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Abstract: Background: Genomic instability is implicated in the initiation and progression of oral
squamous cell carcinoma (OSCC). Tumor suppressor Secreted Frizzled-Related Protein 1 (SFRP1)
may participate in the aberrant evolution of OSCC, the intrinsic molecular mechanisms of which
may provide effective therapeutic targets. Methods: A bioinformatics analysis was carried out on a
publicly available database using R language to map the prognostic value, immune infiltration and
enrichment of SFRP1 expression. Subsequently, in vitro experiments were conducted to unveil the
biological function of SFRP1. Results: SFRP1 was found to be ubiquitously lowly expressed in OSCC
using a Wilcoxon rank-sum test. Univariate analysis confirmed that those patients characterized
by a low SFRP1 expression were significantly associated with advanced T-stage, clinical stage and
poor mortality (p < 0.05). Furthermore, SFRP1 displayed a positive performance in tumor immune
infiltration, especially in mast cells. Functional annotations indicated that highly expressed SFRP1
was associated with membrane potential and passive transmembrane transporter activity and it
was mainly enriched in calcium pathway and neuroactive ligand–receptor interaction. In vitro,
the overexpression of SFRP1 inhibited its proliferation, migration, and invasion and resulted in
G0+G1 phase arrest within Cal27 cells (p < 0.05). Conclusions: The bioinformation data suggest that
SFRP1 expression provides an insight into the risk and prognostic stratification in OSCC. SFRP1 was
validated as a potential biomarker with anticarcinogenic behaviors for use in targeted therapy.

Keywords: oral squamous cell carcinoma; SFRP1; tumor infiltration; invasion; prognosis

1. Introduction

Oral squamous cell carcinomas (OSCC), the most prevalent subgroup of head and
neck squamous cell carcinoma (HNSCC), accounts for 3.5 million diagnosed neoplasia
annually [1,2]. Dining habits such as tobacco and alcohol consumption contribute to high
incidence rates globally; however, the 5-year survival rate of advanced OSCC was only
estimated at 34% with multimodal treatments [3]. Despite the increasing awareness of
the clinicopathologic features and molecular mechanisms of OSCC, multimodal treatment
outcomes have not been optimized significantly; these largely depend on chemo-resistance,
long-term radiation toxicities, locoregional relapse and neck recurrence [4,5]. Due to the
abundant lymphatic drainage of special locations, upon infiltration into the lymphatic
vessels, tumor cells extravasate from the vessel walls and start a proliferative program,
then they detach from the primary to the surrounding extracellular matrix and distant
metastases [6,7]. It has been reinforced that the prediction of tumor progression and
recurrence mainly relates to clinical stage, histologic differentiation, depth and pattern of
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invasion, nodal burdens and metastases. Importantly, the progress from normal mucosal
dysplasia to squamous cell carcinoma is a multistep process that involves polygenes. Hence,
the identification of potential targets and regulatory pathways-induced OSCC is imperative
to facilitate early diagnosis and improved prognosis.

The discovery of a tumor suppressor marks a new field in the research of guiding
tumorigenesis. Secreted Frizzled-Related Protein 1 (SFRP1) is an important protein-coding
gene belonging to the SFRP family. The mutation or epigenetic alteration of SFRP genes
renders them highly susceptible to Wnt-regulated activities. The down-regulation of
SFRP1 has been observed in a variety of solid tumors such as gastric cancer [8], colorectal
cancer [9], etc., suggesting that the inactivation of SFRP1 is an essential prerequisite for
cell differentiation and carcinogenesis [10]. However, our current understanding of the
underlying mechanisms of SFRP1 is still very limited and its molecular function in oral
cancer cells is yet to be revealed. So far, no reproducible indicators of an SFRP1 signature
in OSCC have been reported.

In this study, we aimed to elucidate the relationship between SFRP1 expression and
the oncological outcomes of OSCC. To the best of our knowledge, this is the first analysis
that combines SFRP1 bioinformation and in vitro experiments from previously published
research. This study investigated the influence of various clinical characteristics, includ-
ing prognostic analysis, immune infiltration, and enrichment of biological functions and
pathways, using the data from The Cancer Genome Atlas (TCGA). Lentivirus transfection,
Western blotting, transwell assay, wound-healing assay and flow cytometry methods were
used to verify the relationship between SFRP1 expression and the biological behaviors
of OSCC cells to provide further information about the adjuvant regimens and precise
approaches used in treating OSCC.

