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Abstract

Determining how genetic polymorphisms enable certain fungi to persist in mammalian hosts can improve understanding of opportunistic
fungal pathogenesis, a source of substantial human morbidity and mortality. We examined the genetic basis of fungal persistence in mice
using a cross between a clinical isolate and the lab reference strain of the budding yeast Saccharomyces cerevisiae. Employing chromo-
somally encoded DNA barcodes, we tracked the relative abundances of 822 genotyped, haploid segregants in multiple organs over time
and performed linkage mapping of their persistence in hosts. Detected loci showed a mix of general and antagonistically pleiotropic effects
across organs. General loci showed similar effects across all organs, while antagonistically pleiotropic loci showed contrasting effects in the
brain vs the kidneys, liver, and spleen. Persistence in an organ required both generally beneficial alleles and organ-appropriate pleiotropic
alleles. This genetic architecture resulted in many segregants persisting in the brain or in nonbrain organs, but few segregants persisting in
all organs. These results show complex combinations of genetic polymorphisms collectively cause and constrain fungal persistence in
different parts of the mammalian body.
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Introduction
Fungi are a major class of opportunistic human pathogen, infect-
ing billions and killing millions of people per year (Brown et al.
2012; Almeida et al. 2019). Hundreds of diverse fungal species are
known to infect humans (Kohler et al. 2014). These fungi mainly
infect the immunocompromised, an increasing segment of the
global population due to improvements in medicine that have
lowered the mortality associated with life-threatening conditions
(Kohler et al. 2014). Such opportunistic infections can be difficult
to treat (Borman et al. 2008; Kohler et al. 2014; Brown and May
2017; Almeida et al. 2019), but the identification of mechanisms
enabling fungi to cause these infections may facilitate the devel-
opment of more effective antifungal therapies (Clemons et al.
1994; McCusker et al. 1994; Byron et al. 1995; Kumamoto 2008a,
2008b; Scorzoni et al. 2017; Nivoix et al. 2020).

Many opportunistic fungal pathogens can be challenging to
work with genetically (Hickman et al. 2013; Cavalheiro and
Teixeira 2018). However, the budding yeast Saccharomyces cerevi-
siae, one of the main eukaryotic model organisms in biology, is
also an opportunistic pathogen, with numerous isolates obtained
from clinical infections (Clemons et al. 1994; McCusker et al. 1994;
Byron et al. 1995; Goldstein and McCusker 2001; McCusker 2006;

Strope et al. 2015). Humans are regularly exposed to S. cerevisiae,

as it occurs naturally in the environment and is used in the pro-

duction of beer, wine, bread, chocolate, and other foods and die-

tary supplements (Gallone et al. 2016; Ludlow et al. 2016; Khatri

et al. 2017; Peter et al. 2018; Fay et al. 2019). Notably, S. cerevisiae is

in the same family of Ascomycete yeasts as Candida, the main ge-

nus involved in opportunistic fungal infections (Cannon and Kirk

2007).
The ability to infect immunocompromised humans varies

among S. cerevisiae strains (McCusker et al. 1994), with clinical iso-

lates found throughout the species’ genealogy (Liti et al. 2009;

Strope et al. 2015). Despite their lack of genetic relatedness, clini-

cal S. cerevisiae isolates are thought to possess similar traits, in-

cluding the ability to attach to and penetrate surfaces and to

tolerate human body temperature (Clemons et al. 1994; McCusker

et al. 1994; Magwene et al. 2011; Strope et al. 2015; Peter et al. 2018;

Phadke et al. 2018). However, determining why certain strains are

able to infect humans ultimately requires mapping the specific

genetic polymorphisms that cause opportunistic pathogenicity

and determining the traits they affect. Such work is hard because

it requires performing genetic mapping in yeast inside mamma-

lian hosts, such as mice.
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The most powerful genetic mapping approach in S. cerevisiae is
linkage mapping with large panels of haploid meiotic progeny
(segregants) (Bloom et al. 2013; Matsui et al. 2022). When 2 haploid
isolates are crossed and sporulated, their haploid segregants
each receive a unique random combination of alleles from their
parents (Ehrenreich et al. 2009). This shuffling of genetic material
makes it possible to measure traits of interest in segregants and
then link these traits to specific genomic locations (loci) that
cause phenotypic differences (Rockman 2008). Examination of
large numbers of segregants provides the statistical power to
identify loci explaining most of the heritable differences in traits
of interest (Bloom et al. 2013; Matsui et al. 2022).

To enable linkage mapping with an S. cerevisiae cross in mice,
we generated a panel of haploid segregants with known geno-
types and chromosomally encoded DNA barcodes (Levy et al.
2015; Matsui et al. 2022), which enabled high-throughput pheno-
typing as a pool. We mated the lab reference strain (BY) and a
haploid derivative of the 322134S clinical isolate (3S) (Liti et al.
2009). BY and 3S are highly diverged at the sequence level, with a
genetic difference present every �270 bp (Taylor et al. 2016;
Mullis et al. 2018). 3S is an isolate obtained from the throat spu-
tum of a patient with a clinical infection (Liti et al. 2009), while BY
is a commonly used reference strain that is thought to be aviru-
lent (Clemons et al. 1994).

We used the barcoded BY � 3S cross to obtain insights into
how genetic differences among strains influence the persistence
of yeast in mice. This was done by injecting a pool of 822 bar-
coded BY � 3S MATA segregants into the mouse bloodstream and
enumerating segregant abundances in host organs over time by
barcode sequencing. Barcode frequencies provide direct readouts
of the frequencies of each of the 822 segregants in an organ at a
given time point. These data enabled linkage mapping, which
identified numerous loci that explained most of the heritable var-
iation in yeast persistence in hosts. Some loci showed consistent
effects across host organs (general loci), while others had coun-
teracting effects across host organs (antagonistically pleiotropic
loci; Qian et al. 2012; Wei and Zhang 2019; Chen and Zhang 2020),
causing different segregants to be superior in different organs.
This work advances the use of S. cerevisiae as a model for opportu-
nistic fungal pathogenicity and host–microbe interactions.

Materials and methods
Generation of haploid segregants
Haploid segregants were generated from a cross of 2 isolates of S.
cerevisiae, the lab strain BY4716 (BY) and a haploid derivative of
the clinical isolate 322134S (3S) (Liti et al. 2009). Specifically, BY ho
fcy1D flo8D flo11D ura3D YBR209W::pGal1-Cre—Lox71—Lox2272/71
and 3S ho fcy1D flo8D flo11D ura3D YBR209W::pGal1-Cre—Lox71—
Lox2272/71 parent strains were used. Construction of these
strains is described in detail in Matsui et al. (2022). In brief, for
each of these gene deletions, the coding region was completely
removed, without any marker left behind. The fcy1D and ura3D

gene deletions provide counterselectable markers, while the flo8D

and flo11D gene deletions should eliminate clumping and floccu-
lation (Liu et al. 1996; Lo and Dranginis 1996; Bayly et al. 2005),
traits problematic for pooling of segregants and recovery of yeast
from mouse organs. FLO8, FLO11, and FCY1 were previously
shown to be neutral with respect to survival of a different S. cere-
visiae clinical isolate (YJM145) in mouse hosts, while URA3 is
known to negatively impact survival in mouse hosts (Goldstein
and McCusker 2001). Also, most yeast natural isolates exhibit cell
clumping due to an aspartic acid at the 368th amino acid of

AMN1, which causes a defect in daughter cell separation during
mitosis (Yvert et al. 2003; Fang et al. 2018). However, lab strains
such as BY, as well as �0.3% of natural isolates (Peter et al. 2018),
possess a valine at amino acid 368, which enhances daughter cell
separation, preventing clumping. Sequencing of the haploid 3S
parent, as well as its diploid progenitor, revealed these strains ex-
clusively carry the same valine, nonclumping allele as lab strains,
despite having an AMN1 that otherwise shares a number of poly-
morphisms with other wild strains. Thus, clumping was not ob-
served in our cross.

