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The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages
of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the
diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In
recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing
the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper
summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years.This
study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the
manmade feature and the other is the deep learning ultrasound CAD system.The major feature and the classifier employed by the
traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized.
This paper will be useful for researchers who focus on the ultrasound CAD system.

1. Introduction

For decades, ultrasound image has been extensively applied
in the detection of different diseases because of its high
safety and high efficiency [1–3], such as the breast cancer, the
liver cancer, the gastroenteric disease [4], the cardiovascular
diseases [5], spine curvature [6], and themuscle disease [7, 8].
However, it requires years of experience and training to read
ultrasound image. The amount of training to be an excellent
radiologist is high. In this background, the CAD became a
powerful tool to assist radiologists diagnosing. The original
CAD system was used to diagnose the breast tumor in the
1960s [9].The CAD system helps the doctors and radiologists
to diagnose from two views. One view is their experience; the
other is the view of the computer. The application of CAD
system improves the accuracy of diagnosis, reduces the time
consumption, and decreases the load of doctors [10].

There are two important aspects of CAD research which
are “Detection” and “Diagnosis,” respectively [11]. “Detec-
tion” is defined as the technology to locate the lesion region
of the image. It aims to reduce the observational burden of
medical staffs. “Diagnosis” means the technology to identify
the potential diseases. It aims to provide additional support
for clinicians. In most of the CAD systems, the “Detection”
and “Diagnosis” are associated. In the “Detection” phase,
the lesion is segmented from the normal tissues, and in
the “Diagnosis” phase, the lesion is evaluated to produce a
diagnosis.

The ultrasound CAD system also consists of “Detection”
and “Diagnosis.”The ultrasound CAD system can be divided
into four phases: image preprocessing, image segmentation,
feature extraction, and lesion classification. Figure 1 shows
the general flowchart of ultrasound CAD system.
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Figure 1: The general flowchart of CAD system.

In this article, we present an overview of recent develop-
ments in ultrasound CAD to support future studies. There
have been many studies which summarized the research of
ultrasoundCAD [10, 12, 13]. Reference [10] presents a detailed
overview of the breast ultrasound CAD research, and [12]
presents an overview of liver ultrasound CAD researches.
However, both of them ignored many new technologies of
the deep learning which is one of the most revolutionary
technologies in recent years. In this study, we present an
overview of the traditional ultrasound CAD system and
the ultrasound CAD system which applies deep learning
technology. As for the traditional CAD system, this study
focuses on the feature and the classifier. As for the deep
learning ultrasound CAD system, the newest applications
of deep learning technology in ultrasound CAD system are
summarized.

2. Traditional Ultrasound CAD System

2.1. Feature. As for the traditional ultrasound CAD system,
the feature selection and extraction are indispensable steps
[29]. The effective features can improve the accuracy and
decrease the computational complexity of the system. As for
ultrasound CAD system, the collection of data is difficult. If
the dimension of features is high and the size of the dataset
is small, there will be “curse of dimensionality” occurring
[30]. Thus, the selection of features is an important step for
traditional ultrasound CAD system. The feature adopted by
traditional ultrasound CAD can be divided into four cat-
egories: texture, morphologic, model-based, and descriptor
features.

2.1.1. Texture. Thetexture is one of themost common features
in the ultrasound CAD system. Texture features can reflect
the character of the lesion surface. A few general utilized
features are shown as follows.

Laws Texture Energy (LTE). This feature utilizes the local
masks to detect the texture types [31]. In general, the size of
masks is 5 × 5.The energy of texture is calculated by the local
masks and represented by a vector.

Contrast of Gray Level Values.This feature is ameasure of local
variations in the image. It can be defined as

CON = ∑
𝑖,𝑗

(𝑖 − 𝑗)2 𝑃𝑑 (𝑖, 𝑗) , (1)

where 𝑃𝑑(𝑖, 𝑗) is the probability of the pixel value (𝑖, 𝑗) lying at
distance 𝑑 in the image.