2. Materials and Methods
2.1. Acquisition of Single Gene Matrix

The SFRP1 gene expression profile matrix and the corresponding clinical information
of 32 normal and 329 OSCC tumor tissues (HTSeq-FPKM data) were downloaded from
the official website of TCGA (https://tcga-data.nci.nih.gov/tcga/, accessed on 10 June
2022). A flow chart of the data analysis and the experimental design is shown in Figure 1.
R software (version 3.6.3; https://www.r-project.org/, accessed on 10 June 2022) was used
to standardize the RNA sequencing and FPKM data. Differences in the SFRP1 expression
levels of tumor tissues and pan-cancer tissues were analyzed with the edgeR software
using a Kruskal–Wallis test. The “ggplot” package was used to create box plots.
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Figure 1. Flow chart of data analysis and experimental design.
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2.2. Tumor Immune Infiltration Analysis

The “GSVA” package was used to investigate the relationship between SFRP1 ex-
pression and immune cell infiltration. Based on the signature genes obtained for various
immunocytes, the comparative enrichment score of each type of immune cell was quan-
tified from the gene expression profile [11]. The correlation of 24 types of immune cells
was calculated using Spearman’s analysis, which was declared significant when p < 0.05.
In addition, we constructed scatter diagrams to observe the relationship between SFRP1
expression and the six most significant immune cells.

2.3. Prognostic Analysis

To identify the clinical significance of SFRP1, the primary end point of this study
was overall survival (OS). The “survivalROC” package was used to produce AUC values.
The relationship between SFRP1 expression and OS was investigated using a univariate
analysis. To compare OS with different levels of SFRP1 expression, Kaplan–Meier analyses
and curves were employed, with a log-rank of p < 0.05 being considered significant. The
R “rms” package was used to create a nomogram chart; subsequently, calibration and
visualization were used to assess the constructed nomogram.

2.4. Enrichment Analysis

The Search Tool for the Retrieval of Interacting Genes (STRING; http://string-db.org,
accessed on 22 July 2022; version 11.5) was applied to describe the protein–protein interac-
tion (PPI) network of SFRP1. The high-SFRP1-expression group and low-expression-group
were compared to screen for differentially expressed genes (DEGs) using the “limma” pack-
age. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were
applied to uncover the significant functional and pathway differences between the high-
and low-expression groups in the DAVID database (https://david.ncifcrf.gov/, accessed
on 22 July 2022). GO analysis was performed using the “ClusterProfile” package based on
three categories: biological processes (BP), molecular function (MF) and cellular component
(CC). Differences with |log fold change (FC)| > 1.5 and an adjusted p-value < 0.05 were
considered threshold values.

2.5. Cell Culture and Lentiviral Transfection

To leverage the bioinformation analysis, oral carcinoma cell line Cal27 (China Cen-
ter for Type Culture Collection, Shanghai, China) was maintained in a culture medium
containing 10% fetal bovine serum (FBS, Natocor, Córdoba, Argentina) at 37 ◦C in a hu-
mid atmosphere with 5% CO2. The recombinant lentivirus named GV493 was utilized
to knock down the overexpressed SFRP1. The lentivirus was provided by Jikai Gene
Biological Inc. (Shanghai, China). All transfection experiments were performed in ac-
cordance with the protocol of the manufacturer. The result of transfection was observed
under a fluorescence microscope. The SFRP1 expression was quantified through a reverse
transcription-polymerase chain reaction (RT-PCR) and a Western blotting assay.

2.6. Western Blotting Assay

The cytoplasmic proteins of Cal27 cells were lysed in RIPA buffer (Beyotime, Beijing,
China). The lysates were treated with 10% SDS-PAGE gel and transferred onto PVDF
membranes (Invitrogen, NY, USA). After 1 h of incubation, the PVDF membranes were
cultured with anti-SFRP1 (ab126613, Abcam, 1:3000) antibodies overnight at 4 ◦C. After
PBS washing, the membranes were incubated with a secondary antibody (Beyotime) at
37 ◦C for 1 h. The reaction was visualized and quantified using the ImageJ software.