Parental strains were also engineered to have a genomic land-
ing pad (Levy et al. 2015; Schlecht et al. 2017; Liu et al. 2019) with 2
partially crippled LoxP sites (Lee and Saito 1998), Lox71 and
Lox2272/71, and a galactose-inducible Cre recombinase (Sauer
1987) at the neutral YBR209W locus (Levy et al. 2015)
(Supplementary Fig. 1a). We first generated MATa versions of the
BY and 3S parent strains and then obtained MATA versions
through mating-type switching of the MATa strains with a
galactose-inducible HO plasmid (Herskowitz and Jensen 1991). All
segregants in a pool should be the same mating type, otherwise
mating will occur. To ensure that a pool of segregants of the
same mating type could be generated without any allelic bias
near the mating locus, we created 2 BY/3S heterozygous diploids:
BY MATa � 3S MATA and 3S MATa � BY MATA. Both diploids were
sporulated and roughly equal numbers of 4-spore tetrads (�500)
were obtained from each by tetrad dissection. To maximize the
number of unique recombination breakpoints in our panel of seg-
regants, 1 MATa segregant was then randomly selected from
each tetrad for inclusion in this study.

Barcoding of haploid segregants
A total of 822 segregants were barcoded through the transforma-
tion and integration of a barcoded plasmid library via Cre-
mediated homologous recombination at Lox2272/71
(Supplementary Fig. 1). A pBAR6 plasmid (Liu et al. 2019) marked
with KanMX was modified by Gibson assembly to include a
Lox2272/66 site, a random 20-mer barcode sequence, and a par-
tial TruSeq read 2 adapter sequence. The barcoded plasmids
were transformed into each segregant individually and then
recombined into the yeast genome by inducing the galactose-
inducible Cre recombinase using YP þ 2% galactose media for
�20 h. Cre-mediated recombination between the 2 partially crip-
pled Lox2272 variants, Lox2272/66 and Lox2272/71, produces a
crippled Lox2272/66/71 and a fully functional Lox2272. For each
segregant, all integrants (between 1 and 5) were picked from YPD
þ 200 mg/ml G418 agar plate. Glycerol freezer stocks of these inte-
grants were then made and stored at �80�C. A subset of 86 segre-
gants containing 3 different barcodes were included in all work,
enabling internal replication and measurement of broad-sense
heritability within samples.

Whole-genome sequencing of haploid segregants
Genomic DNA was obtained from each segregant using the
Qiagen DNeasy Blood and Tissue kit. For each segregant, a whole
genome sequencing library was then constructed using the
Illumina Nextera kit. Each library was barcoded and �192 segre-
gants were multiplexed per sequencing lane. Sequencing libraries
from segregants were pooled in equimolar fractions, size selected
from an agarose gel, and purified using the Qiagen Gel Extraction
kit. Multiplexed samples were sequenced by Novogene on 6
Illumina HiSeq 2500 lanes using 150 bp� 150 bp paired-end reads.
Reads for each segregant were mapped against the S288c refer-
ence genome R64-2-1_20150113 using BWA with default settings
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(Li and Durbin 2009). Using SAMTOOLS (Li et al. 2009) with default
settings, alignments were converted to bam files and sorted, read
duplicates were removed, and pileups were generated. Data for
43,865 high-confidence SNPs (Mullis et al. 2018; Matsui et al. 2022)
that differ between BY and 3S was then extracted from the pileup
files. Segregants showing any signs of aneuploidy or cross-
contamination in their genotype data were excluded from further
analysis. Also, all segregants with a mean per site coverage of
less than 2 were removed. In total, 76 MATa segregants were re-
moved based on these criteria. For the remaining 927 MATa segre-
gants, a vector containing the fraction of 3S calls at each SNP was
generated. Initial genotype calls were made by classifying sites
above and below 50% classified as 3S and BY, respectively. A hid-
den Markov model (HMM) was then used to correct these initial
genotype calls and impute information at missing sites. The
HMM was implemented using the HMM package version 1.0
(Himmelmann 2015) in R. We employed the transition and emis-
sion probability matrices: transProbs ¼ matrix(c(0.9999, 0.0001,
0.0001, 0.9999)) and emissionProbs ¼matrix(c(0.25, 0.75, 0.75,
0.25)). Adjacent SNPs in the HMM-corrected genotype calls that
lacked recombination in the segregants were collapsed, as they
contained identical information. This reduced the number of SNP
markers in subsequent analyses from 43,865 to 14,347.

Determination of segregant barcodes
To determine the barcode(s) in each segregant, we performed tar-
geted Illumina sequencing. Libraries were generated via PCR us-
ing custom primers flanking the barcode. The primers used to
amplify the barcode were:

Forward:

50-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACGAAGT

TATTGCGCGGTGATC -30

Reverse:

50-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGTACG

TGTGCTCTTCCGATCT -30,

where the sequences in bold are TruSeq adapter sequences and
the remainder of the sequence is homologous to the flanking se-
quence in the genomic landing pad. PCR products were purified
using a Qiagen MinElute PCR purification kit, amplified using bar-
coded TruSeq adapters and Illumina P1 and P2 primers, and then
size selected via gel extraction prior to sequencing. Sequencing
was performed using Novogene Illumina HiSeq 2500
150 bp� 150 bp paired-end reads at �2,000� coverage per bar-
code. 20-mer barcode sequences for each segregant were
extracted from the sequencing reads and clustered with
Bartender (Zhao et al. 2018) using a Hamming distance of 2.
Clusters comprising >5% of the total reads for each sample were
considered true barcodes. Only MATa segregants that passed gen-
otyping quality thresholds and had at least 1 barcode different
from all others were used in this study.

Animal husbandry
All procedures and personnel involving mice were approved by
the University of Southern California’s Institute for Animal Care
and Use Committee under protocol #21102. All mice were housed
on a 14:10 h light: dark cycle and had ad libitum access to food
and water. A single mouse strain, C57BL/6J (JAX stock #000664),
of Mus musculus was used for all experiments. Mice were ordered
from the Jackson Laboratory at 6 weeks of age and housed for 2
weeks prior to experiments. Upon arrival, mice were housed in
groups of 3 according to their sex, then housed individually be-
ginning at 7 weeks of age until they were euthanized at their

experimental endpoints (1, 2, or 5 days postinfection). To mini-
mize batch effects, animals in the same cage were parsed into
different combinations of dexamethasone treatment or time
point.

Experimental infection of mice
A total of 36 mice (2 sexes � 2 dexamethasone treatments � 3
time points � 3 replicates) were used in the following experi-
ments. At 8 weeks of age, individuals were split into immuno-
compromised (dexamethasoneþ) or immunocompetent
(dexamethasone-) treatments. To generate immunocompro-
mised animals, 500 ml of 4 mg/ml dexamethasone sodium phos-
phate (Sigma-Aldrich) was administered twice daily at �9 AM
and �9 PM to animals via intraperitoneal (IP) injection.
Immunocompetent (dexamethasone-) control animals were
treated with 500 ml water twice daily via IP injection. These treat-
ments began 2 days prior to infection and continued until experi-
mental endpoints. Daily treatments were administered at regular
intervals, with the first injection administered between 9 and 10
AM and the second between 9 and 10 PM. To prevent infection by
agents other than the panel of haploid segregants, we also gave
dexamethasone-treated animals water with 0.1 mg/ml gentami-
cin sulfate and 2 mg/ml streptomycin sulfate. Animals injected
with water were provided water without antibiotics.