Gray Level Cooccurrence Matrix (GLCM). GLCM reflects the
distribution of cooccurring pixel grayscale values at a given
offset. GLCM is a common feature in CAD system. The
methods in [32, 33] have utilized GLCM to extract the texture
features for breast tumor classification. The GLCM can be
defined as

COR =
∑ 𝑖𝑗𝑃𝑑 (𝑖, 𝑗) − 𝑚𝑥𝑚𝑦
√𝑆2𝑥𝑆2𝑦

, (2)

where𝑚𝑥,𝑚𝑦, 𝑆2𝑥, and 𝑆2𝑦 are defined as

𝑚𝑥 = ∑
𝑖

𝑖∑
𝑗

𝑃𝑑 (𝑖, 𝑗) ,

𝑚𝑦 = ∑
𝑗

𝑗∑
𝑖

𝑃𝑑 (𝑖, 𝑗) ,

𝑆2𝑥 = ∑
𝑖

𝑖∑
𝑗

𝑃𝑑 (𝑖, 𝑗) − 𝑚2𝑥,

𝑆2𝑦 = ∑
𝑗

𝑗∑
𝑖

𝑃𝑑 (𝑖, 𝑗) − 𝑚2𝑦.

(3)

Local Binary Pattern (LBP). LBP is proposed by T. Ojala, M.
Pietikäinen, andD.Harwood. It can reflect the local texture of
ultrasound image.TheLBP is defined in a 3×3neighborhood.
The center of the neighborhood is taken as the threshold.
The other 8 gray values are compared to the threshold. If the
value is larger than the threshold, that pixel will be marked
by 1; otherwise, it will be marked by 0. In this approach, every
3 × 3 neighborhood will be transformed into an 8-bit binary
number [34]. LBP possesses the rotation invariance and gray
scale invariance.

Wavelet Features. This feature is derived from the wavelet
transform of the ultrasound image. The wavelet transform
is a generally used method in ultrasound image processing.
The method in [21] utilized the wavelet packet transform to
extract texture feature for the liver disease classification.

2.1.2. Morphology. Compared with the texture feature, the
morphologic feature is more focused on the lesion. We
summarized some commonmorphologic features as follows.

Spiculation. This feature reflects the smoothness of lesion
margin. Reference [35] proposed a method to measure the
speculation, which defined the spiculation as the ratio of
low-frequency area to high-frequency area. This value is
proportional to the possibility of the tumor being malignant.
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Figure 2: The equivalent ellipse (orange line) of a benign breast
lesion.

Depth-to-Width Ratio. Depth-to-width ratio is an active
feature for the classification of many tumors, which has been
widely employed bymany studies [1, 36].The depth is defined
as the largest difference between the 𝑦-axis values of two
points on the margin of the tumor. The width means the
largest difference between the 𝑥-axis values of two points on
the margin of the tumor. As for the malignant tumor, the
depth-to-width ratio is usually larger than 1, and the ratio of
benign tumor is usually smaller than 1.

Elliptic-Normalized Circumference (ENC). ENC is the circum-
ference ratio of the equivalent ellipse of the tumor which is
defined as the ratio of the circumference of the ellipse to its
diameter [3]. Figure 2 shows an example of equivalent ellipse
of a benign breast lesion.

Elliptic-Normalized Skeleton (ENS). ENS is the number of
skeleton points which are normalized by the perimeter of
the equivalent ellipse. The larger the ENS is, the higher the
possibility of malignancy is [3].

Long Axis-to-Short Axis Ratio (L : S).This feature is defined as
the ratio of long axis to short axis. The long axis is the major
axis of the equivalent ellipse, and the short axis is the minor
axis of the ellipse [3].

2.1.3. The Feature Based on Statistical Model of the Backscat-
tered Echo. The model-based feature is one of the unique
features of ultrasound images. It reflects the character of the
backscattered echo from tissues. Scholars utilized different
models to simulate the echo of backscatter. The parameters
of these models are employed as tools to classify the tumors.

Nakagami Model-Based Features. Nakagami model is one of
the most common models of backscattered echo, which can
be utilized to simulate different backscattered distributions.
The parameter of Nakagami model is defined by the statis-
tics of the backscattered echoes. The authors in [37] have
attempted to utilize the Nakagami parameter as a feature to
classify the breast lesion.

𝐾-Distribution Model-Based Features. The feature based on
𝐾-distribution model is also widely used in ultrasound
CAD system. Reference [38] utilized the parameter of log-
compressed 𝐾 distribution to classify the breast tumor. The
experiment in [38] compared the performance of themethod

employing 𝐾-𝛼 feature to the method without 𝐾-𝛼 feature.
The result shows that the performance of method utilizing
𝐾-𝛼 feature is higher than the method without 𝐾-𝛼 feature.

