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Molecular basis for PrimPol recruitment
to replication forks by RPA
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DNA damage and secondary structures can stall the replication machinery. Cells possess

numerous tolerance mechanisms to complete genome duplication in the presence of such

impediments. In addition to translesion synthesis (TLS) polymerases, most eukaryotic cells

contain a multifunctional replicative enzyme called primase–polymerase (PrimPol) that is

capable of directly bypassing DNA damage by TLS, as well as repriming replication

downstream of impediments. Here, we report that PrimPol is recruited to reprime through its

interaction with RPA. Using biophysical and crystallographic approaches, we identify that

PrimPol possesses two RPA-binding motifs and ascertained the key residues required for

these interactions. We demonstrate that one of these motifs is critical for PrimPol’s

recruitment to stalled replication forks in vivo. In addition, biochemical analysis reveals that

RPA serves to stimulate the primase activity of PrimPol. Together, these findings provide

significant molecular insights into PrimPol’s mode of recruitment to stalled forks to facilitate

repriming and restart.
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A
n intricate complex of molecular machines, known
collectively as the replisome, duplicate the genome during
DNA replication. At the heart of the replisome are the

replicative polymerases, which synthesize DNA with a high
degree of accuracy and efficiency. Nevertheless, these enzymes are
vulnerable to aberrations in the template strand, including DNA
lesions and secondary structures, which can lead to replication
stalling at these sites. A number of mechanisms exist to
permit the resumption of replication during these events1–3.
One such mechanism is the generation of a nascent primer
downstream of the obstacle, termed repriming4. This allows the
replisome to effectively skip over the impediment and restart
replication.

Although Pol a-primase was thought to be the only eukaryotic
primase, we now know eukaryotes possess a second primase
known as primase–polymerase (PrimPol)5–7. PrimPol is a
member of the archaeo-eukaryotic primase (AEP) superfamily,
whose members fulfil a range of roles in DNA replication,
repair and damage tolerance8, and it possesses both primase and
TLS polymerase activities5,6. Evidence is accumulating that
suggests the primary role of PrimPol in vivo is to reprime DNA
replication downstream of DNA damage lesions and secondary
structures9–12. Despite assisting the replisome through this role,
PrimPol could be potentially deleterious to genomic integrity due
to its low fidelity and penchant for generating frame-shift
mutations13. As a result, the enzyme must be tightly regulated
and only allowed to contribute to DNA synthesis when absolutely
required.

We previously identified the nuclear and mitochondrial (mt)
single-stranded DNA-binding (SSB) proteins, replication protein
A (RPA) and mtSSB, as PrimPol-interacting partners in vivo.
Using biochemical and biophysical approaches, we demonstrated
that PrimPol interacts with the RPA70N subunit of RPA and that
both of its single-stranded DNA-binding proteins binding
partners serve to restrict the contribution of PrimPol to DNA
synthesis during replication, thereby limiting the opportunity for
mutagenesis13. PrimPol was also identified as an RPA-binding
partner by another group7 who suggested that RPA may act to
recruit PrimPol to stalled replication forks in vivo.

In this study, we present an in-depth interrogation of the
interaction between PrimPol and RPA, identifying that PrimPol
possesses two RPA-binding motifs (RBMs, RBM-A and RBM-B)
in its C-terminal domain (CTD). Both of these motifs are able to
bind directly to RPA70N, a primary recruitment domain of RPA
that mediates interactions with a number of DNA damage
response proteins, including p53, ATRIP, RAD9 and MRE11
(ref. 14). Using biophysical and crystallographic approaches,
we elucidated the molecular basis of each of the PrimPol-RBM
interactions and identified the critical residues involved in each
complex. We generated PrimPol RBM mutants in vivo and
analysed the importance of each of these sites for PrimPol’s role
in DNA damage tolerance. We identify that RBM-A is the
primary mediator of PrimPol’s interaction with RPA in vivo,
with RBM-B potentially playing a more secondary role. The
interaction between RBM-A and RPA70N is critical for the
recruitment of PrimPol to chromatin and for stimulating
the enzyme’s role in repriming DNA replication. Notably,
mutations in both RBMs affecting key residues involved in
binding (for example, F522V and I554T) have been identified in
cancer patient cell lines and these mutations are sufficient to
abrogate binding of RPA70N to the affected RBM. Collectively,
these results describe the molecular and cellular basis for
PrimPol’s recruitment by RPA to stalled replication forks and
demonstrates the importance of these interactions for
maintaining PrimPol’s functions in replication fork progression
in vivo.

Results
PrimPol’s CTD interacts with RPA70N. Previously, we
identified that full-length human PrimPol interacts directly with
the RPA70N domain of RPA70 and deletion of the C-terminal
RPA-binding domain (RBD; amino acids 480–560) ablated this
interaction13. To determine if PrimPol’s RBD (480–560) is
sufficient to mediate binding, we performed analytical gel
filtration chromatography (GFC) on human PrimPolRBD

titrated with RPA70N (Supplementary Fig. 1a). With one
equivalent of RPA70N added, a bimodal peak appears with
broadened densities between a position near free PrimPolRBD and
a peak presumably of the complex (blue dot trace). With two
equivalents of RPA70N added, the peak at the PrimPolRBD

position is much weaker, while the complex elutes slightly earlier
and increases in intensity (blue dash trace). With four equivalents
of RPA70N added, the complex peak increases in intensity, the
free PrimPolRBD peak disappears and a peak at the free RPA70N
position becomes visible (blue solid trace). This data indicates a
heterogeneous interaction, most likely from two binding sites of
similar affinity (Supplementary Fig. 1a). The stoichiometry of
the binding is most likely 2:1 RPA70N:PrimPolRBD due to the
complete disappearance of the individual RPA70N peak at this
ratio (Supplementary Fig. 1a). This stoichiometry was further
confirmed by multiangle light scattering (MALS) analysis of the
eluted peak fractions, identifying a heterogenous mix of both 1:1
and 2:1 RPA70N:PrimPolRBD complexes (Supplementary Fig. 1b).
PrimPolRBD had a much lower retention volume (10.39 ml)
than expected for an 8.8 kDa protein, corresponding to a
predicted molecular weight of B42 kDa if the protein was
globular. Nevertheless, circular dichroism (CD) and dynamic
light scattering revealed that PrimPolRBD is monomeric in
solution with a largely non-globular structure (Supplementary
Fig. 1c and d).

NMR spectroscopy was next utilized to cross-validate this
interaction. To this end, 15N-enriched PrimPolRBD was produced
and analysed by two-dimensional (2D) 15N-1H heteronuclear
single-quantum coherence (HSQC) NMR (Supplementary
Fig. 1e). The low dispersion observed in the 1H dimension of
the spectrum is characteristic of a protein with non-globular
structure. Upon addition of unlabelled RPA70N to a twofold
molar excess, there was a significant effect on the spectrum, with
peaks attenuating, broadening or shifting. These observations
confirm that there is an interaction between the two proteins.
We also observed significant peak shifting and disappearance
in the corresponding spectrum of 15N-enriched RPA70N in
the presence of a twofold excess of unlabelled PrimPolRBD

(Supplementary Fig. 1f). The large number of peaks affected and
the variety of effects on the signals suggest the interaction is not
mediated by a single high-affinity site, but rather some form of
heterogeneous binding.

PrimPol RBD contains a conserved RPA-binding motif.
RPA70N contains a prominent surface cleft that binds many
interacting partners, including RAD9, MRE11, ATRIP and p53
(ref. 14). These partners utilize a similar highly negatively charged
motif, which interacts with the exposed basic residues in the
RPA70N cleft14. Examination of the human PrimPol sequence
revealed a divergent acidic motif within its RBD (residues
513–527; Fig. 1a), we termed this motif RBM-A.