Two days prior to infection, the yeast strains used in this study
were grown from frozen stocks to stationary phase in 800 ml YPD
(�2 days) in 96 well plates. Strains were resuspended and equal
volumes (100 ml) of each strain were pooled and mixed to ensure
homogeneity. Cells from the pool were harvested, washed with
water, and resuspended in 10 ml of water. Cell concentration was
calculated using a hemocytometer and 1 � 107 cells in 100 ml wa-
ter from the pool were used to inoculate the mice via tail vein in-
jection. Prior to the injection, the tails of the mice were dipped in
warm water to help dilate the tail vein. Because the C57BL/6J are
dark-furred mice, a Leica KL 500 LCD light source was used to vi-
sualize the tail vein more clearly during injection. C.G. and M.L.S.
performed all injections. To minimize batch effects, injection or-
der was randomized with respect to dexamethasone treatment
and time point, with CG injecting all “odd” mice and MLS. inject-
ing all “even” mice. Prior to injection, we took a sample of the
pool of segregants to estimate initial frequencies.

Organ harvesting and processing
At each experimental endpoint (1, 2, or 5 days postinfection), ani-
mals were euthanized via cervical dislocation and wiped down
with 70% EtOH to disinfect them prior to dissection. From each of
the 36 mice, 5 distinct organs were dissected and removed from
each animal in the following order: liver (only the 2 largest lobes
by weight were used), right and left kidney, spleen, gonads, and
brain, for a total of 180 samples. Samples were split and trans-
ferred into 2 Qiagen PowerBead Tubes (Metal 2.38 mm) each (1
lobe of liver per tube, 1 kidney per tube, half of the brain, gonad,
and spleen samples per tube) and 1 ml of 1� TrypLE Select
Enzyme (Thermo Fisher 12563029) was added to each tube.
Organ samples were incubated at 37�C for 5 min and then ho-
mogenized at 30 Hz for 3 min using a Qiagen Tissuelyzer II.
Homogenized samples were plated on YPD agar plates containing
200 mg/ml G418 and grown for 2 days at 30�C to allow yeast col-
ony formation. About 1:50 and 1:100 dilutions of each organ sam-
ple were also plated to ensure accurate colony counts could be
taken in case of crowding on the plates. After 2 days of growth,
plates were imaged using a BioRad Gel Doc XRþ with white light
and an exposure time of 0.5 s. Next, 10 ml of water was added to
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the surface of each plate, and colonies were scraped off of the
surface. Resuspended yeast samples were vortexed to ensure ho-
mogeneity, harvested via centrifugation, and stored at �20�C
prior to sequencing.

YPD plate growth controls
After pooling strains for injection, aliquots of cells were subjected
to the tissue homogenization process prior to plating on YPD agar
plates containing 200 mg/ml G418. This process involved harvest-
ing cells and resuspending them in 2 ml of 1� TrypleSelect en-
zyme, incubating the cells at 37�C for 5 min in Qiagen PowerBead
Tubes (metal 2.38 mm), and homogenization at 30 Hz for 5 min
using a Qiagen Tissuelyser II. Cells were plated at densities of 104,
105, 106, and 107 cells per plate in triplicate. Control plates were
grown at 30�C for 2 days before imaging and collecting cells as de-
scribed above. Dilutions of each plated sample were also plated
to assess the number of colonies formed per plate. After collect-
ing yeast from the plates, samples were vortexed to ensure ho-
mogeneity, harvested via centrifugation, and stored at �20�C
prior to sequencing. To measure the effect of the tissue homoge-
nization process on yeast cells, separate aliquots of cells were
plated directly onto YPD agar plates containing 200 mg/ml G418 at
104,105, and 106 cells per plate in duplicate without being sub-
jected to tissue homogenization. These untreated controls were
grown, imaged, harvested, and stored in the same manner as
those described earlier.

Barcode library preparation
Frozen cultures were thawed and DNA was extracted using the
Zymo Quick-DNA Fungal/Bacterial Minprep Kit. Quantification
of DNA was performed using a Qubit high-sensitivity assay.
After DNA extraction, a 2-step PCR was used to amplify the
barcoded region of the genome for sequencing. We amplified
150 ng of DNA per organ sample or control, corresponding to
�1.16 � 107 genomes or �11,670 copies per barcode (994 barco-
des total; 736 strains barcoded once and 86 strains barcoded in
triplicate). We performed a 4-cycle PCR on each sample using
Phusion polymerase, 150 ng of DNA, and 1 ml of 10 mM primers
each at a total reaction volume of 50 ml. The primers used in this
reaction were:

Forward:

50-AATGATACGGCGACCACCGAGATCTACACNNXXXXNNAC

ACTCTTTCCCTACACGACGCTCTTCCGATCTACGAAGTTATT

GCGCGGTGA-30

Reverse:

50-CAAGCAGAAGACGGCATACGAGATNNXXXXNNGTGACTGG

AGTTCAGACGTGTGCTCTTCCGATCT-30,

with Ns in this sequence corresponding to random nucleotides at
a frequency of A: 25%, C: 25%, G: 25%, T: 25%. These random
sequences were used as unique molecular identifiers (UMIs), en-
abling identification of PCR duplicates in downstream analyses.
Xs in the above sequences correspond to known, custom multi-
plex tags, which are used to demultiplex reads from different
samples when pooled onto the same flow cell for sequencing.
Multiplexing tags were designed to have a Hamming distance of 4
from one another. The 4-cycle PCR reaction was performed using
the following steps:

1) 98C, 3:00 min
2) 98C, 0:30 s
3) 54C, 0:30 s
4) 72C, 2:00 min

5) Repeat steps 2 through 4 4�
6) 72C, 5:00 min
7) 4C, hold indefinitely

After amplification, samples were purified using MinElute 96
UF PCR Purification Kit (Qiagen) protocol and eluted into 20 ml of
water. Next, a 24-cycle PCR was performed using 15 ml of purified
library and Phusion Polymerase (New England Biolabs) in a total
reaction volume of 50 ml. TruSeq F and R primers were used at 10
mM concentration for this PCR. The 24-cycle PCR was performed
using the following steps:

1) 98C, 3:00 min
2) 98C, 0:30 s
3) 54C, 0:30 s
4) 72C, 2:00 min
5) Repeat steps 2 through 4 24�
6) 72C, 5:00 min
7) 4C, hold indefinitely

A total of �45 ml of each PCR product were pooled together
and the appropriate PCR product (�220 bp) was isolated by gel
electrophoresis and extracted using a QIAquick Gel Extraction
Kit. The pooled samples were checked for purity using a
Nanodrop ND-1000 and concentration using a Qubit Fluorometer
and shipped to Novogene. Prior to sequencing, the pooled librar-
ies were further quantified by Agilent Bioanalyzer at Novogene.

Barcode sequencing
Samples were sequenced on an Illumina HiSeq 4000 using a sin-
gle flow cell. Because the majority of the nucleotides in the bar-
code amplicons are fixed, a 25% PhiX DNA spike-in was done to
increase read diversity. Sequencing reads were analyzed using
custom scripts in R and Python. Reads were demultiplexed and
discarded if the average Illumina quality score of the read in the
barcoded region was less than 30 or the landing pad sequence
AGTATCCTATACGAACGGTA adjacent to the barcode was not
present in the read. PCR duplicates were eliminated by excluding
reads within samples that contained the same UMI sequences
(only 1 copy was retained). In each file, barcodes were clustered
using Bartender (Zhao et al. 2018) using a maximum allowable
clustering distance of 3 (bartender_single_com -f $infiles -o
$finfiles%.*g -d 3). Raw counts were obtained for each present bar-
code and values were normalized to the total number of barcode
reads in the sample.