2.1.4. Descriptor Features. The descriptor feature is usually
summarized from the experience of clinicians. As for dif-
ferent applications, the descriptor feature is different. For
example, as for the breast tumor, most of the descriptor
features come from the breast imaging reporting and data
system (BI-RADS) lexicon. But as for the thyroid nodules,
most of the descriptors are attributes in thyroid imaging
reporting and data system (TI-RADS) lexicon.

Shape (Round, Oval, or Irregular). Shape is a universal
descriptor feature for classification of many tumors [2]. The
regular shape like round and oval usually means that the
tumor is benign. The shape of malignant tumor is always
irregular.

Calcifications (Absent or Present). In general, there are more
calcifications or microcalcifications in malignant tumor than
in benign tumor.

Posterior Shadow or Posterior Echo. The posterior shadow
or posterior echo reflects the characteristic of the posterior
region of the tumor, where gray value is smaller than the
region of the surrounding.

Echo Characteristic. This feature reflects the model of echo
in the ultrasound image including hypoechoic, isoechoic,
hyperechoic, and complex.The echo signal of different tissues
shows different characteristic in the ultrasound image [39].

2.2. Classifiers. Most of ultrasound CAD systems are
designed to classify the lesion such as the breast tumor,
liver fibrosis, and thyroid nodules. The classifier is one of
the most important parts in the lesion classification. After
the selection and extraction of features, many classifiers
are adopted to classify the ultrasound images. This section
introduced the major classifiers employed by the ultrasound
CAD system.

2.2.1. Linear Classifier. Linear discrimination analysis (LDA)
[40] and logistic regression (LOGREG) [41] are two of the
most widely used linear classifiers in the ultrasound CAD
system. LDA is proposed by Fisher and is extensively used in
medical image analysis [32, 42]. It aims to find the best linear
combination of the features to divide the data into several
categories. LOGREG is proposed by David Cox. It is a regres-
sion method which takes the feature as the argument and
takes the category as the dependent variable. Both of the LDA
and LOGREG are widely applied in medical field [43, 44].
However, the performance of the linear classifier is limited by
the distribution of data. If the data is nonlinearly separable,
the performance of linear classifier will be unsatisfactory.

2.2.2. Bayesian Classifier. The Bayesian classifier is one of the
most frequently used methods in the machine learning field.
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It can utilize the prior information of data to estimate the
posterior information. The most famous Bayesian classifier
is the Näıve Bayesian Classifier (NBC). NBC is based on the
Bayesian theorem. It hypothesizes that the feature of samples
is conditionally independent.There are only a few parameters
of NBC which are required for estimation through the
statistics of samples. Due to the advantage of insensitivity to
data,NBC iswidely applied in social information analysis and
medical field. Reference [45] utilized the NBC as a classifier
to distinguish the cardiovascular US images. The accuracy of
the method reached 96.59% [45].

2.2.3. Support Vector Machine. The support vector machine
(SVM) is a method in statistics and computer science to
analyze data and recognize pattern. It is a supervised learning
method which can be applied in both of classification and
regression. The target of SVM is to build a hyperplane to
divide the sample into different categories [46]. It utilized
the kernel functions to map the original data into the higher
dimensional space to find the decision hyperplane. SVM is
widely applied in the analysis of ultrasound images [15, 47–
49]. SVM can perform well in both of small dataset and
large dataset. However, as the size of dataset increases, the
complexity of SVM also grows. Meanwhile, the choice of
kernel function also influences the performance of SVM.

2.2.4. Decision Tree. The decision tree is an effective algo-
rithm for classification of ultrasound images [25, 50]. It can
learn a classification rule from disorder data. Decision trees
algorithm adopts the divide-and-conquer strategy to divide
search space of problem into several subsets. The structure
of decision tree is a flowchart. From top to bottom, every
node calculates the feature value of input sample to decide
which node to go to next. In leaf nodes, the final result of
classification is given [51]. When the size of data is small and
the feature value is not diverse, the construction of decision
tree is simple and fast. However, if the size of data is large and
the feature value is various, the complexity of decision tree
algorithm will be huge.