2.7. RT-PCR

To further verify the result of the lentiviral transfection, total RNA was extracted from
the Cal27 cell using Trizol Reagent and reverse transcribed using the RT reagent kit gDNA
Eraser (Takara, Tokyo, Japan). Primers were shown as follows: SFRP1 forward: 5′- AGTCG-
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GACATCGGCCCGTAC -3′, Reverse: 5′-AGTCGGACATCGGCCCGTAC-3′; GADPH for-
ward: 5′-TGACTTCAACAGCGACACCCA-3′, Reverse: 5′-CACCCTGTTGCTGTAGCCAAA-
3′. Every sample was examined three times. The quantitative calculation was performed
using system software and the 2−∆∆Ct method.

2.8. Cholecystokinin-8 (CCK8) Assay

The CCK-8 assay was utilized to measure cell viability 24 h, 48 h and 72 h after
transfection. Cells were seeded onto 96-well plates with a mixture of 100 l medium and
10 l Cell Counting Kit8 (CCK8, Biosharp, Hefei, China). The optical density (OD) at 450 nm
was recorded to measure the cells’ proliferation ability after 1 h of incubation.

2.9. Transwell Assay

The invasive ability of the Cal27 cell was assessed using the chambers of 24-well plates.
In the upper chamber, Cal27 cells were planted in the Matrigel matrix (356234, BD Sciences)
and a serum-free medium. In the lower chamber, full culture medium was supplied and the
chambers were incubated for 24 h. The average number of migrated cells in each group was
counted under a microscope at 200×magnification. All of the experiments were conducted
in duplicate and repeated three times.

2.10. Wound-Healing Assay

A wound was scratched into the cell monolayer; subsequently, the photos were taken
every 4 h from 0 to 24 h after the wounding at the same location. After 24 h, the migrated
Cal27 cells to the scratched area were calculated using Image-Pro Plus 6.0.

2.11. Flow Cytometry Assay

Cell cycle distribution was measured using a cell cycle detection kit (KGA512, KeyGEN,
China). The cells were fixed in 70% ethanol overnight at 4 ◦C, washed, and suspended in a
0.5 mL solution containing propidium iodide and RNaseA (Sigma Aldrich, St. Louis, MO,
USA). They were examined using the ModFit software after 45 min of incubation at room
temperature.

2.12. Statistical Analysis

Measured data were described using mean ± standard deviation (SD). The R software
(version 3.6.2) was used to realize the Kaplan–Meier curves and log-rank tests. The chi-
square test was performed using IBM-SPSS version 25.0 to evaluate the relevant clinical
features. A one-way analysis of variance (ANOVA) was used to compare data from several
groups. We repeated all the experiments at least three times. p < 0.05 was considered
statistically significant (* p < 0.05, ** p < 0.01, and *** p < 0.001).

3. Results
3.1. SFRP1 Is Down-Regulated in OSCC Tissues

To summarize the level of SFRP1 expression in pan-cancer and normal tissues, the
Kruskal–Wallis test was performed, finding that the SFRP1 expression levels were sig-
nificantly lower in most solid tumors than in paired normal tissues (p < 0.05, Figure 2a).
Relevant studies of OSCC that evaluated the expression level of SFRP1 showed that it
was dramatically down-regulated in tumor samples compared to control ones (p < 0.001,
n = 32 versus n = 329, 3.67 ± 2.10 versus 5.91 ± 1.57), which suggested a role for SFRP1 as a
suppressor in oral cancer (Figure 2b,c). Afterwards, immunohistochemistry (IHC) staining
was analyzed for a cohort comprising 506 cases of head and neck squamous cell carcinoma
(HNSCC) and noncancerous tissues. Among the entire cohort, 378/400 (75.8%) cases were
negative, while 121/499 (24.2%) cases were positive (Figure 2d).
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Figure 2. SFRP1 expression between cancer and normal tissues. (a) Expression levels of SFRP1 in
solid tumors and adjacent noncancerous tissues containing 33 tissues from TCGA. The red box shows
expression level of SFRP1 in head and neck cancers (* p < 0.05, *** p < 0.001). (b) Boxplot of SFRP1
expression levels in OSCC and matched normal tissues (p < 0.001). (c) Quantification of SFRP1 IHC
staining in OSCC and matched normal tissues (p < 0.001). (d) Representative images of IHC in oral
cancer tissue and control tissue.