Barcode quantification and phenotype calculation
For each segregant in each sample, we computed the persistence
phenotype as (fTF � fT0)/fT0, with fT0 and fTF corresponding to a
segregant’s barcode frequency in the initial pool and a sample,
respectively. These raw phenotypes were calculated for both con-
trol and organ samples. We accounted for potential impacts of
outgrowing samples on YPD plates using the fixed effects linear
model phenotypesample � phenotypecontrol þ error. In this model, phe-
notypesample and phenotypecontrol corresponded to individuals’ raw
phenotypes in organ samples and mean raw phenotypes in con-
trols, respectively. This model was implemented using the lm()
function in R. The mean raw phenotype of controls was calcu-
lated using 3 YPD control samples plated at 105 cells per plate.
We refer to the residuals extracted from this model as
“persistence”—for example, genotypes with large residuals were
at higher frequency compared to controls. For the 86 segregants
that were replicated in the pool with distinct barcodes, all repli-
cates were separately corrected. These replicates were only
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utilized in heritability analyses. In all work with the full set of 822
segregants, only a single barcode replicate was utilized for each
replicated segregant. Because of logistical considerations, initial
pool, control, and samples had to be collected at different time
points.

Identification of samples with significant
variation among segregants
To identify samples in which segregants showed significant phe-
notypic differences, we performed 1-way analysis of variance
(ANOVA) analysis. For each sample, we conducted a test using
the fixed effects linear model phenotype � genotype þ error, which
was implemented with the lm() function in R. The P-value of each
model was recorded and significant samples were identified us-
ing a conservative Bonferroni-corrected threshold (A ¼ 0.05/139,
samples¼ 139). Nonsignificant samples were excluded from fur-
ther analysis.

Calculation of broad-sense heritability within and
across samples
Within each sample, broad-sense heritability (H2) was calculated
using the 86 segregants that were replicated in the segregant
pool. We used a mixed effects linear model with the formula phe-
notype � genotype þ error, with genotype a categorical, random ef-
fect variable corresponding to the identities of replicated
segregants. This model was implemented using the lmer() func-
tion in the lmer package in R (Bloom et al. 2013; Matsui et al.
2022). Within-sample H2 was computed by taking the sum of
squares of genotype and dividing it by the total sum of squares of
the model.

We also calculated H2 across all or subsets of samples using
the persistence data of all 822 segregants, including only the first
replicate for the 86 replicated segregants. Across-sample H2 was
calculated as described above for within-sample H2.

Linkage mapping in individual samples
Linkage mapping was performed on each individual organ sam-
ple using forward regression. A total of 14,347 SNPs distributed
throughout the genome were employed as markers, with each
categorically encoded as “0” or “1” for the BY or 3S alleles, respec-
tively. In first stage scans, the fixed effects linear model phenotype
� locus þ error was implemented for each marker in a sample us-
ing the lm() function in R. In these models, phenotype corre-
sponded to raw phenotypes and persistence measurements in
control and organ samples, respectively, and locus corresponded
to individuals’ genotypes at a marker. For each test, the P-value
of the locus term was extracted using the R function summar-
y.aov(). Significance thresholds were determined separately for
each sample using 1,000 permutations (Churchill and Doerge
1994) of the segregant persistence data. In each permutation, the
phenotype vector was randomly shuffled while the matrix of geno-
types was held constant. A genome-wide scan was performed on
each permuted dataset using the fixed effects linear model pheno-
type � locus þ error, with the minimum P-value in each permuta-
tion recorded. The threshold for a first stage scan in a sample
was determined based on the fifth percentile of its minimum
P-values from permutations. We only allowed detection of a sin-
gle locus per chromosome per scan. Conservative confidence
intervals (95%) were determined for each locus using 2 �
�log10(P-value) drops from a peak marker at a locus.

After the first stage scans, additional scans were performed on
each sample. In these scans, we used the fixed effects linear
model phenotype � known_locus1 þ . . . known_locusN þ locus þ error,

with each known_locus term corresponding to individuals’ geno-

types at loci identified in earlier scans. The phenotype and locus

terms were defined in the same manner as in the first stage

scans. In each additional scan, permutations were conducted in

the same manner as the first stage scans, except with known_lo-

cus terms also included. In these additional scans, we allowed de-

tection of only a single locus per chromosome per scan and

confidence intervals were computed in the same way as the first

stage scan. Scans were continued until no loci were detectable at

permutation-based significance thresholds.

Consolidation of loci detected in individual
samples
Loci detected in individual organ samples were consolidated

across samples according to their 2 � �log10(P-value) confidence

intervals. Two loci were considered the same if these intervals

overlapped. The intersection and union of all consolidated confi-

dence intervals were recorded; the intersection of all confidence

intervals was used to resolve loci (Supplementary Table 2), while

the union was used to determine which detections were consoli-

dated into each locus (Supplementary Data 8).

Aggregation of persistence measurements across
samples
Brain and nonbrain samples with statistically significant differ-

ences in persistence were identified. Segregant phenotypes (raw

measurements) were first time corrected by dividing by the num-

ber of days since injection into a host. Next, a fixed effects linear

model was fit to account for growth on rich medium as described

above. Each segregant’s residual measurements (persistence)

were then averaged across all 15 brain or 75 nonbrain samples.

Differential persistence between brain and nonbrain samples

was computed by taking the difference between a segregant’s

mean brain and mean nonbrain time-corrected persistence val-

ues.

Linkage mapping with aggregate phenotype data
We performed linkage mapping with aggregate brain and non-

brain persistence measurements, as well as the difference be-

tween the 2. All aspects of these 3 forward regression scans were

implemented in the same manner as the linkage mapping scans

on individual samples. The only difference was that in these

scans with aggregate data, phenotype in these models was the ag-

gregate brain data, the aggregate nonbrain data, or the difference

between the 2.

Calculating the effects of loci in individual
samples
For each consolidated locus, the effect size was calculated in

each of the individual samples with significant heritabilities as

well as in the control samples. Effect sizes in the controls were

calculated using the raw phenotypes while effect sizes in the or-

gan samples were calculated using the residual values after cor-

recting for segregant growth on YPD (described in the “Barcode

Quantification and Phenotype Calculation” section). To calculate

the effect size of a locus in a particular organ or control, pheno-

type data for the sample was split by genotype at the locus. Mean

phenotypes were calculated for individuals with the BY and 3S

alleles and the difference between these means (3S�BY) was

computed. Effect sizes were only calculated in organ samples

with significant phenotypic variation.
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The effects of individual loci identified in
aggregate phenotype data
We computed the effects of the 18 loci detected in the linkage
mapping scans with aggregate data using both the aggregate
brain and aggregate nonbrain persistence measurements. For ev-
ery locus, we subtracted the mean aggregate brain measurement
among segregants with the BY allele from the mean aggregate
brain measurement among segregants with the 3S allele. The
same procedure was then repeated using the aggregate nonbrain
measurements. A positive value in the brain or nonbrain organs
implies the 3S allele was beneficial and the BY allele was detri-
mental, while negative value indicates the opposite relationship.
About 95% bootstrap confidence intervals were computed for
these values by the sampling phenotypes of individuals with BY
or 3S alleles at a given locus 1,000 times with replacement using
the sample()function in R with replace ¼ T, computing the differ-
ence in mean brain or nonbrain phenotype between these 2
groups for each sampling, and taking the 2.5th and 97.5th percen-
tiles from these differences. Loci with positive or negative values
in both brain and nonbrain organs were classified as having gen-
eral effects. By contrast, loci showing counteracting effects be-
tween brain and nonbrain organs were categorized as
antagonistically pleiotropic.

Combinatorial effects of loci identified in
aggregate phenotype data
We first determined the alleles present in each segregant at the
18 loci detected in the aggregate scans. The effect size at each lo-
cus was calculated in both brain and nonbrain samples by sub-
tracting the mean persistence of segregants containing the BY
allele from the mean persistence of segregants containing a 3S al-
lele at a given locus. Segregants were considered “enriched” for
generally beneficial alleles if they contained 7 or more generally
beneficial alleles and “depleted” if they contained fewer than 3.
At pleiotropic loci, segregants were considered “enriched” for
brain loci if they contained 6 or more loci favoring persistence in
the brain over nonbrain organs, and “depleted” if they contained
fewer than 3. These thresholds were established so to include
enough segregants to enable contingency tests on segregants
were “enriched” or “depleted” for both general and pleiotropic loci
to test the combinatorial effects of the loci; however, no more
than 25% of segregants in the dataset were considered “enriched”
or “depleted” for generally beneficial or pleiotropic loci.

