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Nonviral transposon piggyBac (PB) and lentiviral (LV) vectors have been used to deliver
chimeric antigen receptor (CAR) to T cells. To understand the differences in the effects of
PB and LV on CAR T-cell functions, a CAR targeting CD19 was cloned into PB and LV
vectors, and the resulting pbCAR and lvCAR were delivered to T cells to generate
CD19pbCAR and CD19lvCAR T cells. Both CD19CAR T-cell types were strongly
cytotoxic and secreted high IFN-g levels when incubated with Raji cells. TNF-a
increased in CD19pbCAR T cells, whereas IL-10 increased in CD19lvCAR T cells.
CD19pbCAR and CD19lvCAR T cells showed similar strong anti-tumor activity in Raji
cell-induced mouse models, slightly reducing mouse weight while enhancing mouse
survival. High, but not low or moderate, concentrations of CD19pbCAR T cells significantly
inhibited Raji cell-induced tumor growth in vivo. These CD19pbCAR T cells were
distributed mostly in mesenteric lymph nodes, bone marrow of the femur, spleen,
kidneys, and lungs, specifically accumulating at CD19-rich sites and CD19-positive
tumors, with CAR copy number being increased on day 7. These results indicate that
pbCAR has its specific activities and functions in pbCAR T cells, making it a valuable tool
for CAR T-cell immunotherapy.

Keywords: chimeric antigen receptor, CD19, B lymphoma, piggyBac, T cells, lentiviral
INTRODUCTION

Chimeric antigen receptor (CAR) T-cell immunotherapy has shown promise in the treatment of
hematologic malignancies. CD19-targeted CAR T cells were found to induce complete remission
of disease in up to 90% of patients with relapsed or refractory B-cell acute lymphoblastic leukemia
(B-ALL) who had an expected complete response rate to chemotherapy of 30% (1). However, due to
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the stringent requirements in the preparation of CD19CAR T
cells, the estimated cost of treatment with Zuma-1 ranged from
$896,600 to $1,615,000 per quality-adjusted life-year gained (2),
and each treatment with Tisagenlecleucel was estimated to cost
$475,000 (3). To reduce costs, a more economic approach is
needed to produce CAR T cells.

The gene delivery tool is key to the generation of CAR T cells,
with viral and nonviral vectors frequently utilized for gene
delivery. Viral vectors include adenoviral (AV), adeno-
associated viral (AAV), and lentiviral (LV) vectors. AV vectors
have immunogenic properties when directly administered
in vivo, whereas LV vectors require large-scale production by
living cells (4). Nonviral delivery systems include cationic lipids
and cationic polymers (5), as well as nonviral plasmids.
Transposons are natural vectors for gene delivery (6). These
vectors, which carry a gene expression unit called a “transgene,”
can overcome some of the limitations of viral vectors (4). Three
transposons have been described to date, sleeping beauty (SB),
Tol2, and piggyback (PB). PB and SB have high transposition
activities in mammalian cells, with PB having stronger activity
(7) and encompassing larger chromatin loops (8) than SB.
Because it leaves no footprint after excision, PB is less likely to
cause genomic damage during mutagenesis (9). The use of PB
transposition to express a CAR resulted in the generation of CAR
T cells targeting CD19, which can be used to treat patients with
B-lineage malignancies and acute lymphoblastic leukemia
(10, 11).

CAR T cells could be economically developed by generating a
piggyBac transposase through an established one-plasmid
screening system and a two-step high-throughput screening
process. The most hyperactive transposase, bz-hyPBase, with
four mutation sites showed high-efficiency editing ability in
Chinese hamster ovarian carcinoma (CHO) cells and T cells
(12). Similarly, piggyBac transposons have been used to develop
CAR T cells for mesothelin (13–15), EGFR (16), and glypican-3
(17). This study evaluated the abilities of pbCAR and lvCAR to
generate CD19CAR T cells and the activities of these cells in vitro
and in vivo. Both formulations of CD19CAR T cells increased
interferon-g (IFN-g) levels when incubated with Raji cells. tumor
necrosis factor-a (TNF-a) was increased in CD19pbCAR T cells,
whereas IL-10 was increased in CD19lvCAR T cells. High doses
of CD19pbCAR T cells showed strong cytotoxic activity against
Raji cells in vitro and Raji cell-induced tumors in vivo, and mice
treated with CD19pbCAR T cells survived longer and at high
rates. These results demonstrated that pbCAR may become an
effective tool for generating CAR T cells that can be used in
cancer immunotherapy.
MATERIALS AND METHODS