2.2.5. Artificial Neural Network. Artificial neural network
(ANN) is the machine learning model which is designed
according to the human nervous system. In general, the
architecture of ANN can be divided into three layers: the
input layer, the hidden layer, and the output layer. The layer
consists of the neuron. The number of the hidden layers and
the number of the neurons in each layer are flexible. One
of the most famous ANN is the back-propagation neural
network (BPNN) [52]. BPNN is a feed-forward ANN with
supervised learning process. It is widely used in the medical
image analysis [53–55]. The train of ANN is a self-adaptive
process. If the architecture is complex, it will take plenty of
time to train the network.

2.2.6. AdaBoost. AdaBoost is one of the most popularly
used ensemble methods proposed and has the ability to
improve the classification accuracy by integrating multiple
weak classifiers. AdaBoost method generates a series of weak

classifiers firstly and builds a powerful classifier through
weighted majority voting of the classes predicted by weak
classifiers. Reference [38] utilized the multiclass AdaBoost to
distinguish carcinomas, fibro adenomas, and cysts.

3. Ultrasound CAD System with Deep
Learning Technology

In 2006, the professor of the University of Toronto, Hinton,
and his student published the paper which utilized the neural
network to reduce the dimensionality of data [56].This paper
is widely regarded as the beginning of the research in deep
learning. In the following years, deep learningwas extensively
applied in many fields, such as image recognition, semantic
analysis, and disease detection. The ultrasound CAD system
is always a highly anticipated field where the deep learning
can be applied. Many scholars have attempted to utilize the
deep learning to assist the clinician.

The largest change from the traditional ultrasound CAD
to deep learning ultrasoundCAD is that the feature employed
by deep learning ultrasound CAD system is not artificial.
In the traditional ultrasound CAD system, most of the
features are human-crafted, such as gray features and texture
features. However, with the development of deep learning,
the researchers noted that the feature extracted by the deep
neural network is sometimes more effective than the feature
designed by the human.

In this section, the newest applications of deep learning
on the ultrasound CAD system are introduced. The major
application field includes the breast lesion diagnosis, the
liver lesion diagnosis, the fetal ultrasound standard plane
detection, the thyroid nodule diagnosis, and the carotid
ultrasound image classification.

3.1. The Breast Lesion Diagnosis. The breast tumor is one
of the most common cancers for women. Thousands of
women suffer from breast tumor all over the world.The early
detection can decrease the death rate of the breast cancer sig-
nificantly [57]. The ultrasonography is a safe and convenient
scheme to detect the early breast lesion [58]. To support the
clinician in diagnosis, many scholars attempted to utilize the
deep learning technology to classify the breast lesion. Han
et al. utilized the GoogLeNet to classify the breast image
and the accuracy reached 90% [16]. They employed 4254
benign samples and 3154 malignant samples to train the deep
neural network.The sufficient data support theGoogLeNet to
reach an acceptable performance. However, more researchers
cannot acquire enough data like Han et al. [16]. Most of them
employed other deep learning methods to classify the breast
lesion. Zhang et al. utilized the point-wise gated Boltzmann
machine (PGBM) to extract the feature from shear-wave
elastography (SWE) to classify the breast tumor [17]. The
deep learning feature reached 93.4% accuracy. Cheng et al.
utilized stacked denoising autoencoder (SDAE) technology
to encode the ultrasound image and employed the softmax
layer to classify the breast lesion [18]. Shi et al. employed the
deep polynomial network to extract the textural feature from
the ultrasound image and reach the accuracy of 90.40% [19].



BioMed Research International 5

The deep learning technology is widely applied in the
breast ultrasound image. However, most of the studies are
limited by the number of samples. Methods adopted by these
studies usually utilized the deep learning technology as a tool
to generate the representation of images. Only [16] utilized
the convolutional neural network (CNN) like GoogLeNet to
classify the ultrasound image directly.

3.2. The Liver Lesion Diagnosis. The liver disease has been
a menace to humans for a long time. The incidence and
mortality of the liver disease grow yearly. The ultrasonog-
raphy is one of the most common techniques to detect the
liver disease. Many researchers have attempted to employ
deep learning technology to support the doctor diagnosis
by liver ultrasound image. Reference [22] utilized the sparse
autoencoder to acquire the representation of the liver ultra-
sound image and utilized the softmax layer to distinguish
different focal liver diseases. Compared with support vector
machines method, the method proposed in [22] reaches
higher accuracy.