Fixed-effect linear models were employed to test the relation-
ship between mean segregant persistence in brain or nonbrain
samples and the number of generally beneficial or pleiotropic loci
present in each segregant. These models were implemented us-
ing the lm() function in R and took the form phenotype � num_loci
þ error, where phenotype corresponds to segregants’ mean persis-
tence values in either the brain or the nonbrain samples, and
num_loci corresponds to the number of either generally beneficial
alleles or the number of pleiotropic alleles favoring persistence in
the brain. P-values were extracted from these models using the
summary.aov() function and R2 values were extracted using the
summary() function.

Contingency tests were performed to determine whether seg-
regants with increasing persistence measurements over time in
brain or nonbrain samples were enriched for generally beneficial
alleles as well as pleiotropic alleles favoring persistence in a par-
ticular sample type. To do this, the linear model phenotype �
time þ error was fit for each segregant using the lm() function in R,
where phenotype was a segregant’s phenotype in each of the 15

brain or 76 nonbrain samples, and time was a numeric vector
encoding the number of days postinjection that each sample was
collected. The time coefficient from each model was extracted us-
ing the coefficients() function and used in a 2 � 2 contingency
test in which segregants were grouped by whether they were
enriched for both beneficial general and pleiotropic alleles or not
as well as whether they had a positive coefficient or not.

To visualize the collective effects of general and pleiotropic
loci on strain persistence over time, mean time point 1 and time
point 5 phenotypes for all strains were calculated separately for
brain and nonbrain samples. These mean phenotypes were then
normalized to the time point 1 phenotypes (by subtracting the
time point 1 phenotype). Strains were divided into 4 focal classes
depending on whether they had �X or �X beneficial alleles at
general loci and �X or �X alleles associated with brain persis-
tence at pleiotropic loci. Within these 4 groups, the mean normal-
ized time point 5 phenotype and standard error were calculated.
Bootstrapping was also performed using 1,000 samplings of the
mean time point 5 persistence values within each focal group.
The slope of the mean segregant persistence between the begin-
ning (day 1) and end (day 5) of the experiment were then plotted
for each focal group, along with the slopes resulting from the
1,000 bootstrap samplings (Fig. 5, c and d).

Genes underlying loci detected in aggregate scans
To resolve the loci identified using aggregate scans, we utilized
loci detected in the individual organ samples. For each consoli-
dated aggregate locus, we first determined the smallest bounds
for the locus among the 3 scans using aggregate persistence
measurements. Next, we determined which loci from individual
samples had 95% confidence intervals overlapping these bounds.
After all individual loci had been identified, we utilized these con-
fidence intervals to find the most narrow windows for each locus.
Genes within each window were identified based on the R64-2-
1_20150113 S. cerevisiae genome annotation from the
Saccharomyces Genome Database (Cherry et al. 2012).

Results
Generation and barcoding of haploid segregants
We crossed haploid BY and 3S strains that were genetically
engineered to produce segregants amenable to pooled, high-
throughput phenotyping. FLO11 and FLO8, which respectively en-
code the main cell surface flocculin in this organism (Lo and
Dranginis 1996; Bayly et al. 2005) and its primary transcriptional
activator (Liu et al. 1996), were deleted from these strains prior to
mating. These deletions eliminate cell clumping and flocculation
within and between segregants, which are problematic for pooled
experiments. However, they also diminish surface adhesion and
invasion, limiting our insight into these traits. BY and 3S were
also engineered to have a genomic landing pad at the YBR209W
locus, enabling site-specific integration of barcodes into segre-
gants (Levy et al. 2015; Liu et al. 2019; Matsui et al. 2022). These
engineered BY and 3S strains were mated to produce a BY/3S dip-
loid, which was sporulated.

To ensure balanced allele frequencies and random multilocus
genotypes among segregants, we performed tetrad dissection and
randomly chose and barcoded 1 MATa haploid from each of 822
tetrads using transformation with a random barcode library
(Levy et al. 2015; Liu et al. 2019; Matsui et al. 2022) (Supplementary
Fig. 1 and Supplementary Data 1). A total of 86 segregants were
marked with 2 additional random barcodes and these replicates
were also included in our experiments. These internally
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replicated segregants enable estimation of heritability within
samples, while limiting the total number of unique barcodes.
Pilot experiments suggested the number of yeast that could be re-
covered from mouse organs varied by orders of magnitude, with
the lowest recoveries in the hundreds and low thousands, con-
straining the total number of barcodes that could be used in the
pool.

Illumina sequencing was used to genotype each of the 822 seg-
regants and determine their barcode(s). All 822 barcoded segre-
gants and their replicates were then grown individually to
stationary phase and combined into a single pool in equimolar
fractions. All experiments reported in this manuscript involve us-
ing barcode sequencing to track changes in segregant frequencies
relative to this initial pool.

Injection of yeast into mice and recovery of yeast
at 3 time points
Thirty-six mice were infected with 1 � 107 cells from the segre-
gant pool by tail vein injection (Fig. 1a). Equal numbers of male,
female, immunocompromised (injected with 500 ll of 4 mg/ml
dexamethasone [500 ll]), and immunocompetent (injected with
500 ll of water) mice were included. No morbidity or mortality
was observed through the entire experiment. One-third of the
mice were euthanized at each of 3 time points (1, 2, and 5 days
postinjection). From each mouse, we dissected the brain, gonads,
kidneys, liver, and spleen. Each organ was homogenized and
plated on selective media to isolate yeast from the mouse cells.
On average, 69,150 colony forming units (CFU) were recovered
per liver, 32,032 CFU per spleen, 3,843 CFU per kidney pair, 1,741
CFU per brain, and 69 CFU per gonad pair (Supplementary Data
2). For every organ, recovery decreased over time, suggesting
clearance of at least some segregants by the mice (Fig. 1b).
Recovery was lowest in the brain and gonads, which both have
blood barriers (Daneman and Prat 2015; Mruk and Cheng 2015;
Profaci et al. 2020).

Barcode sequencing and estimation of
persistence across yeast genotypes
We define persistence, the focal phenotype of this article, as the
tendency for a segregant to remain within a host organ over time
as estimated from barcode sequencing. Because sampling was
terminal for mice, we could not repeatedly sample yeast from
host organs. Thus, we instead calculated persistence in a given
organ sample as the fractional change in a segregant’s barcode
frequency relative to the initial pool, corrected for the plating
step required to recover yeast from mouse organs. Specifically,
we measured each segregant’s change in frequency in a given
sample relative to its frequency in the initial pool using the for-
mula (fTF � fT0)/fT0, with fT0 and fTF corresponding to a segregant’s
barcode frequency in the initial pool and a sample, respectively
(Fig. 1a and Supplementary Data 3). We then used a linear model
to correct these changes over time for differences among segre-
gants in on-plate growth (Supplementary Fig. 2 and
Supplementary Data 4 and 5).

Of 180 processed samples (5 organs � 2 sexes � 2 dexametha-
sone treatments � 3 time points � 3 replicates), yeast were recov-
ered from 139. We calculated across-sample broad-sense
heritability (H2) using these 139 samples. In this across-sample
heritability analysis, all segregants in a sample were employed,
with only a single barcode included for the 86 internally repli-
cated segregants. When we included all samples, the across-
sample H2 was 0.01. Among these 139 samples were 29 brain, 18
gonad, 30 kidney, 31 liver, and 31 spleen samples; we also

computed across-sample heritability separately within each of
these organs. The brain, gonad, kidney, liver, and spleen samples
showed across-sample H2 values of 0.007, 0.004, 0.072, 0.248, and
0.105, respectively. Collectively, these findings imply that the
data are quite noisy and genetic factors explain little of the phe-
notypic variance across samples when all samples are included.