Cell Lines
CD19+ Raji cells were purchased from the American Type
Culture Collection (ATCC, Shanghai, China). CD19KO Raji
cells were generated from Raji cells by CRISPR/Cas9-mediated
knockout of CD19 through GeneScript. Luciferase-expressing
Raji cells (Raji-Luc-C8) were purchased from Beijing Idmo Co.,
Frontiers in Immunology | www.frontiersin.org 2
Ltd. (Beijing, China). All of these cells were cultured in RPMI-
1640 medium containing 10% fetal calf serum at 37°C in an
atmosphere containing 5% CO2.

Generation and Expansion of CD19pbCAR
T Cells or CD19pbCAR T-luc Cells and
CD19lvCAR T Cells or CD19lvCAR
T-luc Cells
DNA sequences encoding a second-generation CAR containing
an FMC63-derived scFv domain for CD19 and a 4-1BB
costimulation domain were cloned into pNB338B-EF1a vector
with c-myc (nuclear localization signal (NLS)) containing the PB
transposon, yielding CD19pbCAR, and into lentiviral vector,
yielding CD19lvCAR. PiggyBac vector alone was used as control
yielding Mock T (Figure 1A). All plasmids were verified by
sequencing before transfection.

Peripheral bloodmononuclear cells (PBMCs) fromwhole blood
were purchased from AllCells (Shanghai, China) and isolated by
Ficoll density gradient centrifugation (Cat#17-5442-03,GE).A total
of 1 × 107 PBMCs in reaction buffer were electroporated with 6 mg
Mockplasmid, CD19pbCAR, orCD19pbCART-luc using a Lonza/
VPA-1002 device. The cells were gently and immediately
transferred to 6-well plates with prewarmed AIM-V medium
(Cat# A3021002, Life Technologies, Carlsbad, CA, USA) and
incubated for 4 h. The cells were subsequently transferred to
plates coated with standard cell stimulation solution containing
anti-CD3 (clone 145-2C11, BD Pharmingen, San Diego, CA, USA)
or CD19 (Cat# CD9-H5259, Acro, Newark, DE, USA) and anti-
CD28 mAb (Cat#A028H, Shanghai Cell Therapy Group Corp.,
Shanghai, China) in AIM-V medium supplemented with
interleukin-2 (IL-2; Cat# S20020004, Shandong Quangang
Pharmaceutical Co., Jinan, China) and CTS™ immune cell serum
replacement (Cat#A2596101, Life Technologies) and incubated for
5 days. The activated cells were expanded in AIM-V medium with
100 UI IL-2 until day 13. Aliquots of cells were withdrawn every 2
days and counted using a Cellometer K2 cell counter (Nexcelom
Bioscience, Lawrence, MA, USA). CD19pbCAR T cells were
harvested and cryopreserved for later characterization and
functional analysis.

CD19lvCAR and CD19lvCAR-luc were designed in our
laboratory; their proliferation and purification were performed
by Shanghai Genechem Company (Shanghai, China). T cells
were infected with the lentiviral CARs according to the
manufacturer’s instructions. The infected cells were cultured
under the same condition as CD19pbCAR T cells.

Cytotoxicity Assay
CAR-mediated cytotoxicity was tested using DELFIA EuTDA
cell cytotoxicity assays. Briefly, 1 × 105 Raji cells were labeled
with BATDA for 30 min at 37°C, followed by washing three
times with PBS to remove excess BATDA. CD19pbCAR T cells
and CD19lvCAR T cells were added to the BATDA-labeled Raji
cells in 96-well V-bottom plates at effector/target (E:T) cell ratios
of 16:1, 8:1, 4:1, 2:1, and 1:1, and the plates were incubated at
37°C for 4 h in an atmosphere containing 5% CO2. Europium
solution was added, and the supernatants were harvested and
their absorbance was measured using an automatic microplate
January 2022 | Volume 12 | Article 802705
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reader (Perkin Elmer Envision). Percent-specific lysis was
calculated as (readout − spontaneous release)/(maximum
release − spontaneous release) × 100.