To investigate the potential interaction between PrimPol’s
RBM-A and RPA70N, we employed NMR spectroscopy using an
RBM-A peptide (RBM-A510–528). An overlay of 2D 15N-1H
HSQC spectra of 15N-enriched RPA70N acquired in the absence
(black) and presence (red) of a twofold excess of RBM-A510–528

revealed significant chemical shift perturbations (CSPs) induced
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by binding of the peptide (Fig. 1b). The CSPs above a defined
threshold (Dd40.1) were mapped onto the RPA70N structure
and compared with the corresponding CSPs caused by the
binding of other RPA-interacting proteins; ATRIP, Rad9 and
MRE11 (Supplementary Fig. 2a and b)14. Similar to these binding
partners, RBM-A bound within the basic cleft of RPA70N.
Together, these studies establish that RBM-A interacts with RPA
via the basic cleft of RPA70N.

Molecular basis for RBM-A RPA70N interaction. To determine
the molecular basis for RPA70N binding to the RBM-A site of
PrimPol, RPA70NE7R (an RPA70N mutant optimized for
crystallization of complexes15) and the RBM-A peptide residues
(PrimPol514–528) were co-crystallized. Co-crystals contained a 1:1
molar ratio in a P212121 crystal lattice (Fig. 1c,d). The statistics for
data processing are summarized in Table 1. Continuous electron
density covers the entirety of RPA70NE7R and 12 residues

(514–525) of the 15-mer PrimPol514–528 peptide are visible in the
electron density maps. Within this short peptide, residues
aspartate 519 to leucine 523 are a-helical in content. Given that
no a-helices were identified from circular dichroism of the free
RBD, it is likely that the a-helical peptide identified here is
induced upon binding. A striking feature of this a-helix is that the
primary interactions with the basic cleft of RPA70NE7R are via
salt bridges between aspartate 519 of PrimPol and RPA70NE7R

arginines R31 and R43. Hydrogen bonds are also found between
isoleucine 517 of PrimPol and RPA70NE7R arginine 43. In
addition to the ionic interactions, PrimPol phenyalalnine 522 sits
in a hydrophobic pocket made up of RPA70NE7R serine 55,
methionine 57 and valine 93. Isoleucine 517 of PrimPol also has
an aliphatic interaction with the side chain of RPA70NE7R

arginine 91 (Fig. 1c,d). The combination of these electrostatic
and hydrophobic interactions drives the stabilization of this
complex.
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Figure 1 | PrimPol possesses a conserved RBM that binds to the basic cleft of RPA70N. (a) Schematic showing the sequence of PrimPol’s RBM-A

(residues 510–528), located in the C-terminal RBD (residues 480–560). (b) 15N-1H HSQC spectra showing RPA70N in the absence (black) or presence

(red) of twofold molar excess of unlabelled RBM-A peptide. (c) Electrostatic surface model of RPA70N with RBM-A (green) bound in the basic cleft.

Basic and acidic surfaces are coloured blue and red, respectively. (d) Key stabilizing interactions of RBM-A (green) in the RPA70N basic cleft (purple).

RBM-A binds between b sheets in the b barrel of RPA70N. Of particular importance for binding are the electrostatic interactions of D519 with the side

chains of two arginines (R31 and R43) in the RPA70N basic cleft.
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PrimPol RBD contains a second RPA-binding motif.
To determine the molecular basis for binding of PrimPol RBM-A
to RPA70N, in the wider context of the whole RBD,
we co-crystallized a complex of PrimPol480–560 bound to
RPA70NE7R. Again, co-crystals contained a 1:1 molar ratio in an
orthorhombic P212121 crystal lattice (Fig. 2b,c,e). The statistics for
data processing are summarized in Table 1. Similar to the RBM-A
peptide, continuous electron density covers the entirety of
RPA70NE7R and nine amino acids of an a-helical peptide
from PrimPol480–560 are visible in the electron density maps.
Surprisingly, model building and density refinement revealed that
RPA70N bound to PrimPol residues 546–560 (Fig. 2a,b) rather
than RMB-A. An excellent fit to the high-resolution (1.28 Å)
electron density is evident for amino acids 548–556, despite
residues 480–547 not being visible in the area of contiguous
electron density (Fig. 2b). As PrimPol’s RBD lacks significant
secondary structure or globular fold, and residues 480–547 are
not tethered to RPA in the lattice, we expect that these residues
remain flexible in the crystal and this disorder inhibits their
resolution.

The crystal structure revealed that the second RBM, termed
RBM-B, also binds to the basic cleft of RPA70N (Fig. 2c). Like
RBM-A, RBM-B has a low pI (pI¼ 3.25) but this motif contains
two adjacent Asp-Glu motifs instead of the typical di-Asp motif
(Fig. 2a), not previously identified in the RPA70N binding motifs
of other RPA partner proteins. To confirm that the interaction
observed in the crystal is a bona fide RPA70N binding motif, we
examined the binding to RPA70N of a PrimPol542–560 peptide
using 15N-1H HSQC NMR. The spectrum of 15N-enriched
RPA70N in the absence and presence of a twofold molar excess of
the RBM-B peptide reveals significant CSPs induced by the
binding of PrimPol RBM-B (Fig. 2d). As observed for the RBM-A

titration, the RBM-B peptide causes CSPs of residues in
RPA70N’s basic cleft, including characteristic residues S55 and
R31 (Fig. 2d, Supplementary Fig. 4a). Together, these data
demonstrate that PrimPol’s RBD contains a second independent
RPA70N binding motif.

Molecular basis for RBM-B RPA70N interaction. Notably, the
RBM-A sequence and the structure of its complex with RPA70N
is at odds with the well defined ‘canonical’ RBMs (for example,
p53, ATRIP) and likewise, the structure of RBM-B bound to
RPA70N in the crystal of PrimPol RBD confirms these distinct
features (Figs 1d and 2e, Supplementary Fig. 3a). Notably,
these differences arose despite the absence of any significant
effects on the structure of RPA70N. The orientation of the
RBM-B helix is stabilized by a number of electrostatic interactions
(Fig. 2e). The aspartate at position 551 of PrimPol is perhaps the
most important point of contact as it interacts with the two
arginines of RPA70N (R31 and R43) and a threonine (T34) side
chain, as well as the backbone amide N-H of T34. The carbonyl
group of PrimPol’s isoleucine at position 549 likely acts as a
hydrogen bond acceptor for the RPA’s R43. The glutamate at
position 548 forms an electrostatic interaction with an arginine
(R91) on the other side of RPA70N’s b-barrel, acting to secure
the helix of PrimPol in this orientation. These electrostatic
interactions are of paramount importance in the binding of
PrimPol’s RBM-B to RPA70N in vitro (Fig. 2b,e).