Persistence of yeast in mice is highly heritable
To better enable utilization of the data, we identified samples in
which segregants showed significant differences in persistence.
For each of the 139 samples, we used the 86 segregants that were
replicated in the pool to estimate within-sample H2 in each sam-
ple (Supplementary Data 6). In this analysis, H2 ranged from 0 to
0.92 (median H2 ¼ 0.57). Our ability to measure within-sample H2

was strongly affected by yeast recovery from samples, with
higher recovery resulting in higher within-sample H2 (simple lin-
ear regression of within-sample H2 on CFU, R2 ¼ 0.77, P¼ 9.6 �
10�48; Fig. 1c). Variability in yeast recovery among samples was
presumably due to both differences in clearance among mice and
organs, as well as technical factors associated with organ dissoci-
ation. Despite limitations associated with recovering yeast from
dissociated organs, the high within-sample H2 values in many
samples shows that genetic polymorphisms among segregants
caused differences in persistence in hosts.

To distinguish samples with significant heritable differences
in persistence, we applied 1-way ANOVA to the replicated segre-
gants in each sample. A total of 94 samples were statistically sig-
nificant (Bonferroni-corrected A ¼ 0.05 threshold, P � 3.7 � 10�4;
Supplementary Data 6), indicating significant within-sample H2.
Of these, 2 were excluded because they had distorted measure-
ments for persistent segregants, suggesting their sequencing li-
braries were of low quality (Supplementary Fig. 3). Only a single
gonad sample showed significant differences in persistence
among segregants; this sample, which had a relatively low
within-sample H2 value (0.29), was also omitted from later analy-
ses due to a lack of organ replicates (Supplementary Fig. 3). In the
91 remaining significant samples from the brain, kidneys, liver,
and spleen, the median within-sample H2 was 0.75 (from 0.24 to
0.92), indicating most of the variability among segregants in these
replicated, higher quality samples was genetic in origin (Fig. 1c).

Supporting a large genetic component to persistence, we again
calculated across-sample H2, here only including the subset of 91
samples. When we did this, the across-sample H2 was 0.37, and
the brain, kidney, liver, and spleen samples showed across-
sample H2 values of 0.35, 0.46, 0.55, and 0.63, respectively. Thus,
subsetting the samples based on within-sample H2 substantially
increased across-sample H2 values and suggested that a substan-
tial part of the genetic basis of persistence is reproducible across
samples.

Segregants exhibit different persistence in the
brain than the kidneys, liver, and spleen
We combined the brain, kidney, liver, and spleen samples with
significant within-sample H2 values into a 91 (samples) � 822
(segregants) matrix, with each element corresponding to the per-
sistence of a given segregant in particular sample. We then ana-
lyzed the relationships among the 91 samples using hierarchical
clustering, principal components analysis (PCA), and examina-
tion of pairwise correlations. All methods found the same result:
the samples split into 2 clusters, brain and nonbrain (kidneys,
liver, and spleen) (Fig. 2a and b and Supplementary Fig. 4).
Persistence differences were reproducible across samples in each
cluster despite lower recovery of yeast from brain and kidney
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Fig. 1. Experimental infections of mice using a pool of barcoded, haploid segregants. a) The workflow and general design of the experiment. Haploid BY
and 3S strains were crossed, the resulting diploid was sporulated, and tetrads were dissected to generate a panel of 822 recombinant haploid progeny.
These strains were then barcoded with unique 20-mer nucleotide sequences (barcodes) and pooled together (T0). The initial pool generated at T0 was
used to infect mice by tail vein injection and simultaneously plated in triplicate onto control plates containing rich medium. At 3 time points
postinfection, organ samples were also collected from infected mice and plated. After 2 days of growth, DNA was extracted from the yeast and
sequenced to measure relative barcode abundance of each strain. DNA was also extracted from the T0 sample to measure barcode frequencies in the
initial pool. For each strain, the change in normalized barcode frequency relative to T0 after correcting for on-plate growth was used to calculate
persistence. b) CFU recovered from each organ sample across time points. Each panel shows the samples from a different organ. Color of each point
corresponds to the sex and immunological state of the mouse from which the sample was recovered. Mean log10(CFU) over time is shown as a black
line. c) Broad-sense heritability (H2) of each organ sample as a function of the CFU recovered from that sample. The color of each sample corresponds
to organ type.

8 | GENETICS, 2022, Vol. 222, No. 3



samples. In PCA, the 2 groups were visible in the loadings on the
first principal component (PC1), which was the only PC to account
for a meaningful portion of the variance across samples (54.1%;

other PCs explained �7.4% of the variance across samples;
Supplementary Table 1). Whether a sample was from the brain
or a nonbrain organ was the only experimental factor showing a

(a) (b)

(c)

Fig. 2. Organ type is the main driver of variation in persistence across samples. a) Heatmap showing persistence of strains (x-axis) across organ
samples (y-axis). Samples are clustered by organ type and segregants. b) All pairwise comparisons of segregant persistence phenotypes between
organs. Here, each segregant phenotype in an organ represents its average measurement across all samples with heritable differences in persistence.
c) Comparison of segregants’ aggregate phenotypes in the brain and nonbrain samples.
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major relationship with PC1, explaining 85.2% of the variance in
PC1 in a 1-way ANOVA (P¼ 8.84 � 10�39). Time and the interac-
tion between brain versus nonbrain and time also had minor sig-
nificant effects, each explaining <2.7% of the variance in PC1

(full-factorial ANOVA with brain vs nonbrain, time, and brain vs
nonbrain–time interaction, factor effect test P< 2.94 � 10�3).
Such time effects would be expected if selection acts on pheno-
typic differences among segregants and these differences vary
across organs. Immunological state and sex showed no relation-
ship with PC1, perhaps because we directly injected yeast into the
bloodstream.

Following these results, we generated aggregate brain and
nonbrain persistence measurements for each segregant by aver-
aging data from the 15 brain samples and 76 nonbrain-samples,
respectively. As mentioned above, the across-sample H2 of persis-
tence in the brain was 0.35. Calculation of the across-sample H2

for nonbrain persistence found a value of 0.52. The aggregate
brain and nonbrain measurements showed a poor but highly sig-
nificant correlation (Spearman’s rho¼ 0.21, P¼ 1.78 � 10�9;
Fig. 2c). This suggests that a combination of shared and distinct
genetic factors enable persistence in different parts of the host
body.

Genetic mapping of persistence in individual
organ samples provides limited power
We began determining the genetic basis of differences in persis-
tence within and between organs. We performed linkage map-
ping on each of the samples with significant differences among
segregants, detecting 494 loci in total (Fig. 3a and Supplementary
Data 7 and 8). On average, 5.43 loci were identified per sample us-
ing permutations-based thresholds (min: 0, max: 12) and 90 of 91
samples had at least 1 detected locus that was also identified in
another sample. Multiple loci were mapped in the spleen (181),
liver (157), kidney (101), and brain (55), and many loci were
detected in multiple samples (min¼ 2, max¼ 87, median¼ 4), as
expected if segregants show reproducible phenotypes across
samples due to a common set of loci. These detections could be
consolidated to 35 distinct loci, based on overlapping confidence
intervals (Supplementary Table 2). The number of loci identified
in these samples showed a highly significant relationship with H2

(simple linear regression of number of loci on H2, R2 ¼ 0.32,
P¼ 4.02 � 10�9; Supplementary Fig. 5), suggesting heterogeneity
in measurement noise across samples impacted statistical
power. Also, the large number of tests performed in these scans
could have resulted in false positives; there was no straightfor-
ward way to differentiate such false positives from true positives.