Cytokine Assays
The concentrations of cytokines released by CD19pbCAR T cells
were measured using human Th1/Th2 cytokine II assay kits.
CD19pbCAR T cells were thawed, washed with AIM-V medium,
and cocultured with Raji cells at E:T ratios of 16:1 to 1:1 for 24 h.
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A 100-µl aliquot of supernatant was withdrawn for cytokine
detection by flow cytometry (Beckman Coulter, Brea, CA, USA).
The cytokines IL-2, IFN-g, TNF-a, IL-4, IL-6, and IL-10 were
measured with corresponding antibodies and analyzed with
FCAP Array v3.0 software.

Analysis of Phenotype of CAR T Cells
The phenotypes of CAR T cells were analyzed during expansion.
CAR+ cells were incubated with CD19-biotin (GeneScript,
A

B

D

C

FIGURE 1 | Generation and characterization of CD19CAR T cells with different vectors. (A) Construction maps of piggyBac (PB) Mock, piggyBac-CD19CAR, and
lentivirus (lv)-CD19CAR. (B) Rates of CAR T-cell positivity for vectors over time. CAR T cells were electroporated with piggyBac Mock or piggyBac-CD19CAR or
infected with lv-CD19CAR. (C) Cytotoxicity of Mock T, CD19pbCAR T, and CD19lvCAR T cells against CD19+ Raji cells at days 10 and 15. (D) Cytokine levels in the
medium after incubation of Mock T, CD19pbCAR T, and CD19lvCAR T cells with 1 × 105 Raji cells for 4 h. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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Piscataway, NJ, USA) followed by PE-avidin. Cytotoxic CD8+ T
cells and helper CD4+ T cells were measured using FITC-
conjugated antihuman CD4 and PE-conjugated antihuman
CD8 antibodies. Central memory T (Tcm) cells were measured
using APC-conjugated antihuman CD45RO and FITC-
conjugated antihuman CD197 (CCR7) antibodies. Exhausted T
cells were measured using PE-conjugated antihuman CD279
(PD-1), Brilliant Violet 510™-conjugated antihuman CD223
(LAG3), and APC/cyanine7-conjugated antihuman CD366
(Tim-3) antibodies. Samples were assayed on a Navios™ flow
cytometer (Beckman Coulter, Brea, CA, USA) and analyzed
using Kaluza analysis software. All of the above antibodies
were purchased from BioLegend or BD Bioscience.

In Vivo Evaluation of CD19pbCAR T Cells
in a Mouse Model
1) To compare the effects of CD19pbCAR T cells and
CD19lvCAR T cells against Raji cell-induced tumors, 1.0 × 106

Raji-luc cells were injected into the tail veins of 6- to 8-week-old
female NPI (NOD-Prkdcscid-il2rgem1IDMO) mice (Beijing IDMO
Co., Beijing, China), which were maintained in standard sterile
rooms with daily monitoring. The mice were randomly divided
into three groups of six mice each and were injected
intravenously with 2 × 107 CD19pbCAR T cells, CD19lvCAR
T cells, or PBS (control group). Tumor developed was assessed
weekly by bioluminescence imaging using the Caliper IVIS-
Lumina-XR (Figure 3).

2) The in vivo efficacy of CD19pbCAR T cells was assessed in
a Raji-Luc-C8 xenograft model, which was established by
intravenously injecting 1 × 106 Raji-Luc-C8 cells into NPI
mice. Ten days after injection, the 40 mice were randomly
divided into five groups of eight mice each. These groups were
intravenously injected with vehicle, 2.5 × 106 Mock T cells, 2.5 ×
106 CD19pbCAR T cells (low dose), 5.0 × 106 CD19pbCAR T
cells (middle dose), or 10 × 106 CD19pbCAR T cells (high dose).
Bioluminescence was assessed using a Xenogen IVIS Spectrum
System (PerkinElmer, USA) (Life Technologies, USA) on days 0,
3, 7, 14, 28, 42, 50, and 61 (Figure 5A).