Comparison of the RBM-A and RBM-B structures reveals that
the peptides adopt almost identical helical conformations that
occupy the basic cleft in a similar fashion (Supplementary
Fig. 3a–c). Intriguingly, the interactions between PrimPol’s
RBM-A/B and RPA70N are significantly different from the
interactions reported for either a modified ATRIP stapled peptide
or a p53 peptide bound to RPA70N (refs 16,17). A superposition
of the modified ATRIP peptide with RBMs shows that the two
helices bind in a similar region to RPA70N however, they are in
opposite orientations (Supplementary Fig. 3a–f). In addition, the
main interaction of the modified ATRIP peptide is of its modified
3,4-dichlorophenyl amino acid into a hydrophobic pocket on
RPA70N, and in p53 there is a phenylalanine residue that extends
into this pocket. This pocket is also the region where a RPA70N
binding inhibitor (VUO79104) bound to a co-crystal structure15.
PrimPol’s RBM-A and RBM-B have hydrophobic residues
phenylalanine (F522) and isoleucine (I554) that occupy the
hydrophobic pocket on RPA70N (Figs 1d and 2e). F522 forms
hydrophobic non-bonding contacts with a serine (S55)
methionine (M57) and a valine (V93) of RPA70N in this
pocket. Whereas, I554 forms hydrophobic non-bonding contacts
with the methionine and valine only. We propose that the
RPA70N binding modes observed for PrimPol may be more
‘physiological’ as the bound motifs are not modified in any way,
unlike p53 and ATRIP where co-crystals could only be obtained
by altering the peptides16.

Exchangeable binding of PrimPol RBMs to RPA70N. As both
RBM-A and RBM-B interact in the basic cleft, we next analysed
whether these sites bind coordinately or competitively. To this
end, we constructed RBM-A (D514R/D518R/D519R) and B
(480–546 truncation) knockout (KO) mutants in the PrimPolRBD

construct. Both NMR and GFC were used to analyse the binding
of these mutants to RPA70N. Similar to results observed with
PrimPolRBD, PrimPolA-KO and RPA70N eluted together as a well
defined multimeric complex from GFC (Fig. 3a). In addition,
HSQC titrations of twofold molar addition of PrimPolA-KO into
15N-enriched RPA70N produced clear evidence of binding
(Fig. 3b). Likewise, PrimPolB-KO was found to bind RPA70N in

Table 1 | Data collection and refinement statistics
(molecular replacement).

RPA70NE7R/
PrimPol514–528

RPA70NE7R/
PrimPol480–560

Data collection
Space group P212121 P212121

Cell dimensions
a, b, c (Å) 37.86, 53.09, 54.63 38.05, 53.49, 53.9
a, b, g (�) 90.00, 90.00, 90.00 90.00, 90.00, 90.00

Resolution (Å) 31.12 (2.00)* 16.25 (1.28)*
Rsym or Rmerge 0.217 (0.751) 0.044 (0.655)
I/sI 10.9 (3.0) 26.9 (2.7)
Completeness (%) 99.6 (98.1) 99.8 (98.2)
Redundancy 12.8 (10.4) 12.1 (7.4)

Refinement
Resolution (Å) 31.12 (2.00) 16.25 (1.28)
No. of reflections 7,825 28,966
Rwork/Rfree 0.1873/0.2286 0.1537/0.1785
No. of atoms 1,148 1,210

Protein 1,074 1,070
Ligand/ion
Water 74 140

B-factors
Protein 25.25 19.73
Ligand/ion
Water 31.23 32.95

R.m.s.d.
Bond lengths (Å) 0.004 0.007
Bond angles (�) 0.785 0.912

r.m.s.d., root mean squared deviation.
Data from one crystal for each structure.
*Values in parentheses are for highest-resolution shell.
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both GFC and NMR analyses (Fig. 3c,d). Notably, in each GFC
analysis a small fraction of unbound RPA70N was observed,
unlike GFC using the wild-type RBD. Similarly, NMR analysis
produced results mimicking those of the isolated motifs, sug-
gesting that both mutants retain binding activity characteristic of
the unaltered RBM-A and B. By overlaying the HSQC spectra of
RPA70N in the presence of WT, or mutant RBM-A/B, RBD,
we identified that, while most of the signals from the complex
with mutant RBM-A/B RBD are identical to the complex with
WT RBD (Supplementary Fig. 4a), some peaks from the RBM-A/
B-bound spectra do not overlap. These signals correspond to
residues that attenuate or disappear in the complex with WT
RBD. Analysis of this phenomenon suggests that RPA70N
binds to both sites in solution and this process is exchangeable.
This is consistent with ITC data showing that PrimPolA-KO and
PrimPolB-KO bind to RPA70N with statistically identical affinities

of 7.8±0.6 mM and 6.7±1.5 mM, respectively (Supplementary
Fig. 4a and b).

In contrast, there was no observed binding in the GFC or NMR
when the ‘double’ mutant (PrimPolA/B-KO) was incubated with
RPA70N (Fig. 3e,f). In addition, no heat of binding was observed
by ITC (Supplementary Fig. 4c). Therefore, while retaining either
one of these domains is sufficient to maintain RPA70N binding
in vitro, knocking out both RBM-A and RBM-B completely
abrogates binding. This indicates that there are no additional
RPA70N binding sites beyond RBM-A and RBM-B.

To obtain less perturbing mutants for experiments in vivo,
we analysed ‘finer’ point mutants of both RBM-A and B, based
on the crystallographic data. We found that the PrimPolA-RA

(D519R/F522A) and PrimPolB-RA (D551R/I554A) mutants
retained the ability to bind RPA70N in GFC. However, binding
was lost when all four residues were mutated (Supplementary
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Fig. 5a). We additionally analysed these mutations in the context
of the full-length protein and RBD (480–560) using the yeast
two-hybrid assay. Here, PrimPolA-RA and PrimPolB-RA exhibited
decreased binding to RPA70N, with an additional decrease when
both sites were mutated. Near identical results were observed
when analysing both the full-length enzyme and RBD, confirming
that both RBM-A and RBM-B are able to bind RPA70N when
outside their innate vertebrate cell environment (Supplementary
Fig. 5b). These results, therefore, confirmed that each RBM is
accessible for RPA70N binding in the context of the full-length
protein. Furthermore, they provided minimally perturbing

PrimPol variants to probe the functional significance of the
RPA interaction, and the contributions of the two RBMs, in vivo.

RBM-A mediates the PrimPol-RPA interaction in vivo. To
ascertain the importance of each RBM in mediating PrimPol’s
interaction with RPA in vivo, we introduced doxycycline-
inducible N-terminal FLAG-tagged PrimPol variants lacking
either RBM (A or B), or both, into HEK-293 derivative cells
(Flp-In T-Rex-293) (Fig. 4a,b) and performed co-immunopreci-
pitation experiments. We found that RPA co-precipitates with
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Figure 3 | RPA70N dynamically interacts with both RBM-A and RBM-B. (a) Mutation of RBM-A does not abolish binding of PrimPol’s RBD to RPA70N.

Chromatographs showing the retention volumes of RBDA-KO (purple), RPA70N (black) and RBDA-KO with RPA70N in a 1:1 ratio (green). (b) 15N-1H HSQC

spectra showing RPA70N alone (black), in the presence of twofold molar excess of either RBDA-KO (green) or RBM-B peptide (residues 542–560) (red).

The perturbations observed for RBDA-KO are similar to those induced by the RBM-B peptide. (c) Truncation of RBM-B does not prevent binding of PrimPol’s

RBD to RPA70N. Chromatographs showing the retention volumes of RBDB-KO (purple), RPA70N (black) and RBDB-KO with RPA70N in a 1:1 ratio (blue).

(d) 15N-1H HSQC spectra showing RPA70N alone (black) or in the presence of twofold molar excess of RBDB-KO (blue) or RBM-A peptide (residues

510–528) (red). The perturbations observed for RBDB-KO are similar to those induced by the RBM-A peptide. (e) Mutation of both RBM-A and RBM-B

abolishes the binding of PrimPol’s RBD to RPA70N. Chromatographs showing the retention volumes of RBDA/B-KO (purple), RPA70N (black) and RBDA/B-KO

with RPA70N in a 1:1 ratio (red). (f) 15N-1H HSQC spectra showing RPA70N alone (black) or in the presence of twofold molar excess of RBDA/B-KO (red).