Genetic mapping with aggregated data improves
detection of loci
To improve statistical power and minimize the number of tests,
we performed linkage mapping on aggregate brain and nonbrain
measurements, as well as the difference between the 2 measure-
ments; these measurements should be more precise than data
from individual samples (Supplementary Data 9). The scans on
brain, nonbrain, and difference measurements respectively iden-
tified 9, 9, and 10 loci (Fig. 3b). Some loci were mapped in multiple
of these scans, resulting in the identification of 18 unique loci.
Eight of these loci overlapped loci detected in controls, suggesting
they affect growth and survival under multiple conditions
(Fig. 3a–c and Supplementary Fig. 6). Loci detected in the brain,
nonbrain, and brain versus nonbrain scans explained 89.7%,
62.3%, and 83.6% of H2 in their respective measurements.

The resolution of loci was poor, with confidence intervals
from scans using aggregate data spanning 58 kb (min: 9 kb, max:
100 kb) and 32.5 genes (min: 6, max: 62) on average
Supplementary Table 3. To better resolve these loci, we leveraged
confidence intervals from detections of these loci in multiple in-
dividual samples. While average resolution was only slightly im-
proved (mean interval¼ 24 kb, mean number of genes¼ 12, min
number of genes¼ 2, max number of genes¼ 39; Supplementary
Table 4), the 2 most finely resolved loci were each localized to 2
candidate protein-coding genes (Cherry et al. 2012). A locus on
Chromosome XIV spanned a subunit of the BLOC-1 complex in-
volved in endosomal maturation (SNN1) and a poorly understood,
pleiotropic gene (MKT1) known to influence many quantitative
traits in S. cerevisiae (Steinmetz et al. 2002; Demogines et al. 2008;
Dimitrov et al. 2009; Lewis et al. 2014). A locus on Chromosome XV
encompassed alcohol dehydrogenase (ADH1) and a gene regu-
lated by phosphate levels (PHM7). Additionally, a locus on
Chromosome XII fractionated into 2 distinct intervals, one in-
cluding only the genes for DNA topoisomerase III (TOP3) and a
thiamine transporter (THI7).

Loci show a mix of general effects and
antagonistic pleiotropy
We next focused on understanding how the 18 loci identified in
the scans with aggregate measurements influence the ability of
segregants to persist in different parts of the mammalian body.
We calculated the effects of each locus in the brain and nonbrain
organs. Loci were then categorized as general or antagonistically
pleiotropic if the same allele or different alleles were superior in
the brain and nonbrain organs, respectively (Fig. 4). Specifically,
the 2-dimensional space of persistence measurements in the
brain and in nonbrain organs was split into 4 quadrants (Fig. 4a).
Loci were classified based on whether their mean persistence
measurement on each axis was above (>) or below (<) 0.
Considering both brain and nonbrain organs, a locus could be�,
	, ><, or <>. We defined loci with the� and	 patterns, which
indicated similar effects in different organs, as general effects
(Fig. 4a lower left and upper right quadrants and Fig. 4b). We also
defined loci with the >< and <> patterns, which showed oppos-
ing effects in different organs, as antagonistically pleiotropic
(Fig. 4a lower right and upper left quadrants and Fig. 4, c and d).

Of the 18 loci, 10 were general and 8 were antagonistically
pleiotropic. Eight of the beneficial alleles at the general loci were
contributed by the 3S clinical isolate (Fig. 4a upper right quad-
rant), and 2 by the BY lab strain (Fig. 4a lower left quadrant). By
contrast, both parental strains contributed alleles of the 8 antag-
onistically pleiotropic loci that were beneficial in either the brain
or in nonbrain organs. Among the antagonistically pleiotropic
loci, the BY strain contributed 5 alleles that were beneficial in the
brain (Fig 4a, upper left quadrant) and 3 alleles that were benefi-
cial in nonbrain organs (Fig 4a, lower right quadrant). Among
these same antagonistically pleiotropic loci, the 3S strain contrib-
uted 3 alleles that were beneficial in the brain (Fig 4a, lower right
quadrant) and 5 alleles that were beneficial in the nonbrain
organs (Fig 4a, upper left quadrant).

Identified loci collectively explain segregant
persistence in different organs
We also determined how alleles at general and antagonistically
pleiotropic loci combine to cause fungal persistence. There was a
positive relationship between the number of beneficial alleles at
general loci and persistence in both brain and nonbrain organs
(simple linear regression of number of general alleles on
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Fig. 3. Identification of loci associated with persistence in the host in organ samples. a) Consolidated loci in the plate controls (top), consolidated loci
across all organ samples (middle), and individual loci detected in each organ sample (bottom) shown in descending order from greatest to least number
of loci detected. Corresponding broad-sense heritability (H2) measurements for each sample are shown to the right of each individual sample. Samples
are colored by organ type. b) Loci detected in genome-wide scans using aggregate data across samples (top), followed by loci detected using mean
segregant phenotypes in brain and nonbrain samples, as well as the difference in mean phenotype between brain and nonbrain samples (bottom). Pink
loci have effects of the same sign in both brain and nonbrain samples, even if the effect was only significant in the brain or nonbrain samples (general).
Blue loci have effects with opposite signs in brain and nonbrain samples (pleiotropic). * indicates 2 linked, but distinguishable, loci on chromosome XII.
c) The effects of loci detected in whole-genome scans using aggregate data are shown. Effects were calculated as the mean persistence of strains with
the 3S allele at the focal locus minus the mean persistence of strains with the BY allele after correction for on-plate growth. The effect of each locus
after correcting for on-plate growth is also shown.
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persistence, brain R2 ¼ 0.20 and P¼ 6.45 � 10�41, nonbrain R2 ¼
0.11 and P¼ 8.12 � 10�23; Fig. 5a). Similarly, we found that the
number of brain or nonbrain alleles at antagonistically pleiotro-
pic loci was positively and negatively related to segregants’ per-
sistence in the brain (simple linear regression of number of brain
alleles on brain persistence, R2 ¼ 0.12, P¼ 1.32 � 10�23) and non-
brain organs (simple linear regression of brain alleles on non-
brain persistence, R2 ¼ 0.08, P¼ 2.51 � 10�16), respectively
(Fig. 5b).

Lastly, we examined how sets of general and antagonistically
pleiotropic loci jointly influence persistence. In a given organ, the
most persistent segregants were enriched for both the beneficial
alleles at general loci and the appropriate alleles at antagonisti-
cally pleiotropic loci (brain 2 � 2 v2 test: v2 ¼ 21.89, P¼ 2.9 �10�6;
nonbrain 2 � 2 v2 test: v2 ¼ 15.42, P¼ 8.6 � 10�5; Fig. 5, c and d). In
the brain, segregants were even able to persist if they were
enriched for organ-specific alleles alone, although their persis-
tence was lower than segregants enriched for both organ-specific
and generally beneficial alleles (Fig. 5c).

Discussion
We used barcode sequencing to phenotype a pool of genotyped
haploid MATA segregants in mice. Analysis of segregants repli-
cated in the pool showed that persistence in mice has a largely
genetic basis, and comparison of samples revealed different seg-
regants are superior in the brain and in the kidneys, liver, and
spleen. Although technical noise limited our ability to map many
loci in individual samples, aggregating brain and nonbrain sam-
ples made it possible to identify loci explaining most of the

variability in persistence within and between organs. A total of 18
loci were detected, with the majority having effects across all
organs. Some of these loci were generally beneficial, while others
exhibited antagonistic pleiotropy, showing tradeoffs between
brain and nonbrain organs. These antagonistically pleiotropic
loci could represent either single polymorphisms that have differ-
ent effects in distinct parts of the host body or closely linked poly-
morphisms with different effects.