3) To measure tumor volume, Raji cells were injected
subcutaneously into 24 NPI mice. The mice were randomly
divided into three groups, followed by injection into the tail vein
of vehicle, 2.5 × 106 Mock T cells and 10 × 106 CD19CAR T cells.
Tumor length and width were measured every 3 days with
Vernier calipers for 24 days, and tumor volume were
calculated as length × width 2/2 (Figure 5D).

4) The distribution of CD19pbCAR T cells was assessed in
NPI (NOD-Prkdcscid-il2rgem1IDMO) mice (Shanghai Biocytogen
Company). A single dose of 1 × 106 Raji-Luci-C8 cells was
administrated to each of 21 mice, followed up 9 days later by
intravenous injection of 1 × 107 CD19pbCAR T cells. Three mice
each were sacrificed by isoflurane administration on days 1, 3, 7,
10, 15, 22, and 29. Samples of the brain, liver, spleen, heart, lungs,
kidneys, mesenteric lymph nodes, bone marrow of the femur and
sternum, stomach, duodenum, pancreas, uterus, and ovaries
were collected, and DNA was extracted using DNeasy Blood &
Tissue Kits (Qiagen, Hilden, Germany). CD19pbCAR T cell
Frontiers in Immunology | www.frontiersin.org 4
distribution in these tissues were assessed by quantitative PCR
using primers and probes for CD19pbCAR and b-actin designed
and synthesized by Sangon Biotech (Shanghai, China)
(Figures 6A, B).

To test selective binding of CD19+ cells, 1 × 107 Raji cells were
subcutaneously injected into right low backs of NOD-prkdSCID
IL-2Rg−/− mice (B-NSG, Beijing Biocytogen Co., Ltd). When the
tumors had grown to about 200 mm3 in size, the mice were
administered 2 × 107 CD19pbCAR T-luc cells or Mock T-luc
cells via the tail vein. Fluorescent signals of CD19pbCAR T-luc
cells were monitored on days 1, 7, 14, and 20 using IVIS-Lumina-
XR calipers (Figures 6C, D).

To evaluate pharmacodynamics and toxicity, clinical
symptoms were observed every day, whereas body weights and
fluorescence intensities were measured as described. All mice
were sacrificed at 40 weeks.
Statistical Analysis
All data are presented as mean ± SD. Differences between two
independent groups were evaluated by Student’s t-tests, whereas
difference among three or more groups was evaluated by one-
way ANOVA. Survival was analyzed by the Kaplan-Meier
method and compared by log-rank tests. All statistical analyses
were performed using GraphPad Prism 6.0, with p < 0.05
considered statistically significant.
RESULTS

Construction of CD19pbCAR and
CD19lvCAR and Expansion of CAR T Cells
DNA sequences encoding a full single-chain variable fragment
(scFv) for CD19 was fused with a CD8a hinge, a 4-1BB
transmembrane domain, and a CD3z intracellular signaling
domain and inserted into a piggyback transposon or a
lentivirus (Figure 1A). The resulting pbCAR was amplified in
Escherichia coli and purified with a plasmid endotoxin-free kit.
Lentiviral CAR was prepared by the Shanghai Genechem
Company. Human lymphocytes were isolated from the
peripheral blood of normal donors and expanded as described
(15). Briefly, 6 µg of CD19pbCAR or MOCK vector were
transfected into 1 × 106 T cells by electroporation (Lonza,
Basel, Switzerland). Alternatively, T cells were infected with
CD19lvCAR at a MOI of 10. The cells were incubated in AIM-
V medium (GIBCO, Waltham, MA, USA) containing anti-CD3
and anti-CD28 antibodies and IL-2. Measurement of the
percentages of CAR+ cells after 3 days showed that 30%–50%
of CD19pbCAR T cells and 50%–58% of CD19lvCAR T cells
were positive for CAR (Figure 1B).
Activities and Phenotypes of CD19pbCAR
T Cells and CD19lvCAR T Cells
Compared with Mock T cells, both CD19pbCAR T cells and
CD19lvCAR T cells were highly cytotoxic (Figure 1C).
January 2022 | Volume 12 | Article 802705
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The activities of two vectors were analyzed by measuring the
cytokine concentrations of Mock T cells, CD19pbCAR T cells,
and CD19lvCAR T cells 11 and 14 days after their incubation
with 1 × 105 Raji cells for 4 h. Compared with Mock T cells, both
types of CAR T cells had significantly higher levels of IFN-g
(Figure 1D). CD19pbCAR T cells showed increased levels of IL-
4 on day 14 and TNF-a on days 11 and 14, whereas CD19lvCAR
T cells showed increased levels of IL-10 on days 11 and 14
(Figure 1D). Interestingly, levels of IL-2 and IL-6 were not
significantly altered (Figure 1D).