Regarding the clinicopathologic parameters associated with SFRP1 expression in
OSCC, a univariate factor analysis indicated that high SFRP1 expression remained an
independent predictor associated with early T-stage and clinical stage (Figure 3a,b). Among
those with T1–2, the SFRP1 expression level was significantly higher than in the T3–4 samples
(p = 0.004, 4.14 ± 2.08 versus 3.38 ± 2.08). Meanwhile, SFRP1 also had a higher expression
in stage I-II tumors than in stage III-IV cases (p = 0.004, 4.23 ± 1.98 versus 3.45 ± 2.13).
In contrast, there was no concordance between the SFRP1 expression level and N-stage,
lymphovascular invasion, lymph node neck dissection and histologic grade from the TCGA
data (p > 0.05) (Figure 3c–f). However, elevated SFRP1 expression was found among cN+
patients rather than in cN0 samples, which indicated that SFRP1 expression may be a
potential sign of lymph node metastasis in OSCC patients.

3.2. Prognostic Signature of SFRP1 Expression

The correlation of SFRP1 expression with overall survival (OS) was assessed using a
univariate survival analysis of 328 samples from TCGA (HR = 0.69, p = 0.024, Figure 4a).
Additionally, similar results were obtained for disease-specific survival (DSS) and progress-
free interval (PFI) after accounting for covariates (HR = 0.66, p = 0.047; HR = 0.66, p = 0.014,
Figure 4b,c), which revealed that SFRP1 could have a substantial impact on the incidence
of mortality and recurrence in OSCC patients. The findings also observed that SFRP1
expression was associated with clinical subtypes such as tongue squamous cell carcinoma
(TSCC, HR = 0.47, p = 0.018, Figure 4e), while there was no obvious difference in SFRP1
expression for oral cavity cancer (p = 0.102, Figure 4d), implying that SFRP1 could be
a viable prognostic indicator molecule in TSCC. Meanwhile, the area under the curve
(AUC) and the value of the receiver operating characteristic (ROC) curve was 0.79, which
emphasized the finding’s promising discriminative power in identifying tumors from
normal tissues (Figure 4f).
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Figure 4. Prognostic analysis of various clinicopathological factors. (a) Kaplan–Meier survival curves
in OS; (b) Kaplan–Meier survival curves in DSS; (c) Kaplan–Meier survival curves in PFI; (d) Kaplan–
Meier survival curves in oral cavity cancer; (e) Kaplan–Meier survival curves in TSCC; (f) ROC curve
showed that SFRP1 was a marker to predict the prognosis of OSCC; (g) nomogram used to predict
the probability of 1-, 3- and 5-year OS for OSCC patients; (h) calibration plot of the nomogram.
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The clinical characteristics and risk scores were then used to create a nomogram that
integrated survival probability via multivariate analysis. We evaluated the 1-, 3- and
5-year survival probability regarding T-stage, N-stage, clinical stage, histological grade and
SFRP1 expression level (Figure 4g). The higher the sum of the points calculated in a range
from 0 to 100 was, the worse the prognosis was. It was found that cN2, histological G3
grade and low SFRP1 expression were risk factors for poor prognosis (p = 0.024, p = 0.048,
p = 0.025). As expected, the calibration plot for the prediction of 3- and 5-year survival
indicated that the observation and prediction were consistent (Figure 4f).

3.3. SFRP1 Is Associated with Tumor Immune Infiltration

Tumor immune infiltration was found to be associated with lymph node status, in-
dependently predicting the sentinel lymph node status and survival of OSCC [12]. This
immune infiltration research suggested an active immune microenvironment (Figure 5a),
and the expression of SFRP1 was positively correlated with the infiltration of mast cells,
T-helper cells, eosinophils cells, T cells and Th1 cells (p < 0.001, Figure 5b–f).
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Figure 5. Relationship between SFRP1 and tumor immune infiltration in OSCC; (a) correlations
between SFRP1 and relative abundance of 24 immune cells in OSCC; scatter diagram of the SFRP1
expression and enrichment of (b) mast cells, (c) T-helper cells, (d) eosinophil cells, (e) T cells, and
(f) Th1 cells.
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3.4. Functional Analysis of SFRP1