Liver fibrosis classification is also a high profile field
of research. Meng et al. utilized the VGGNet and fully
connected network (FCN) to differentiate the level of liver
fibrosis [23]. To address the shortage of samples, Meng et
al. employed the transfer learning (TL) technology. Meng et
al. divided the liver fibrosis level into three phases: normal,
early stage fibrosis (S1–S3), and late-stage fibrosis (S4). The
accuracy of their method reached 93.90%. Similarly to Meng
et al., Liu et al. utilized deep learning technology to diagnose
the cirrhosis [24]. In the study of Liu et al., CNN is employed
as a tool to generate features from ultrasound images. Liu
et al. adopted the SVM as the classifier to distinguish the
normal liver and the diseased liver, and the accuracy of the
proposed method reached 96.8% which is much higher than
the accuracy of low-level features.

The deep learning is a powerful tool to detect the liver
diseases from ultrasound liver images. According to the
experiment result of [23, 24], the application of deep learning
technology can significantly improve the accuracy of liver
diseases diagnosis.

3.3. The Fetal Ultrasound Standard Plane Detection. The
ultrasound imaging is one of the most common technologies
in the prenatal examination for being economic and safe.
Standard plane selection is one of the necessary phases in the
ultrasound examination [59, 60]. The clinician can estimate
subsequent biometric information of fetus from the fetal
ultrasound standard plane. Many scholars have attempted to
utilize the machine learning technology to detect the fetal
ultrasound standard plane automatically.With the popularity
of deep learning, the researchers began to utilize the deep
learning to distinguish the fetal ultrasound plane. The fetal
facial standard plane is one type of the fetal ultrasound
standard plane. From the fetal facial standard plane, the
doctor can measure the biparietal diameter of the fetus and
detect the malformation. Yu et al. employed the CNN to
classify the fetal ultrasound plane. Their method reached the
accuracy of 93.03%which ismuchhigher than the accuracy of
the traditional method [61]. However, the time consumption

of training which often takes more than 80 hours for the
method is very expensive.

The study of Yu et al. focuses on one type of the fetal
ultrasound standard plane. Their method cannot distinguish
other types of the fetal ultrasound standard plane. Chen et
al. proposed a deep learning framework which can detect
different types of the fetal ultrasound standard plane [62].
Chen et al. employed the CNN and long short-term memory
(LSTM) model to classify the fetal abdominal standard plane
(FASP), the fetal face axial standard plane (FFASP), and the
fetal four-chamber view standard plane (FFVSP).TheCNN is
responsible for extracting features from ROI images, and the
LSTM model is responsible for the classification. Although
themethod proposed by Chen et al. [62] can classify different
types of the fetal ultrasound standard, its performance is
slightly lower than the method in [61]. The accuracy of FASP
is 90.80%, the accuracy of FFASP is 86.70%, and the accuracy
of FFVSP is 86.70%.

Besides the fetal ultrasound standard plane, the deep
learning was also applied in the detection of fetal neu-
rosonographic diagnostic plane. The fetal neurosonographic
diagnostic plane can help the clinician to estimate the
growth of fetal head and detect the serious central nervous
system anomalies. Reference [63] proposed a method which
employed CNN to detect the fetal neurosonographic diag-
nostic plane. The experiment result shows that the method
in [63] has a similar accuracy to a specialist’s performance.

The fetal ultrasound standard plane detection is one of the
research fields where the deep learning can be applied. Unlike
the breast lesions diagnosis and liver diseases diagnosis, the
collection of the fetal ultrasound standard plane samples is
more convenient. There are sufficient samples which can be
utilized to train the deep learning network.

3.4. The Thyroid Nodule Diagnosis. The thyroid nodule is a
common disease upon a world scale.The ultrasound imaging
is a widely employed scheme to detect the thyroid nodule.
To support the doctor to diagnose the thyroid nodule, many
CAD systems were proposed. With the breakthrough of deep
learning, many scholars focus on the method which employs
the deep learning to classify the thyroid nodule. Chi et al.
employed the GoogLeNet to classify the thyroid nodule [27].
To address the shortage of data, Chi et al. utilized the Deep
Learning Caffe library [64] to fine-tune the GoogLeNet. The
accuracy of their method reached 99.13%. Reference [28]
presented a method which employed cascade CNN to detect
and classify the thyroid nodule. The cascade CNN in [28]
includes two CNNs. The first CNN was responsible for the
segmentation of thyroid nodules, and the second CNN was
utilized to classify the thyroid nodules.The experiment shows
that the cascade CNN method outperforms other traditional
machine learning methods.