Flow cytometry analysis of cell phenotypes showed that the
numbers of CD4+CAR+T cells were increased while the levels of
CD8+CAR+T cells were decreased in both preparations of CAR T
cells (Figure 2A). However, Tcm levels in CD19pbCAR T were
increased (Figure 2B). The number of Tcm is an important
marker in the evaluation of CAR T cell functions. Evaluation of
the expression of exhaustion markers showed that PD-1
expression was increased in both preparations of CAR T cells,
whereas LAG3 expression was increased only in CD19lvCAR T
cells. TIM3 levels did not change in either preparation of CAR T
cells (Figure 2C).

To determine if CD19pbCAR T could specifically target
CD19 on cell surfaces, its effects on Raji cells in which the
CD19 gene had been knocked out by CRISPR/Cas9 was tested.
Although CD19pbCAR T cells killed CD19+ WT Raji cells at E:T
ratios of 4:1 and 16:1, CD19pbCAR T cells were not cytotoxic to
CD19KO Raji cells at any E:T ratio (Figure 2D). The results
demonstrate that the scFv used by CD19pbCAR T cells to target
CD19 is specific and effective.
Frontiers in Immunology | www.frontiersin.org 5
Comparison of CD19pbCAR T Cells with
CD19lvCAR T Cells in Treatment of Raji
Cell-Induced Tumors in a Xenograft Model
To determine the efficiency of the pb and lv vectors in the
preparation of CAR T cells, the tumoricidal effects of
CD19pbCAR T cells and CD19lvCAR T cells in an in vivo
xenograft mouse model were tested. Raji cells were injected into
mouse tail veins, followed by administration of 1 ml PBS, 2 × 107

CD19pbCAR T cells of 2 × 107 CD19lvCAR T cells. Raji cells
induced tumors in many tissues in the PBS group but these tumors
were strongly inhibited by administration of CD19pbCAR T cells
andCD19lvCARTcells (Figure 3A,B). Neither of theseCARTcell
preparations affected mouse body weight during treatment
(Figure 3C), whereas more mice treated with CD19pbCAR T
cells than with CD19lvCAR T cells survived (Figure 3D).
Proliferation and Activities of CD19pbCAR
T Cells
To determine the activities of CD19pbCAR T cells, the numbers
of cells were measured from day 5 to day 14 after electroporation
or infection with CAR vectors. Both Mock T and CAR T cells
proliferated gradually, with no difference in growth rates
(Figure 4A). To test their cytotoxicity, CD19pbCAR T cells
were incubated with Raji cells at E/T ratios of 1:1, 2:1, 4:1, 8:1,
and 16:1 for 24 h, and OD values were measured by Synergy H1
Hybrid Reader (BioTek, Bad Friedrichshall, Germany).
CD19pbCAR T cells were found to have a stronger cytotoxic
effect on CD19+ Raji cells than Mock T cells (Figure 4B).
A B

