levels were sampled
within the range presented in Table 3 below. Next, we kept the kinetic parameters held fixed and
varied all the initial cytokine levels and initial T-cell populations simultaneously. Specifically, using the
Latin hypercube sampling method, 50,000 sets of initial cytokine levels and T-cell levels were generated
within the ranges presented in Table 3, then the 72-hour treatment protocol was simulated for each set of
initial conditions. Lastly, we allowed all the kinetic parameters and initial conditions to vary. Particularly,
we generated 50,000 sets of parameters/initial conditions, which resulted in a large variability in the
nature and the strength of the response to treatment.
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