The near identity of the two spectra indicates there is no interaction.
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FLAG-PrimPol in vivo when both RBMs are unmodified (Fig. 4c),
confirming that FLAG-PrimPol interacts with RPA in a damage-
independent manner, as observed previously7,13. In addition,
FLAG-PrimPolRBD (the CTD only) also co-precipitated with
RPA, supporting our in vitro data and previous reports that
PrimPol interacts with RPA via its CTD (Supplementary
Fig. 5c)7,13. Interestingly, we observed that mutation of RBM-A
(D519R/F522A) alone abolishes this interaction, despite the
protein possessing an intact RBM-B (Fig. 4d). Furthermore, when
RBM-B is mutated (D551R/I554A), but RBM-A was intact,
a reduced, but significant, amount of RPA still co-precipitated
with FLAG-PrimPol (Fig. 4e). Unsurprisingly, when both RBMs
were mutated, the interaction with RPA was again lost (Fig. 4f).
Together, these findings identify that RBM-A is the primary
mediator of PrimPol’s interaction with RPA in vivo and residues
D519 and F522 as essential for forming the complex. In contrast,
RBM-B appears to play a more secondary role in RPA-binding
in vivo.

PrimPol requires an RPA interaction to function in vivo.
PrimPol has previously been shown to promote DNA replication
fork restart following ultraviolet damage by repriming5,9,10. To
define the importance of each RBM on PrimPol’s role during this
process, we complemented PrimPol� /� DT40 cells with RBM-A
(D519R/F522A) and RBM-B (D551R/I554A) mutants (Fig. 5a)

and performed DNA fibre analysis on these cells in the presence
of ultraviolet damage. We labelled replicating cells with the
nucleotide analogue chlorodeoxyuridine (CldU) for 20 min,
cells were then ultraviolet-C irradiated (20 J m� 2) and labelled
with a second nucleotide analogue, iododeoxyuridine (IdU),
for an additional 20 min (Fig. 5b). Following detection by
immunofluorescence, the degree of fork stalling after ultraviolet
damage in the PrimPol RBM-mutant cells was determined by
analysing the CldU:IdU tract length ratios. An increase in this
ratio indicates a shorter IdU tract and therefore an increase in the
amount of fork stalling or slowing following ultraviolet-C
irradiation.

Cells expressing RBM-A-mutant PrimPol presented a signifi-
cant increase in the mean CldU:IdU tract length ratio when
compared to cells complemented with wild-type PrimPol
(Fig. 5c,d). In addition, these cells displayed more variation in
CldU:IdU ratios with an increase in the percentage of forks with
higher ratios (Fig. 5c,d). This indicates that there was an increase
in fork stalling events, or a decreased ability to restart stalled
forks, in these cells. The observed effect was not as severe as that
seen in PrimPol� /� cells, however given that RBM-A-mutant
PrimPol is catalytically identical to wild-type PrimPol, and over-
expressed in these cells, this was not surprising. This result
suggests that mutation of RBM-A affects PrimPol’s recruitment to
stalled replication forks and therefore causes an impairment in
the ability to restart these forks. Given the level of over-expression
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of RBM-A-mutant PrimPol in these cells, we expect some
PrimPol would still localize to where it is required, resulting in a
delay rather than a total block of fork restart.

In contrast, RBM-B mutant complemented PrimPol� /� cells
did not display a significant increase in the mean CldU:IdU ratio
when compared to cells expressing wild-type PrimPol (Fig. 5e,f).
There was a slight increase in the variation of CldU:IdU ratios,
however the majority of forks conformed to wild-type ratios
(Fig. 5e). Again, given that PrimPol is over-expressed in these
cells, a more significant effect may be observed upon mutation
of the endogenous protein, with over-expression potentially
masking subtle impacts on PrimPol recruitment. Nevertheless,
this suggests that RBM-B is not essential for PrimPol’s role in
replication restart in vivo. Together, these results show that
PrimPol’s interaction with RPA, primarily mediated by RBM-A,

is important for the enzyme’s role in repriming and restarting
stalled replication forks following DNA damage.

RBM-A is essential for recruitment of PrimPol to chromatin.
We previously reported that PrimPol is recruited to chromatin
in response to ultraviolet damage5. Given the effect of
mutating PrimPol’s RBM-A on the enzyme’s role in replication
restart, we aimed to confirm if this was due to a defect in
recruitment. To this end, we prepared detergent-insoluble
chromatin-rich fractions from HEK-293 cells, expressing
RBM-mutant PrimPol constructs, 3 h following mock or
ultraviolet-C irradiation (30 J m� 2). As previously observed,
wild-type PrimPol partitioned to the detergent-insoluble
chromatin-enriched fraction following ultraviolet irradiation
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(Fig. 6a, Supplementary Fig. 6a and b). A similar increase in the
level of RPA enrichment was observed in the insoluble fraction,
confirming that replication forks were stalled by the damage and
an increase in RPA-binding had occurred (Fig. 6a). In contrast,
we found that mutation of RBM-A, either alone or in
combination with RBM-B, abolished the localization of PrimPol
to chromatin, both in the absence or presence of ultraviolet
damage. However, mutation of RBM-B did not affect the level of
enrichment of PrimPol following ultraviolet irradiation (Fig. 6a).
This suggests that PrimPol’s recruitment to chromatin is
dependent upon its RBM-A, which is the primary mediator of
the interaction of the enzyme with RPA in vivo.

To confirm these findings and examine the role played by the
RBD of PrimPol in the recruitment of the protein to replicating
chromatin, we employed a Xenopus synchronous cell-free extract
system. We previously showed that recombinant human PrimPol
accumulates on chromatin when the elongation phase of DNA
replication is inhibited with aphidicolin5. Similarly the presence
of PrimPol’s RBD (480–560) is sufficient to allow recruitment of a
GST fusion protein to chromatin in aphidicolin-treated extracts
(Fig. 6b). RBD recruitment is severely reduced by mutation of
the D519 and F522 residues within RBM-A. Mutation of the
corresponding residues in RBM-B (D551, I554) also results in a
modest reduction in the level of protein recruited to the
chromatin, although this reduction is much less severe than
that observed with the RBM-A mutations. Consistent with these

observations, a construct carrying mutations in both RBM-A and
RBM-B is not detectable on the chromatin. These results
demonstrate that RBM-A plays the major role in recruiting
PrimPol to chromatin, with a relatively minor contribution from
RBM-B.

Intriguingly, some of the key residues involved in binding of
both RBM-A and RBM-B to RPA70N have been found to be
mutated (F522V and I554T) in cancer patient cell lines
(see COSMIC, CBioportal, CIGC repositories). We therefore
generated these cancer-related PrimPol RBD mutants (F522V
and I554T) in RBM-B-KO and RBM-A-KO backgrounds,
respectively and analysed their binding to RPA70N using GFC
(Supplementary Fig. 6c). In each case, we identify that these
mutations significantly abrogate binding of the affected RBM to
RPA70N, potentially suggesting that both sites play important
roles in maintaining PrimPol’s appropriate functions in vivo.