C D

FIGURE 2 | Phenotypes and specificities of CD19pbCAR T cells and CD19lvCAR T cells. (A) Proportions of CD4 and CD8 T cells measured on day 13 by flow
cytometry. (B) Proportions of Tcm cells measured on days 10 and 13 by flow cytometry. (C) Expression of exhaustion markers (PD-1, LAG3, and TIM3) by flow
cytometry on day 13. (D) Specificity of CD19pbCAR T cells, as shown by incubation with CD19KO Raji cells. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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Cytokines in themediumwerealsodetectedbyflowcytometry.At
all cell ratios, the levels of IFN-g, IL-4, IL-2, and TNF-a were higher
with CD19pbCAR T cells than with Mock T cells (Figure 4C).
Compared with Mock T cells, CD19pbCAR T cells increased IL-2
levels at low E/T ratios but not at the highest ratio (16:1). TNF-a had
pattern similar to IL-2. Interestingly, CD19pbCAR T cells did not
increase the level of IL-6 except at a 2:1 ratio, whereas IL-10 levels
were slightlyhigherwithCD19pbCARTcells thanwithMockTcells.
These findings suggested that CD19pbCAR T cells were more
cytotoxic and had fewer effects.

High Dose of CD19pbCAR T Cells
Suppressed the Growth of Raji Cells in a
Murine Hematological Malignancy Model
NPI mice at age 6 weeks were injected in the tail veins with 1 ×
106 Raji-Luc-C8 cells. Ten days later, mice with tumors were
injected with 2.5 × 106 (low dose), 5.0 × 106 (middle dose), or 10 ×
106 (high dose) CD19pbCAR T cells, or with vehicle or 2.5 × 106

Mock T cells. Assessment of fluorescent signals from the Raji-Luc-
C8 cells showed that these cells grew cells continually in the vehicle
and Mock T cell groups but were inhibited in mice injected with
low- and middle-dose CD19pbCAR T cells (Figure 5A). Some of
the mice in the vehicle, Mock T cell, low- and middle-dose
CD19pbCAR T-cell groups died by day 14, whereas none of the
Frontiers in Immunology | www.frontiersin.org 6
mice in the high-dose CD19pbCAR T-cell groups died. Except for
mice in the high-dose CD19pbCAR T-cell group, all of the mice in
other groups died by day 28 (Figure 5B). Injection of a high dose of
CD19pbCAR T cells significantly eliminated tumor cells, showing
very low flux reads (Figure 5C). Measurements of tumor volumes
showed that tumors in the high-dose CD19pbCAR T-cell group
were much smaller than tumors in the other groups, indicating that
CD19pbCAR T cells can effectively eliminate CD19+ tumor
cells (Figure 5D).

CD19pbCAR T Cell Distribution in Mice
and Their Specific Targeting of
Subcutaneous CD19 + Tumor
To determine the distribution and specific effect of CD19pbCAR T
cells in mouse tissues, CD19pbCAR T cells were injected into NPI
mice. Their tissues were collected at the indicated times, and the
number of copies of CD19CAR in these tissues was analyzed by
qPCR (Figure 6A). Higher concentrations of CAR T cells were
observed in mesenteric lymph nodes, bone marrow of the femur,
spleen, kidney, and lungs than in the brain, pancreas, stomach, liver,
heart, uterus, ovaries, and duodenum (Figure 6A). Concentrations
of CD19pbCAR T-luc cells showed two peaks on days 1 and 7
(Figure 6B). To assess the specific translocation of CD19pbCAR T
cells, 1 × 107 Raji cells were subcutaneously injected into the right
A B

C D

FIGURE 3 | Comparison effects of CD19pbCAR T cells and CD19lvCAR T cells against Raji cell-induced tumors in a xenograft model. (A) Luciferase imaging,
showing systemic trafficking and tumor accumulation of Raji cells. 1 x 106 Raji-luc-C8 cells were injected into the tail veins of NPI mice, followed by the injection of
the same volumes of PBS (vehicle), 1×107 CD19pbCAR T cells and 1×107 CD19lvCAR T cells. Fluorescence in each mouse was evaluated by the Caliper IVIS-
lumina-XR on days 0, 4, 7, 11, and 14. (B) Measurements of tumor volumes at the indicated times. (C) Body weights of mice measured at the indicated times.
(D) Numbers of surviving and dead mice determined until day 40. *p<0.05; **p<0.01; ***p<0.001.
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A C