Among the 668 significantly DEGs, 2 (0.30%) down-regulated genes and 666 (99.97%)
upregulated genes were explored using GSEA (Figure 6a), with the adjusted p-value < 0.05
and the |log2(FC)| > 1.5 as the threshold. The 10 most significant expressed genes are
shown in a heatmap (Figure 6b). SFRP1 and the correlated genes were subjected to GO
and KEGG enrichment analyses. PPI network analysis was carried out to explore the
relationships between SFRP1 and other genes in the DAVID database. The co-expressed
genes included CTNNB1, FZD1, LRP5, LRP6 and WNT8B, most of which were associated
with the Wnt signaling pathway (Figure 7a). Notably, BP-enriched terms were strongly
associated with the regulation of membrane potential, postsynaptic membrane potential
and synaptic transmission; the MF category included passive transmembrane transporter
activity and ion-gated channel activity; the CC category was positively associated with the
intrinsic and integral components of the synaptic membrane (Figure 7b–d).
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Furthermore, GSEA was performed to compare high-SFRP1 and low-SFRP1 groups
to identify related signaling pathways. The top eight signaling pathways with significant
enrichment in the high-SFRP1 expression phenotype are shown in Figure 8 and include the
calcium signaling pathway, neuroactive ligand–receptor interaction, the core matrisome,
ECM glycoproteins and the anti-inflammatory response pathway, which may contribute to
the interaction of pathophysiological mechanisms of SFRP1 in OSCC.

3.5. SFRP1 Represses Invasion and Migration of Cal27 Cells In Vitro

In view of the strong association of SFRP1 expression with OSCC, it is worth dis-
cussing the biological role of SFRP1 through in vitro experiments. Following the lentiviral
transfection, knockdown and overexpression of SFRP1 in Cal27 cells that were prepared
in vitro, we examined SFRP1 levels using both Western blotting and RT-PCR, suggesting a
high efficiency of lentiviral transfection (Figure 9a,b).
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network of SFRP1 and co-expressed genes; (b) GO terms in the “biological process (BP)” category;
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As shown in Figure 9c,d, the transwell migration assay was utilized to detect if SFRP1
suppressed the invasion behaviors of Cal27 cells. Collectively, it was demonstrated that
SFRP1 overexpression inhibited the invasion of Cal27 cells, whereas a great deal of Cal27
cells in the knockdown and control groups migrated to the lower chamber (p < 0.001).
A wound-healing assay was performed to reveal the role of SFRP1 in OSCC migration.
Similarly, SFRP1 overexpression resulted in a drastic decrease in migration ability when
compared to the control group, but those with the knockdown of SFRP1 displayed an
increase in migration behavior (p < 0.001, Figure 9e), indicating that the invasion and
migration were significantly suppressed by the exogenous overexpression of SFRP1 in
Cal27 cells.

3.6. SFRP1 Regulates Cell Cycle Progression and Suppresses Cell Proliferation In Vitro

Flow cytometry was performed to analyze the influence of SFRP1 on cell progression.
In the SFRP1 knockdown group, the G0 + G1 phase percentage decreased from 31.18% to
18.90%; the proportions of cells in S-phase decreased from 52.02% to 36.48%. However, the
overexpression of SFRP1 resulted in an accumulation of cells in the G0 + G1 phase, with
the percentages of cells increasing from 20.16% to 41.95% (p < 0.001), while the number
of S-phase cells did not vary significantly after the SFRP1 overexpression. Thus, the
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overexpression of SFRP1 probably induced G1 phase arrest and inhibited DNA replication
(Figure 9f).

To further explore the instinct mechanism, the 3, 4 and 5 day proliferative rates of
SFRP1 knockdown Cal27 cells were remarkedly higher than those in the control group
according to the CCK8 assay (p < 0.001). Compared with scrambled control cells, the
SFRP1 overexpression Cal27 cells showed a significantly low proliferative rate from the
second day of the assay (p < 0.001), confirming the role of SFRP1 suppression in controlling
proliferation (Figure 9g).
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Figure 9. SFRP1 represses invasion, migration and proliferation of Cal27 cells in vitro. (a) SFRP1 was
knocked down and overexpressed in Cal27 cells by lentivirus transfection. (b) Upper, Western blotting
was used to verify SFRP1 protein level; lower, RT-PCR was utilized to detect SFRP1 expression in
Cal27 cells. (c) Flow chart of transwell assay. (d) Overexpression of SFRP1 inhibited the invasion of
Cal27 cells through the chamber. (e) Wound-healing assay demonstrated that SFRP1 overexpression
inhibited cell migration. (f) Flow cytometry analyses of cell cycles of SFRP1 overexpressed and
knocked down cells and their respective negative control cells. (g) CCK8 assays were performed to
detect Cal27 proliferation based on the absorbance at various points of the day at 450 nm. * p < 0.05,
** p < 0.01, *** p < 0.001.
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4. Discussion