RPA stimulates the primase activity of PrimPol. In light of the
role for RPA in recruiting PrimPol to stalled replication forks
in vivo, we next assessed the impact of RPA on the primase
activity of the enzyme in vitro. Using an indirect fluorescence-
based primase assay, we previously identified that saturating
concentrations of RPA are able to block primer synthesis by
PrimPol on 60-mer poly-dT linear templates13. To better
determine the effect of RPA on PrimPol’s primase activity,
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we performed direct fluorescence-based primase assays using
single-stranded M13 templates in the presence of increasing
concentrations of RPA. Here, we observe that sub-saturating
concentrations of RPA act to significantly increase the amount of
primer synthesis by PrimPol, when compared to reactions
containing the enzyme only (Fig. 6c,d). Above concentrations
calculated to fully coat the M13 template (B1.6 mM), the level of
stimulation by RPA decreases and at higher concentrations
severely inhibits primer synthesis (Fig. 6c,d). This demonstrates
that lower concentrations of RPA significantly stimulate the
primase activity of PrimPol, presumably by recruiting the enzyme
and mediating binding to the DNA template. In contrast, high
concentrations of RPA saturate the DNA template and block
access of PrimPol, thus inhibiting primase activity (Fig. 6e). These
results suggest that PrimPol requires a ssDNA interface adjacent
to the bound RPA to be recruited to the template strand to
facilitate primer synthesis.

Discussion
Despite possessing the ability to perform TLS, recent studies
suggest that PrimPol’s primary role in replication restart is to
reprime DNA synthesis downstream of lesions and secondary
structures9–12. The data presented here support a model whereby
PrimPol is recruited to fulfil this repriming role through its
interaction with RPA (Fig. 7). This interaction is primarily
mediated by residues D519 and F522 of PrimPol’s RBM-A, which
bind to the basic cleft of RPA70N, with RBM-B playing a
supporting role in RPA-binding in vivo. In this regard, an
intriguing possibility, consistent with our findings, is that RBM-B
binds a second RPA molecule following initial recruitment
through RBM-A in vivo, potentially contributing to the
stabilization of PrimPol on the template DNA to further
promote repriming. In addition to ATRIP, Mre11 and p53, we
identified divergent RBM-like acidic motifs in a wide range of
other DNA repair, replication and checkpoint proteins, many of
which are known to interact with known to interact with RPA, for
example, Werner helicase (Supplementary Fig. 7)18.

Notably, it has been shown through crystallographic and
biochemical analyses that RPA binds to ssDNA with a defined
polarity19–22. Initial binding is mediated by the tandem
DNA-binding domain A (DBD-A) and DBD-B OB folds of
RPA70, forming an 8-nt binding complex. A 20–30-nt binding
mode is subsequently generated by the binding of RPA’s DBD-C
and DBD-D23. This occurs in a strict 50–30 direction on the
template strand, which likely positions the PrimPol-recruiting
RPA70N domain 50 relative to the other OB folds (Fig. 7a).
This polarity suggests that PrimPol may bind downstream of
RPA following recruitment through RPA70N on the leading
strand. In a previous scenario13, we speculated that PrimPol
may bind upstream of RPA during TLS, due to the requirement
of the ssDNA-binding ZnF domain to contact the template
downstream. However, during primer synthesis the ZnF domain
can access ssDNA both upstream and downstream of the AEP
domain. Recent studies highlighting the importance of PrimPol’s
primase activity in vivo9–12, coupled with the recruitment of the
enzyme via RPA70N shown here, argue that PrimPol more likely
binds downstream of RPA, with the ZnF bound to ssDNA
upstream of the AEP domain, during primer synthesis (Fig. 7b).

PrimPol displays low processivity, only extending primers
1–5 nt in a single-binding event10. This processivity is in part
regulated by the ZnF domain, which serves as a ‘counting
mechanism’ to limit primer extension by the AEP domain10, as
has been observed with other primases24. The ZnF and AEP
domains therefore likely form a hinge-like structure with the ZnF
domain limiting extension by PrimPol following initial primer

synthesis10,24. Given that PrimPol is recruited by RPA in vivo,
it is likely that the enzyme initially binds the ssDNA downstream
of RPA in a ‘closed hinge’ mode (Fig. 7b). Primer synthesis and
polymerization then proceed until PrimPol reaches its maximum
open conformation, dictated by the ZnF domain and interaction
with RPA, which thereby prohibit further extension (Fig. 7c,d).
The newly synthesized primer can then be utilized by the
replicative polymerase for continued extension (Fig. 7e).

We previously reported that, in contrast to the effect on
replicative polymerases, RPA acts to inhibit the polymerase
activity of PrimPol13. This phenomenon may be explained by
the polarity of RPA when bound to ssDNA, in addition to the
protein’s interaction with PrimPol. It has been suggested that
replicative polymerases are able to readily displace RPA from
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DNA because they encounter the protein from the 30 side25. As
the replicative polymerase synthesizes DNA, moving 30-50 on the
template strand, it would first encounter the relatively weakly
bound RPA32 DBD-D and RPA70 DBD-C, before RPA70
DBD-B and A. By approaching RPA in this orientation and
making specific protein–protein interactions, the replicative
polymerase may shift the equilibrium from the stronger
20–30-nt RPA-binding mode to the weaker 8-nt mode23, and
in turn, the more weakly bound RPA can be displaced by further
DNA synthesis. In contrast, recruitment of PrimPol to the 50 side
of RPA would result in the enzyme moving away from the
protein, making it unable to displace RPA in the same manner as
canonical polymerases.

In addition, we show that RPA stimulates the primase activity
of PrimPol at sub-saturating concentrations. However, when the
template is fully coated with RPA, the primase activity of PrimPol
is inhibited. This suggests that PrimPol requires a ssDNA
interface adjacent to RPA to be efficiently recruited for priming.
Given that PrimPol likely binds downstream of RPA on the
leading strand during replication, this ssDNA interface could
be formed following uncoupling of leading and lagging strand
replication upon stalling at a DNA lesion or secondary
structure26. Continued unwinding of duplex DNA by mini-
chromosome maintenance protein (MCM) may generate the
leading strand ssDNA interface necessary for PrimPol to reprime,
following recruitment by RPA. It was recently reported that the
mitochondrial replicative helicase Twinkle is able to stimulate
DNA synthesis by PrimPol27, potentially suggesting that
replicative helicases can facilitate synthesis by the enzyme
in vivo. However, the exact interplay between RPA, PrimPol
and other PrimPol-interacting partners, such as PolDIP2 requires
further examination28. The necessity of a ssDNA interface for
PrimPol activity, in conjunction with the enzyme’s inability to
displace RPA, may act as an important regulatory mechanism to
prevent unscheduled primer synthesis during replication.
Intriguingly, it has been hypothesized that recruitment of DNA
damage response proteins to RPA70N may be regulated by
phosphorylation of RPA32C (ref. 18). In support of this, it has
been shown that binding of Mre11 and Rad9 to RPA is increased
upon RPA32C phosphorylation29,30, although it remains to be
determined if this is also the case for PrimPol.

Together, the findings presented here describe the molecular
basis of PrimPol’s interaction with RPA and provides insights into
its biological roles. We found that the PrimPol-RPA interaction,
mediated primarily by RBM-A, is essential for PrimPol recruit-
ment and its function as a repriming enzyme during DNA
replication. Notably, mutations of critical residues in both RBMs
have been identified in the genomes of some cancer patient cell
lines and we have shown that these mutations are sufficient to
abrogate the functionality of their respective RBMs. Further studies
are underway to more precisely define how PrimPol is recruited to
stalled replication forks and regulated by interactions with other
fork proteins to better understand the critical roles played by
PrimPol in the restart of stalled replication forks.