The deep learning can improve the performance of
thyroid nodule diagnosis significantly. However, the time
consumption of train the deep learning network is also
enormous. In [28], the training time of cascade CNN which
is accelerated by GPU is more than 106 hours. The more
complex the model is, the larger the cost of training is.
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3.5.TheCarotidUltrasound Image Classification. Themortal-
ity of cardiovascular diseases increases yearly.The atheroscle-
rotic plaque is the major reason of cardiovascular diseases. In
the early detection of atherosclerosis, the intima-media thick-
ness (IMT) of the carotid artery is an important indicator.
IMT is the distance between the lumen-intima interface (LII)
and themedia-adventitia interface (MAI).The doctor usually
utilized the ultrasound image tomeasure the IMT. To support
the diagnosis of doctors, the researcher has attempted to
utilize the deep learning to acquire the IMT automatically.
Reference [65] utilized the autoencoder to segment LII and
MAI. The IMT was acquired by calculating the distance
between two levels. The error of the method in [65] is much
smaller than traditional methods.

Besides the calculation of IMT, the deep learning method
also is applied to detect the composition of plaque. Reference
[66] utilized CNN to classify different tissues of plaque
including lipid core, fibrous tissue, and calcified tissue. The
experiment shows that the classification accuracy of CNN is
much better than SVM.

3.6. Other Applications. Besides the application mentioned
above, there are some other applications of deep learning
on the ultrasound CAD system. The study in [67] applied
CNN to classify the type of myositis including inclusion body
myositis (IBM), polymyositis (PM), and dermatomyositis
(DM). Reference [67] compared the performances of CNN
and random forests. The accuracy of CNN for normal versus
affected tissues (DM, PM, and IBM) reached 76.2% which is
3.9% higher than this value of random forests. Hetherington
et al. designed a spine level identification system employing
CNN [68]. The system can accurately detect the vertebral
level so that the anesthesiologist can find the right site
to inject the anaesthetic. Cheng and Malhi utilized CNN
to classify the abdominal ultrasound images [69]. In the
paper, Cheng and Malhi divided the abdominal ultrasound
images into 11 categories including liver left longitudinal,
liver left transverse, liver right longitudinal, liver right trans-
verse, spleen, pancreas, kidney left longitudinal, kidney left
transverse, kidney right longitudinal, kidney right transverse,
and gallbladder. The mean accuracy of classification reached
77.9%.

4. Performance Summary

In this section, we summarized the performance of various
techniques in the different application fields. Table 1 shows
the performance of breast ultrasound CAD system. Table 2
shows the performance of liver ultrasound CAD system.
Table 3 shows the performance of thyroid ultrasound CAD
system.

5. Discussion and Conclusions

In this study, we summarized the literature about the ultra-
sound CAD system. This study divided the ultrasound CAD
system into two categories. One is the traditional ultrasound
CAD system which employs the manmade feature. The
major feature and major classifier adopted by the traditional

ultrasound CAD system are introduced. Another category is
the deep learning ultrasoundCAD systemwhich employs the
deep neural network to extract features and classify them.The
newest applications of deep learning on the ultrasound CAD
system were summarized.

As for the traditional ultrasound CAD system, the selec-
tion of feature impacts the performance of final diagnosis.
The common feature employed by traditional ultrasound
CAD system can be divided into four categories: textural
features, morphologic features, model-based features, and
descriptor features. The textural feature is one of the earliest
adopted features in the ultrasoundCADsystem. TEM,GLDS,
GLCM, and other textual features are widely applied in
the classification of liver diseases and breast lesions. The
morphologic feature is a powerful feature in the traditional
ultrasound CAD system. It contains the prior knowledge of
clinicians. Morphologic features like spiculation and depth-
to-width ratio are designed according to the experience of
clinicians. These features are extracted from the ultrasound
image automatically and are extensively adopted in the ultra-
sound CAD system. Model-based features are based on the
backscattered echo of ultrasound images. Nakagami model-
based features and 𝐾-distribution model-based features are
two common model-based features. The descriptor feature
is usually summarized from clinical experience. As for the
different application, the descriptor feature is different.