Although traditional therapeutic strategies for OSCC such as surgery, chemotherapy
and radiotherapy have significantly improved in recent years, the limitations of early diag-
nosis and locoregional relapse remain major challenges. Exploring molecular mechanisms
is generally considered meaningful to guide clinical diagnosis and oncological outcomes.
Subsequent integrative molecular analyses have revealed, for the first time, the impor-
tant role of SFRP1, a well-characterized member of the Secreted Frizzled-Related Protein
family, which has been verified to be a tumor suppressor in various neoplasms. The down-
regulation of SFRPs has been observed in a series of solid tumors that contain colorectal
cancer [13], gastric cancer [8], oropharyngeal cancer [14] and leukemia [15], which was also
validated by our pan-cancer analysis. This research creatively integrated microarray data
of SFRP1 with large OSCC samples from the TCGA database and in vitro experiments.

In this work, SFRP1 was found to be significantly down-regulated in clinical OSCC
samples from public databases. Patients with low SFRP1 expression had a worse OS, DSS
and PFI than patients with high expression based on the survival analysis. Moreover, low
SFRP1 expression was not only positively related to advanced TNM stage, T stage and oral
tongue subtypes, but also directly related to a worse survival rate, implying that SFPP1
could be a helpful biomarker for predicting diagnosis and prognosis in patients with OSCC.
A nomogram multivariate analysis also indicated that down-expressed SFRP1 could be a
potential predictor of 3- to 5- year survival as well as N-stage and high-histological grade.
It also displayed a trend towards preferential expression in lymph node metastases. In line
with the work of Chakraborty et al., the frequency of alterations for SFRP1 was significantly
higher in lymph node positive cases (p = 0.025), which is in accordance with the reduced
expression seen in the tumor group [16].

On the other hand, the epigenetic silencing of Wnt pathway antagonists has been well
documented in the research of guiding tumorigenesis. Studies in this rapidly emerging field
have revealed that the activation of the Wnt pathway may induce epithelial–mesenchymal
transition (EMT) and mediate the tumor microenvironment by altering extracellular matri-
ces, fibrotic processes and immune responses in HNSCC cells [17–19]. It is hypothesized
that SFRPs contain a cysteine-rich homologous domain and may compete with Frizzled
receptors for binding to Wnt ligands to produce antagonism. Thus, SFRP genes are called
the “gatekeeper gene” of the Wnt pathway [20]. In HNSCC, it was revealed that SFRP1
and SFRP5 were methylated in OSCC patients who like chewing betel quid, while this was
not observed in normal oral mucosa and precancerous lesions, suggesting that methylation
changes were specific and sensitive to the carcinogenesis of OSCC [14]. HPV infection was
strongly relevant with HNSCC, and it was reported to cause approximatively 5% of OSCC
cases worldwide [21]. A previous work showed that the promoter hypermethylation SFRP1
was found in HPV-infected tissues or in cases with tobacco habits, with a downregulation
of the Wnt pathway downstream target gene DKK1 and the up-regulation of LRP6 [16].
Certain limitations were noted in our study. Additional clinical factors such as HPV in-
fection should be included to improve clinical application. Based on the above evidence
and our microarray data, we propose that SFRP1 plays a key role in the occurrence and
prognosis of OSCC through its molecular functions and epigenetic alterations.

The tumor microenvironment plays a vital role in both the positive and negative
regulators of cancer hallmarks. An immunohistochemical study demonstrated that tumors
infiltrated by tumor-infiltrating lymphocytes were relevant to producing better outcomes
in HNSCC patients [22]. In this work, the positive correlation between SFRP1 and immune
cells suggested that it could be one of the related genes that affected the tumor microen-
vironment of OSCC, especially in terms of the abundances of mast cells, T-helper cells,
eosinophils cells, T cells and Th1 cells. Patients with relatively high SFRP1 expression
levels could have a more effective response to immunotherapy, which may be one of
the explanations for SFRP1 being shown to have value in predicting cancer progression
and prognosis in our analyses. Previous studies have reported that low-levels of tumor
infiltration in tumor tissues resulted in worse outcomes of cancer patients, including in
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CD4+ T cells and for macrophages in gastric cancer [23], as well as for B cells in breast can-
cer [24]. Interestingly, in the context of HNSCC, the expression signature of macrophages
showed a worse prognosis for patients, while low levels of infiltrating cells showed a strong
correlation with HPV infection in HNSCC [25]. This discrepancy could be attributed to
autophagy-mediated immune escape from tumors in different tumor-immune cells [22].
Therefore, further research is required to elucidate the interaction network between SFRP1
and infiltrating immune cells.