Methods
Expression of human PrimPol and RPA truncation variants. Full-length
PrimPol was expressed and purified as previously described5. Briefly, PrimPol
amino acids 480–560 (PrimPol480–560) was cloned into pET28a by polymerase
chain reaction using wild-type PrimPol as a template via standard methods
(primers 1 and 2, Supplementary Table 1). PrimPol480–560 was expressed in
BL21(pLysS) cells overnight at 25 �C and purified using Ni Sepharose (Qiagen),
followed by Q Sepharose (GE Healthcare) and gel filtration using a Superdex 75
10/300 GL column (GE Healthcare) according to the manufacturer’s instructions.
PrimPol residues 480–546 (PrimPol480–546), PrimPol D514R, D518R,
D519R (PrimPolRBM-A-KO), PrimPol D514R, D518R, D519R, D551R, I554A, I555A
(PrimPolRBM-A-KO/RBM-B-KO), PrimPol F522V on an RBM-B-KO background and
PrimPol I554T on an RBM-A-KO background were cloned by site-directed

mutagenesis (primers 3–12, Supplementary Table 1). PrimPol 480–546 with the
D514R, D518R, D519R mutations (PrimPol480–546/RBM-A-KO) was also cloned, using
the 480–546 construct DNA as a template. All these proteins were expressed and
purified as described for PrimPol480–560.

The RPA trimeric complex was expressed and purified as previously
described13. Briefly, RPA was expressed in BL21 (DE3) E. Coli cells harbouring
p11d-tRPA for 12 h at 15 �C. Following harvesting, cells were lysed in buffer
containing 500 mM NaCl, 100 mM spermidine, 4 mg ml� 1 lysozyme and 1 mM
phenylmethylsulfonyl fluoride and clarified by centrifugation. Protein purification
followed a 5-step procedure using Affi-Gel Blue (Bio-Rad), HiTrap heparin HP,
HiTrap SP FF and MonoQ HR 5/5 columns (GE Healthcare), before size-exclusion
chromatography (GE Healthcare). Following purification, RPA was snap-frozen in
liquid nitrogen and stored at � 80 �C in buffer containing 30 mM Tris–HCl
(pH 7.5), 300 mM NaCl, 2 mM TCEP and 10% (v/v) glycerol.

RPA70N (RPA701–120) was cloned as described previously14,31. Briefly,
wild-type and mutant RPA70N pET15b constructs were transformed into BL21
(DE3) E. coli cells. Cultures were grown at 37 �C in Terrific Broth (RPI)
supplemented with 4 g l� 1 glycerol and maintained at pH 7.2 using a BioFlo 3,000
bioreactor (New Brunswick Scientific). Isotopically enriched protein samples for
NMR were grown and expressed in M9 medium containing 0.5 g l� 1 15N-NH4Cl
(ref. 15). Protein expression was induced overnight at 18 �C by addition of 1 mM
IPTG. Cells were lysed by sonication in a buffer containing 20 mM Tris-Cl
(pH 7.5), 300 mM NaCl and 10 mM imidazole, then loaded onto a HisTrap HP
column (GE) using a Bio-Rad NGC FPLC. A gradient of buffer with 300 mM
imidazole was used to elute the protein. After dialysis to remove the imidazole, the
polyhistidine tag was cleaved with thrombin for 1 h and the sample repassed over
the Histrap column. It was then polished using size-exclusion chromatography
with a Superdex 75 column in a buffer containing 20 mM HEPES (pH 7.2), 80 mM
NaCl, 5 mM dithiothreitol (DTT). Final protein concentration was measured using
a nanophotometer.

The RPA70NE7R variant that readily forms crystals with basic-site ligands was
utilized in the experiments shown here15; the properties of this protein variant are
not affected in any way apart from in its crystal lattice contacts. Protein
concentrations were determined based on absorbance at 280 nm corrected with the
protein-specific extinction coefficient. Extinction coefficient values for each of the
recombinant proteins were calculated using ProtParam tool (ExPASy).

RBM-A (510–528) and RBM-B (546–560) peptides for NMR were synthesized
(GenScript), purified with a Waters Delta 600 HPLC using a Proto 300 C4 column
(Higgins Analytical, Inc.) and confirmed using mass spectrometry. The
PrimPol514–528 peptide used for co-crystallization experiments was synthesized
(Genscript) and used as supplied

Nuclear magnetic resonance (NMR) methods. 15N-1H HSQC experiments
were performed at 25 �C on a Bruker Avance III 800 or 900 MHz NMR
spectrometer with a cryogenically cooled probe. Spectra were acquired for 100 mM
samples of 15N-enriched RPA70N or 15N-enriched PrimPol480–560 alone and in
the presence of 200mM unlabelled binding partner. All samples were equilibrated
in a buffer containing 20 mM HEPES (pH 7.5), 80 mM NaCl, 2 mM DTT and 5%
deuterium oxide.

Analytical size-exclusion chromatography. Protein interactions were analysed
by size-exclusion chromatography on a Superdex S75 10/300 GL gel filtration
column (GE Healthcare). The column was calibrated using albumin (67,000 Da),
ovalbumin (43,000 Da), chymotrypsinogen A (25,000 Da), ribonuclease A
(13,700 Da) and aprotinin (6,512 Da). The protein was loaded at 0.5 ml min� 1.
Retention volume of the proteins were plotted against the molecular weight
of each protein to reliably predict protein molecular weights. The column was
pre-equilibrated in a buffer containing 50 mM Tris–HCl (pH 7.5), 100 mM NaCl
and 2 mM TCEP that had been sterile-filtered using a 0.2 mm pore size vacuum
filtration system (Nalgene). In total, 0.5 ml of protein was loaded at a concentration
of 35mM. Protein interactions were determined by a shift in the chromatograph
peaks relative to individual protein peaks.

SEC multiangle light scattering. SEC-MALS was performed on an AKTA Purifier
FPLC system (GE) connected to an Agilent Technologies 1200 Series refractive
index Detector and a Wyatt Technologies Dawn Helios 8þ MALS unit.
A Superdex 75 increase 10/300 GL (24 ml) column was equilibrated in running
buffer consisting of 20 mM HEPES (pH 7.1), 80 mM NaCl, 0.5 mM TCEP. The flow
was maintained at a consistent 0.5 ml min� 1 and sample injections of 100ml from
a static loop were initiated at the 0 ml point of each run. Ultraviolet, refractive
index, light scattering (LS) and Quasi-Elastic LS values were recorded using
ASTRA 6.1 (Wyatt) software. Data were collected using samples of RBD at 185 mM
with RPA70N E7R added at 0, 1, 2 and 4� molar ratios. Estimated molecular
weights for RBD and its saturated complexes were calculated using the Zimm
algorithm surrounding the peak maximum.

Crystallization and X-ray structure determination. Crystals of the RPA70N-
PrimPol complex were grown at 293 K by vapour diffusion as sitting drops.
The protein complex was screened at a 2.5:1 ratio of 1.75 mM PrimPol514–528
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peptide: 0.70 mM of RPA70NE7R in drops containing 0.5 ml of protein complex
mixed with 0.5 ml of crystallization buffer (0.2 M ammonium acetate 0.1 M sodium
acetate 4.5 20% w/v PEG 3350). Before data collection, crystals were cryoprotected
by soaking in mother liquor containing 20% ethylene glycol. X-ray diffraction data
of 1.542 Å was collected in-house at 100 K using a Rigaku MicroMax 007-HF. The
diffraction data were processed with SCALA32 with additional processing by
programs from the CCP4 suite33.