The classifiers employed by traditional ultrasound CAD
system are divided into 6 categories: linear classifier, Bayesian
method, SVM, decision tree, ANN, and AdaBoost. Both
of the linear classifier and Bayesian method are common
classifiers in the machine learning field. These two classifiers
are convenient to use. However, the performance of them
is not stable on all of the data. The decision tree is also a
simple algorithm, and the complexity of it is low. The SVM
is a powerful classifier. It can perform well even in the small
dataset. As for ANN, there is no certain rule in the design
of ANN. It is flexible and widely applicable. The AdaBoost
can integrate the output of weak classifiers to get a robust
classification result.

The largest difference between the deep learning ultra-
sound CAD system and traditional ultrasound CAD system
is the approach of extracting features. In the traditional
ultrasound CAD system, the feature is designed by the
human. But in the deep learning ultrasound CAD system, the
feature is extracted by deep learning network automatically.
This paper introduced the newest application of deep learning
on the ultrasoundCAD system.The application field includes
the breast lesion diagnosis, the liver lesion diagnosis, the
fetal ultrasound standard plane detection, the thyroid nodule
diagnosis, and the carotid ultrasound image classification.

This study summarized the performance of ultrasound
CAD in three fields including breast tumor classification, liver
diseases, and thyroid nodule diagnosis. It can be seen that
the dataset employed by these studies is different. There are
huge differences in the size and the modality of the dataset
employed by differentmethods. It is hard to fairly evaluate the
performance of different methods utilizing different datasets.
The construction of standard dataset for different ultrasound
CAD applications is an important task in further studies.
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Table 1: The performance summary of breast ultrasound CAD system.

Reference Dataset Features Classifiers Performance

[14] 88 benign
90 malignant

Textural features
+

morphologic
features

ANN (BPNN)
Accuracy: 95.86%
Sensitivity: 95.14%
Specificity: 96.58%

[15] 70 benign
50 malignant

Textural features
+

morphologic
features

SVM
Accuracy: 95.83%
Sensitivity: 96%
Specificity: 95.71%

[16]
4254 benign

3154
malignant

GoogLeNet
Accuracy: 91.23%
Sensitivity: 84.29%
Specificity: 96.07%

[17] 135 benign
92 malignant

Boltzmann
machine

Accuracy: 93.4%
Sensitivity: 88.6%
Specificity: 97.1%

[18]
275 benign

245
malignant

Stacked denoising
Autoencoder

(SDAE)

Accuracy: 82.4%
Sensitivity: 78.7%
Specificity: 85.7%

[19]
100 benign

100
malignant

Deep
polynomial
network

SVM
Accuracy: 92.40%
Sensitivity: 92.67%
Specificity: 91.36%

Table 2: The performance summary of liver ultrasound CAD system.

Reference Dataset Features Classifiers Performance

[20]
50 normal
50 fatty liver
disease (FLD)

Textural features ANN
Accuracy: 98%
Sensitivity: 100%
Specificity: 96%

[21]

15 normal
16 cirrhotic

25 hepatocellular
carcinoma (HCC)

Textural features SVM Accuracy: 88.8%

[22]

44 cyst
18 hemangioma

30 HCC
16 normal

Sparse autoencoder
Accuracy: 90.50%
Sensitivity: 91.60%
Specificity: 88.50%

[23]

79 normal
89 early-stage

fibrosis
111 late-stage

fibrosis

VGGNet FCN
Accuracy: 93.90%
Sensitivity: 88.6%
Specificity: 97.1%

[24] 47 cirrhosis
44 normal CNN SVM Accuracy: 86.9%

Table 3: The performance summary of thyroid ultrasound CAD system.

Reference Dataset Features Classifiers Performance

[25] 48 benign
223 malignant Textural features Decision tree:

C4.5 Accuracy: 94.3%

[26] 10 benign
10 malignant Textural features AdaBoost

Accuracy: 100%
Sensitivity: 100%
Specificity: 100%

[27] 71 benign
357 malignant GoogLeNet

Accuracy: 99.13%
Sensitivity: 99.70%
Specificity: 95.80%

[28]
465 normal
9957 thyroid

nodular lesions

CNN (15
convolutional

layers)

CNN (4
convolutional

layers)
AUC: 0.986
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On the other hand, the collection of ultrasound data
is also a problem. Deep learning methods require plenty
of samples to train the network. However, the size of the
dataset employed by most of the studies mentioned above is
still small. The shortage of ultrasound samples is one of the
obstacles in the way of applying deep learning.
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