B

FIGURE 4 | Proliferation and activities of CD19pbCAR T cells. (A) Proliferation of CD19pbCAR T cells 5-13 days after electroporation. (B) Cytotoxicity of Mock-T
and CD19pbCAR T cells against Raji cells at different E:T ratios. (C) Cytokine levels of Mock-T and CD19pbCAR T cells 13 days after incubation with 1×105 Raji
cells for 4 hours at different E:T ratios. *p<0.05; **p<0.01; ***p<0.001.
A

B C D

FIGURE 5 | High concentration of CD19pbCAR T cells eliminated the growth of Raji cells in a murine model of hematological malignancy. (A) Luciferase imaging,
showing systemic trafficking and tumor accumulation of Raji cells; 1 × 106 Raji-luc-C8 cells were injected into the tail veins of NPI mice 10 days, followed by the
injection of medium (vehicle), Mock T cells, or 2.5 × 106 (low dose), 5.0 × 106 (middle dose), or 10 × 106 (high dose) CD19pbCAR T cells. Fluorescence in each
mouse was evaluated by the Caliper IVIS-lumina-XR on days 0, 3, 7, and 14. (B) Numbers of surviving mice in the five groups. (C) Measurement of total
fluorescence density of Raji tumor cells in each mouse at the indicated times. (D) Change in tumor volume in mice administered high dose CD19pbCAR T cells.
**p<0.01; ***p<0.001.
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side of mouse abdomens. When tumor nodule volumes reached
about 200 mm3, 2 × 107 of CD19pbCAR T-luc or Mock T-luc cells
were injected intomouse tail veins, and bioluminescence, reflecting
the distribution of CD19pbCAR T cells and Mock T cells, was
evaluated on days 1, 7, 14, and 20 (Figure 6C). Both Mock T cells
and CD19pbCAR T cells were distributed in most tissues over the
first 24 h after injection. On days 7 and 14, fluorescence was
observed on the right side in the supine position and on the left
side in the prone position. After 20 days, fluorescence was observed
Frontiers in Immunology | www.frontiersin.org 8
only at the sites ofRaji cell injection, suggesting thatCD19pbCART
cells selectively migrate to the locations of CD19+ Raji cells.
DISCUSSION

Human T cells with CD19CAR delivered by PB transposon
demonstrated antitumor activity against CD19+ cells both
A

B

D

C

FIGURE 6 | Distribution and specific accumulation of CD19pbCAR T cells. (A) Copies of pbCAR in tissues; 1 × 106 Raji tumor cells were injected into the tail veins
of 21 NPI mice, followed 9 days later by intravenous injection of 1 ×107 CD19pbCAR T cells. Three mice each were euthanized on days 1, 3, 7, 10, 14, 22, and 29
for collection of tissues and blood. (B) Copies of pbCAR in the blood of the mice, as determined by qPCR, at the indicated times. (C) CD19pbCAR T cells
specifically target transplanted tumor; 1 × 106 Raji tumor cells were injected subcutaneously into the right back sides of mice. When tumor volume reached 200
mm3, the mice were injected with 2x107 Mock T-luc or CD19pbCAR T-luc cells. Fluorescent images were taken at the indicated times. (D) Measurements of total
body fluorescence and tumor volume. **p<0.01.
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in vitro and in vivo. These CD19pbCAR T cells strongly
inhibited tumor cells in an animal model. The CD19pbCAR
T cells were initially distributed widely throughout the body of
these mice but migrated over time to the tumor site.
Evaluation of CAR copy numbers showed two peaks after
infusion, the first one day 1 after infusion and the second peak
on day 7, suggesting the expansion of these CD19pbCAR T
cells in vivo. Clinically, the injection of CD19pbCAR T cells
would likely eliminate CD19+ tumor cells in the treatment of
patients with B-cell malignancies.