Crystals of the RPA70N-PrimPol complex were grown at 293 K by vapour
diffusion as sitting drops. The protein complex was screened at a 1:1 ratio with
700mM of each of RPA70NE7R and PrimPol480–560; 0.5 ml of protein complex was
mixed with 0.5 ml of crystallization buffer (0.2 M imidazole malate (pH 6.0), 30%
(w/v) PEG 4000). Before data collection, crystals were soaked in mother liquor
containing 20% ethylene glycol. X-ray diffraction data of 0.914 Å were collected at
100 K using a synchrotron source at station I03 Diamond Light Source, Didcot,
UK. The diffraction data were processed with xia2 (ref. 34) with additional
processing by programs from the CCP4 suite33. The statistics for data processing
are summarized in Table 1. For both models, initial phases were obtained by
molecular replacement with PHASER35 (using RPA70NE7R (4IPC)15 as a search
model). Iterative cycles of model building and refinement were performed using
Coot36 and Phenix37. A final refined model at 2.0 Å resolution, with an Rfactor of
18.73% and Rfree of 22.86% was obtained for the RPA70N-PrimPol514–528 peptide
complex. The Ramachandran statistics for this complex place 97.9% of residues in
the favoured region and 2.1% in the allowed region. For the RPA70N-PrimPol
complex a refined model at 1.28 Å resolution, with an Rfactor of 15.37% and Rfree of
17.85% was obtained with Ramachandran statistics of 98.6% of residues in the
favoured region and 1.4% in the allowed region. Structural images were prepared
with CCP4mg (ref. 38). Stereo images for portions of the electron density of
RPA70N-PrimPol514–528 and RPA70N-PrimPol480–560 are shown in
Supplementary Fig. 8. The structures of the RPA70N-PrimPol514–528 peptide
complex and the RPA70N-PrimPol480–560 complex are deposited in the Protein
Data Bank under accession codes 5N85 and 5N8A, respectively.

Circular dichroism. PrimPol RBD samples for CD were equilibrated in 20 mM
HEPES (pH 7.5), 80 mM NaCl and 2 mM DTT, and then diluted 1:10 with
ultrapure water to a final concentration of 20 mM. A JASCO J-810 spectro-
photometer equilibrated at 25 �C was used to collect five scans over the spectral
width 190–250 nm. Molar ellipticity was calculated based on the final protein
concentration of 20 mM.

Dynamic light scattering. Light scattering experiments were performed using a
Wyatt Technology DynaPro NanoStar instrument. PrimPol RBD was equilibrated
in 20 mM HEPES (pH 7.5), 80 mM NaCl and 2 mM DTT at a concentration of
200mM. A 5 ml sample was then equilibrated in a COC cuvette at 25 �C for 5 min
before acquisition. Ten data points were acquired and fitted using the coils protein
shape model using Wyatt Dynamics software. The resulting regularization graph
was plotted as a function of %mass and Mw-R calculated based on observed sample
radius.

Isothermal titration calorimetry. Isothermograms were recorded using a
MicroCal VP-ITC instrument. In total, 10 ml injections of 400 mM PrimPol RBD
(either WT or variants) were added to a 1.4 ml cell with RPA70N at 20 mM.
The system was equilibrated for 5 min between injections. Both proteins were
dialyzed in the same pool of 20 mM HEPES (pH 7.5), 80 mM NaCl and 3 mM
b-mercaptoethanol buffer. Dissociation constants were calculated with MicroCal
Origin software using a single-site binding model.

Fluorescence-based M13 primase assay. Full-length PrimPol (400 nM) was
incubated in 20 ml reactions containing 10 mM Bis–Tris-Propane-HCl (pH 7.0),
10 mM MgCl2, 1 mM DTT, 250 mM dNTPs, 2.5 mM FAM dTNPs (dATP, dCTP,
dUTP) and 20 ngml� 1 single-stranded M13 template, at 37 �C for 15 min.
Individual reactions were supplemented with increasing concentrations of RPA
(0, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4 and 8 mM) before the addition of PrimPol.
Following primer synthesis, remaining free FAM dNTPs were removed using
an Oligo Clean and Concentrator kit (Zymo Research) according to the
manufacturer’s instructions. Eluted primers were supplemented with loading buffer
(95% formamide with 0.25% bromophenol blue and xylene cyanol dyes; total
volume 20ml). Samples were boiled and resolved on a 15% polyacrylamide/7 M
urea gel for 90 min. Products were visualized on an FLA-5100 imager.

Maintenance and generation of HEK-293 Flp-In T-Rex cells. HEK-293 Flp-In
T-REx (Invitrogen) cells were cultured in DMEM containing 10% fetal calf serum
(FCS), 1% L-glutamine and 1% PenStrep. For the generation of stable inducible
N-terminal FLAG-tagged PrimPol HEK-293 Flp-In T-REx, cells were grown in
medium containing 15 mg ml� 1 Blasticidin (Invitrogen) and 100mg ml� 1 Zeocin
before transfection. Cells were transfected with pOG44 plasmid and pcDNA5/FRT/
TO plasmid (1:9 ratio) encoding FLAG-PrimPol (WT, D519R/F522A, D551R/
I554A, D519R/F522A/D551R/I554A and PrimPol480� 560) using Lipofectamine
2000 following the manufacturer’s instructions. pcDNA5/FRT/TO constructs

encoding N-terminal FLAG-PrimPol and FLAG-PrimPol480� 560 were generated
by standard PCR and cloning procedures (primers 13, 14 and 2, Supplementary
Table 1). RBM-mutant N-FLAG-PrimPol constructs were produced by
site-directed mutagenesis (primers 15–18, Supplementary Table 1). After 48 h of
transfection, selective medium containing 15 mg ml� 1 Blasticidin and 100 mg ml� 1

Hygromycin (Invitrogen) was added. Selective medium was replaced every 2–3
days, until resistant clones appeared. Clones were then pooled, expanded and
stocks made.

Co-immunoprecipitation in FLAG-PrimPol HEK-293 cells. HEK-293 Flp-In
T-REx cells engineered for inducible expression of FLAG-PrimPol (WT,
D519R/F522A, D551R/I554A, D519R/F522A/D551R/I554A and PrimPol480� 560)
were grown in the presence or absence of doxycycline (10 ng ml� 1) 24 h before
collecting. Cell pellets were resuspended in 1 ml lysis buffer (150 mM NaCl,
30 mM Tris–HCl (pH 7.5), 0.5% NP40, 2.5 mM MgCl2, 100 mg ml� 1 DNase I) and
incubated at 4 �C for 30 min. The resulting lysate was clarified by centrifugation at
10,000 g for 10 min at 4 �C. The supernatant was retained (sample taken as ‘input’),
added to 100 ml pre-washed anti-FLAG magnetic beads (Sigma) and incubated at
4 �C overnight. Unbound material was removed and the beads were washed 3�
5 min with 1 ml wash buffer (Lysis buffer without DNase I and 0.1% NP40).
Three successive 5 min elutions were performed using 200ml elution buffer (25 mM
Tris–HCl (pH 7.5), 150 mM NaCl, 1 mM phenylmethyl sulphonyl fluoride and
200 mg ml� 1 3� FLAG peptide (Sigma). Eluted samples were boiled in Laemmli
buffer and analysed by western blot using the following antibodies; Anti-FLAG
(Sigma F3165; 1:1,000 dilution), Anti-RPA2 (Calbiochem NA18; 1:500 dilution),
horseradish peroxidase (HRP) conjugated Anti-mouse IgG (Abcam ab6728; 1:5,000
dilution). Uncropped versions of all Western blots can be found in Supplementary
Fig. 9.