Our findings may explain why diverse S. cerevisiae isolates act as
opportunistic pathogens (Liti et al. 2009; Strope et al. 2015). The abil-
ity to persist in mammalian hosts is highly polygenic: we identified
18 loci in a cross of 2 isolates and examination of additional iso-
lates would likely detect even more (Ehrenreich et al. 2012; Bloom
et al. 2019). With so many loci involved, many S. cerevisiae isolates
will possess beneficial alleles at some general loci, as we saw with
both BY, an avirulent isolate (Clemons et al. 1994), and 3S, a clinical
isolate (Liti et al. 2009). Furthermore, all isolates will carry alleles of
antagonistically pleiotropic loci that are beneficial somewhere in
the host body. Thus, the mixing of genetic material throughout the
species by outcrossing may by chance produce strains that can per-
sist in particular mammalian organs. Supporting such a possibility,
clinical isolates are often strains possessing genetic signatures of
recent outcrossing in nature, including high heterozygosity
(Magwene et al. 2011; Strope et al. 2015).

Our results, in particular the identification of numerous an-
tagonistically pleiotropic loci, also indicate that different organs
in the mammalian body represent distinct environments for
fungi. The brain and nonbrain organs have a myriad of functional
and physiological differences: for example, the brain has its own
semipermeable barrier (Daneman and Prat 2015; Profaci et al.

(a) (b) (c)

(d)

Fig. 4. Identified loci show a mixture of general effects and antagonistic pleiotropy. a) The effect sizes of loci detected using aggregate phenotype data
in the brain and nonbrain organs are shown on the x- and y-axes, respectively. Positive effect sizes mean that strains carrying the 3S allele were
enriched in the samples while negative values mean that strains carrying the BY allele were enriched. Loci are colored by whether the same allele is
beneficial in both brain and nonbrain samples (pink; general effects) or not (blue; antagonistic pleiotropy). Specific examples highlighted in panels (b)–
(d). b) A locus with a general effect on persistence within the host. Brain (left) and nonbrain (right) phenotypes are plotted as a function of strain
genotype at this locus. Positional information for the locus is denoted by bold text above the example. c) An antagonistically pleiotropic locus at which
the BY allele is beneficial in the brain (left) and detrimental in other organs (right). d) An antagonistically pleiotropic locus at which the 3S allele is
beneficial in the brain (left) and detrimental in other organs (right).
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2020) and the kidneys, liver, and spleen filter blood (The
Columbia Electronic Encyclopedia 2000). Persisting in these dis-
tinct organs may require different traits, which may be beneficial
in some organs and detrimental in others. If these traits vary
across strains, which seems likely based on our data, many yeast

cells may only be able to infect certain organs in the mammalian
body and may be constrained in their potential to spread to other
organs postinfection.

Future work should examine whether the loci identified in our
study are influenced by haploid mating type and ploidy, which

Fig. 5. General and antagonistically pleiotropic loci collectively influence strain persistence in the host. a) Violin plots showing the mean strain
phenotypes in the brain samples (left) and nonbrain samples (right) as a function of the number of generally beneficial alleles present in a segregant.
Thresholds for strains considered to have a high or low number of general persistence alleles are represented by colored backgrounds. b) Violin plots
showing the mean strain phenotypes in the brain (left) and nonbrain samples (right) as a function of the number of antagonistically pleiotropic brain
alleles present in a strain. Thresholds for strains considered to have a higher or low number of alleles favoring persistence in the brain over other
organs are represented by colored backgrounds. c) Plot showing mean change in enrichment in the brain samples over time relative to T1

measurements (bold lines) for strains that have a high or low number of generally beneficial alleles as well as a high or low number of alleles favoring
persistence in the brain over other organs (according to thresholding in panels a and b). Error bars show the standard error about the mean enrichment
of strains at 5 days postinfection. Faint lines show the enrichment over time of bootstrapped data (1,000 replicates). d) Plot showing mean enrichment
in the nonbrain samples over time relative to day 1 measurements (bold lines) for strains that have a high or low number of generally beneficial alleles
as well as a high or low number of alleles favoring persistence in the brain over other organs (according to thresholding in panels a and b). Error bars
show the standard error about the mean enrichment of strains at 5 days postinfection. Faint lines show the enrichment over time of bootstrapped data
(1,000 replicates).
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both affect how diverse fungal pathogens interact with hosts
(Morrow and Fraser 2013; Gerstein et al. 2017; Usher 2019). In the
current work, we only examined MATa haploid segregants. We in-
cluded a single haploid mating type in the pool to ensure strains
did not mate within hosts, which would have disrupted the link-
age between barcodes and genotypes, and to eliminate domi-
nance among alleles at individual loci, which reduces the
statistical power of linkage mapping. However, a drawback of our
experimental design was that we could not assess whether iden-
tified loci show different effects in MATa haploid or MATa/MATa

diploid segregants. Additionally, the present study does not pro-
vide insight into the phenotypes of diploids produced by mating
haploids showing persistence in the brain and in nonbrain
organs. In the future, such diploids should be generated and phe-
notyped for persistence, as it is possible they might be able to per-
sist throughout the host body.

In addition to haploid mating type and ploidy, our study has
additional limitations. The segregants we utilized were ura3D, an
auxotrophy that has been reported to reduce yeast persistence in
mice (Goldstein and McCusker 2001). However, it is possible the
ura3D mutation may have aided our study by causing less persis-
tent segregants to be more easily eliminated by their mouse
hosts, thereby enhancing phenotypic differences among segre-
gants. In such a scenario, the ura3D mutation might have in fact
increased the statistical power of linkage mapping. Future work
comparing URA3 and ura3D versions of the cross should interro-
gate the costs and benefits of employing the ura3D marker in the
context of genetic mapping studies in hosts. Furthermore, we did
not evaluate the contribution of mitochondrial genotype, which
can impact diverse traits in yeast (Dimitrov et al. 2009; Paliwal
et al. 2014; Wolters et al. 2018; Vijayraghavan et al. 2019). Future
work should also evaluate the interplay between mitochondrial
genotype and the genetic factors identified in the present study.

Genetic mapping has the potential to help reveal molecular
mechanisms shaping the abilities and constraints of persistence
in different parts of the host body. Although our resolution was
coarse in most cases, a few finely resolved loci implicated a po-
tential diversity of cellular processes, including endosome matu-
ration (SNN1), ethanol production (ADH1), genome stability
(TOP3), phosphate metabolism (PHM7), and thiamine uptake
(THI7). The other gene in these intervals (MKT1) has an unclear
function. Notably, ADH1 (Song et al. 2019), MKT1 (Son et al. 2019),
and PHM7 (Jiang and Pan 2018) have been found to affect patho-
genicity in other fungi, and both endosomal function (Bercusson
et al. 2017) and thiamine transport (Huang et al. 2019) have been
linked to virulence as well. Our system provides an opportunity
not only to identify new mechanisms underlying persistence in
hosts, but also to study how both known and unknown mecha-
nisms act in combination, especially if higher-resolution map-
ping strategies are employed. Any such higher-resolution
strategies will need to be compatible with the limited number of
yeast that can be recovered from the brain.

Finally, fungal infections in the brain and central nervous sys-
tem (meningitis) are a leading cause of morbidity and mortality
among immunocompromised patients (Uppin et al. 2011; Kohler
et al. 2014). We detected specific allele combinations that allowed
segregants to persist in the brain, but our limited mapping resolu-
tion precluded insight into how these alleles act mechanistically.
A possibility is they influenced passage through the blood–brain
barrier, as we recovered fewer yeast from the brain than the kid-
neys, liver, or spleen. This hypothesis, which requires future test-
ing, illustrates how our experimental system can be used to
understand the mechanisms by which genetic polymorphisms

modify interactions between yeast cells and the mammalian
body.
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