Tcm cells show superior persistence and antitumor immunity
in T-cell therapy, making them essential for treatment efficacy
(18, 19). The present study found that the numbers of Tcm cells
was greater in preparations of CD19pbCAR-transduced than of
CD19lvCAR-infected T cells. The concentrations of IFN-g, IL-4,
and TNF-a were higher in CD19pbCAR T cells, suggesting that
these cytokines were responsible for cytotoxicity. IFN-g is
required for cytotoxicity, whereas IL-4 is important for CAR
T-cell expansion.

Cytokine releasing syndrome (CRS) is a major concern when
CAR T cells are infused in cancer immunotherapy. IL-6 plays a
critical role in the CRS. Interestingly, the concentrations of IL-6
and of the inhibitory cytokine IL-10 were not affected by
CD19pbCAR, regardless of the E:T ratio. These findings
suggest that CD19pbCAR T cells may have a relatively weak
CRS in vivo.

Distribution analysis showed that injected CD19pbCAR T
cells concentrate in the lymph nodes, bone marrow, spleen,
kidneys, and lungs. CAR T cells spread most into hematologic
tissues, where they may help eliminate the malignancies of the
hematologic system. This study did not compare the
distributions of CD19pbCAR T cells with CD19lvCAR T cells
because previous studies have evaluated the distribution of
lentiviral vectors for T-cell engineering (20). Better
understanding of the properties of CD19pbCAR T may enable
the design of more economical cellular medicines for
cancer therapy.

The PB transposon (21) is active only when cotransfected
with a PB transposase expression vector. Acting together, the
transposon and transposase can integrate a gene into the genome
of cells through a “cut and paste” mechanism. The PB
transposon and transposase are introduced into T cells by
electroporation, allowing them to stably express CD19-specific
CAR (10) or the 4-D nucleofector system (11). Lentiviral delivery
of CAR into T cells has been utilized in many clinical trials and
cell drug products. Although lentiviral infection is more efficient
than piggyBac transduction by electroporation, the piggyBac
system generally uses TTAA as integration target sites. In
addition, the piggyBac system does not require DNA synthesis
during the actual transposition event and can maintain CAR
expression for a longer period of time (22, 23).

The PB transposon has also been used to generate other CAR
T cells, including anti-HER2 CAR T cells to treat HER2-positive
tumors (24) and antigranulocyte-macrophage colony-
stimulating factor receptor (GMR, CD116) CAR T cells to treat
juvenile myelomonocytic leukemia (JMML) (25). This system
has been shown to be efficient in the genetic modification of
Frontiers in Immunology | www.frontiersin.org 9
human T cells (26) and shows a lack of preference for integration
into or near known proto-oncogenes (27). To improve the
therapeutic efficacy of CAR T cells in an immunosuppressive
tumor microenvironment, plasmids encoding CRISPR/Cas9 to
disrupt the PD-1 gene and the piggyBac transposon to express
CD133-specific CAR were cotransfected into human primary T
cells. The resulting PD-1-deficient CD133-specific CAR T cells
showed greater proliferation and cytotoxicity in vitro and
enhanced inhibition of glioma growth in a mouse model in
vivo (28). The present study found that CD19pbCAR T cells had
similar antitumor activity and weak activation of IL-6, simplified
the steps required to prepare the vectors and reduced the cost of
preparation of CAR T cells (data not shown). These findings
suggest the need for clinical studies testing the use of PB in CAR
T cell immunotherapy.
CONCLUSION

This study showed that piggyBac-based CD19pbCAR T cells
demonstrated high proliferation ability and strong cytotoxic
activity in eliminating Raji cells in vitro and Raji cell-induced
xenograft tumors in vivo. Upon injection, CD19pbCAR T cells
localize to mesenteric lymph nodes, bone marrow of the
femur, spleen, kidneys, lungs, and CD19-rich areas.
Compared with CD19lvCAR T cells, CD19pbCAR T cells
exhibited increased levels of INF-g, TNF-a, and IL-4 and
numbers of Tcm cells. The slight effects of these cells on IL-6
and IL-10 levels may reduce the risk of CAR T-cell-associated
side-effects. Taken together, these results indicate that
CD19pbCAR may be a valuable vector for cell drug-specific
treatment of CD19+ B-cell malignancies.
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