Triton X-100 fractionation of HEK-293 cells. HEK-293 cellular fractionation was
performed as previously described5. Briefly, protein expression was induced
(10 ng ml� 1 doxycycline, 24 h) in HEK-293 Flp-In T-REx cells stably transfected
with various FLAG-PrimPol constructs (WT, D519R/F522A, D551R/I554A and
D519R/F522A/D551R/I554A). The following day cells were either mock or
ultraviolet-C (30 J m� 2) irradiated and allowed to recover for 3 h. Cells were
harvested and pellets resuspended in cytoskeletal buffer (100 mM NaCl, 300 mM
sucrose, 3 mM MgCl2, 10 mM PIPES (pH 6.8), 1 mM EGTA, 0.2% Triton X-100
and protease and phosphatase inhibitors (Roche)), followed by incubation on ice
for 5 min. Samples were then centrifuged at 16,000 g for 10 min. Supernatant was
retained as the soluble fraction. The insoluble pellet was washed three times in PBS
and boiled in Laemmli buffer. Whole-cell extract, soluble and insoluble, samples
were analysed by western blot using Anti-FLAG, Anti-RPA2 and Anti-mouse IgG
antibodies sourced and used as described above, in addition to Anti-Histone H3
(Abcam ab1791; 1:5,000 dilution) and HRP-conjugated Anti-Rabbit IgG (Abcam
ab6721; 1:3,000 dilution).

Chromatin isolation from Xenopus egg extract. Demembranated sperm nuclei
were prepared by lysolecithin treatment as previously described39. Briefly, Xenopus
sperm nuclei in 1 ml of SuNaP (250 mM sucrose, 75 mM NaCl, 0.15 mM spermine,
0.5 mM spermidine) were treated with 50 ml of 10 mg ml� 1 lysolethicin
(per 107 nuclei) for 5 min at room temperature. Reaction was stopped with 5 ml
SuNaPþ 3% BSA. Nuclei were washed twice in SuNaP and resuspended at a
concentration of 1� 105 nuclei per ml in SuNaP/glycerol (final glycerol
concentration 30%) and snap-frozen and stored in liquid nitrogen. Preparation of
Xenopus egg extracts and the isolation of chromatin from egg extract were carried
out as previously described40. Briefly, unfertilized eggs were dejellied, washed and
activated with ionophore A23187. After washing in extraction buffer (XB: 10 mM
4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES-KOH), pH 7.7,
100 mM KCl, 0.1 mM CaCl2, 1 mM MgCl2, 50 mM sucrose) eggs were packed by
brief centrifugation at 5,000 g and then, after removal of excess buffer, crushed
by centrifugation at 15,000 g for 10 min (4 �C). The cytoplasmic layer was
supplemented with aprotinin (10 mg ml� 1), cytochalasin B (50mg ml� 1), creatine
phosphate (30 mM) and creatine phosphokinase (150 mg ml� 1) and centrifuged for
10 min at 60,000 g (4 �C) in a Beckman Optima TLA-55, to generate the
replication-competent supernatant fraction.

For chromatin isolation, 50 ml of extract containing sperm chromatin
(5,000 nuclei per ml) was diluted with XB buffer containing 0.25% Triton X-100 and
centrifuged through 750 mM sucrose (in XB) at 5,000 g (10 min, 4 �C). The
cytoplasmic/sucrose interface was washed twice with XB/Triton X-100, the
supernatant removed and the chromatin pellet washed with XB/Triton X-100.
After centrifuging at 10,000 g (5 min, 4 �C), the wash buffer was removed and the
chromatin pellet resuspended in SDS–PAGE buffer.

Western blot analysis was performed using the following antibodies; Anti-GST
(Abcam ab92; 1:2,000 dilution), Anti-Orc2 (gift from Julian Blow; 1:2,000 dilution),
HRP-conjugated Anti-mouse IgG (DAKO P0260; 1:5,000 dilution) and
HRP-conjugated Anti-rabbit IgG (DAKO P0448; 1:5,000 dilution).

DNA fibre assays in PrimPol� /� DT40 cells. DT40 cells were cultured
in RPMI 1640 medium containing 10% FCS, 1% chicken serum, 10 mM
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b-mercaptoethanol, 1% L-glutamine and 1% PenStrep. Mutant DT40 cell lines
were derived from DT40 Clone 653 from Prof. S. Takeda’s group (Kyoto
University). PrimPol� /� DT40 cells (previously generated5) were stably
complemented with pCI-neo plasmid encoding WT PrimPol, PrimPolD519R/F522A

and PrimPolD551R/I554A by electroporation as previously detailed5. pCI-neo
constructs-encoding RBM-mutant PrimPol were generated by site-directed
mutagenesis (primers 15–18, Supplementary Table 1). Positive clones were selected
using medium containing 2 mg ml� 1 G418 (Sigma) and expression was confirmed
by western blot using Anti-PrimPol (raised against recombinant purified PrimPol,
1:1,000), Anti-a-Tubulin (Sigma T5168, 1:3,000 dilution), and HRP-conjugated
Anti-Rabbit IgG and Anti-Mouse IgG (sourced and used as described above). All
DNA fibre analysis was performed as described previously5 in triplicate. Briefly,
DT40 cells were pulse labelled with 25 mM CldU for 20 min before ultraviolet
irradiation with 20 J m� 2 and labelling with 250 mM IdU for a further 20 min.
Subsequently, cells were resuspended in PBS and diluted 1:1 with unlabelled cells.
The mixture was spotted onto glass Superfrost slides, lysed with buffer containing
0.5% SDS, 200 mM Tris–HCl (pH 5.5) and 50 mM EDTA, and tilted to allow
spreading of DNA. Slides were fixed in 3:1 methanol/acetic acid and stored at 4 �C.
Immunolabelling was performed after rehydration, denaturation of DNA and
fixing in 4% paraformaldehyde, using anti-rat BrdU (Abcam ab6326, 1:1,000
dilution), anti-mouse BrdU (Bection Dickinson 347580, 1:500 dilution), and
secondary Alexa Fluor 488-labelled anti-rat (Abcam ab150157, 1:250 dilution) and
Alexa Fluor 594-labelled anti-mouse (Abcam ab150116, 1:250 dilution).

Yeast two-hybrid assay. Full-length PrimPol and its C-terminal RBM domain
(PP-RBM—a.a. 480–560) were cloned into NdeI site of the pGADT7 vector using
polymerase chain reaction with wild-type PrimPol as a template, and T4 poly-
merase to process the DNA ends. PrimPol mutants were prepared by site-directed
mutagenesis. RPA70N (a.a. 1–120) was cloned into NdeI site of the pGBKT7
vector. Plasmids containing the GAL4 activation domain (pGADT7) fused to the
PrimPol variants or the empty vector were transformed into the Saccharomyces
cerevisiae strain PJ69-4a. Plasmid containing the GAL4 DNA-binding domain
(pGBKT7) fused to RPA70N or the empty vector were transformed into PJ69-4a
strain. The haploid strains were mated on a YPD plate and replica plated on
selective medium lacking leucine and tryptophan. The resulting diploid strains
were grown to A600 B1 and spotted as 10-fold serial dilutions on media lacking
leucine, tryptophan, histidine or adenine. A total of 1 mM 3-Amino-1,2,4-triazole
(3AT) was added to decrease the background HIS3 expression. Plates were scanned
after 3 days of incubation at 30 �C

Data availability. All data are provided in full in the results section and the
Supplementary Information accompanying this paper. Atomic coordinates and
structure factors have been deposited in the Protein Data Bank with accession
codes 5N85 and 5N8A for the RPA70N-RBD-A and B complexes, respectively.
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