In addition, co-expression genes and enrichment pathways were used to evaluate the
comprehensive features and biological functions of SFRP1 in OSCC. With the high and low
SFRP1 expressions as signatures of sample subgroups, the single gene enrichment analysis
showed that SFRP1 participated in a wide range of metabolic cascades and transduction
pathways, including the calcium signaling pathway, neuroactive ligand receptor interaction,
the core matrisome, ECM glycoproteins, anti-inflammatory response pathways, etc., which
suggested that SFRP1 expression was involved in the positive regulation of enrichment
signaling cascades and SFRP1 might play a pathological role in biological oxidations,
neuroactive ligand–receptor interaction and anti-inflammatory responses. However, each
pathway does not exist in an isolated state; they form a complicated network with each
other. Therefore, those related pathways do not deserve attention for their biological
characteristics also. The cross-regulation of various cascades in which SFRP1 participates
appear to offer opportunities for clinical treatments and subsequent research.

Since previous studies have confirmed SFRP1 to be an important regulator of cancer
cell motility in skin tumor and colorectal cancer cell lines [26,27], few studies have reported
the cell characteristics in OSCC. To achieve effective inhibition and overexpression in our
study, we took advantage of adenovirus vectors to knock down and overexpress the target
gene. Cancer is regulated by uncontrolled cell proliferation induced by the aberrant activity
of cell-cycle-related genes [28]. In biological functional experiments, SFRP1 overexpression
rendered the Cal27 cells more motile and invasive. Conversely, the knockdown of SFRP1
enhanced migration, proliferation and tumorigenesis. In regard to cell cycle, the depletion
of SFRP1 expression resulted in G0+G1 phase arrest and the suppression of OSCC cell
proliferation. Although the proliferation index (PI) of the SFRP1 knockdown group was
relatively higher than that of the control group, we stumbled upon a high proportion in the
G2+M phase, which caused an abnormity of Cal27 cell cycle transition. In summary, our
results suggested that the overexpression of SFRP1 might affect the aggressiveness of Cal27
cells and might be a strategy for the targeted treatment of OSCC. One limitation should
be noted in the lack of in vivo experiments, which are necessary for further verification to
establish SFRP1 as a druggable target.

Indeed, a number of clinical trials of suppressors in malignancies have been initiated
recently. Epigenetic modification is primarily mediated by DNA methyltransferases (DN-
MTs) and histone deacetylases (HDACs). The HDAC inhibitor, sodium butyrate, restored
histone modifications in the promoter regions of SFRP1, two genes found in gastric cancer
cells [29]. Sudha et al. found that the inhibition of SFRP4 could be restored by adding
Wnt ligands (such as Wnt3a). SFRP4 could inhibit cancer stem-like cells (CSCs) from
head and neck cancers through self-renewal, cloning and expression; moreover, CSCs
with such biomarkers were more sensitive to the chemotherapeutic drug cisplatin [30].
Therefore, selecting an appropriate targeting gene will be key in tumor-targeted therapy
and multidisciplinary team involvement.

5. Conclusions

At present, microarray data analyses and biological studies of suspicious genes are
implemented for the adjuvant therapy of OSCC. In this study, we mined large databases
to analyze the function, expression enrichment and immune infiltrating of SFRP1, with
the aim of verifying the potential oncogenic and prognostic values of SFRP1 in OSCC.
SFRP1 was overexpressed in normal tissues compared to in tumor tissues, especially in
patients in the early clinical stage and early T stage. The function of SFRP1 was further
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verified in cytological experiments, where SFRP1 inhibited cell invasion, migration and
proliferation and blocked cell cycle transition from G0 + G1 to S phase in Cal27 cells. While
our study unraveled the inhibit function of SFRP1 in oral squamous cancer cells, it is
necessary to expose a deeper mechanistic understanding of SFRP1-dependent signaling
pathways, which could contribute to a cancer-specific single agent or combination therapy
for OSCC.
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