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Abstract: Authors often assert that a key feature of 21st-century synthetic biology is its use of an
‘engineering approach’; design using predictive models, modular architecture, construction using
well-characterized standard parts, and rigorous testing using standard metrics. This article examines
whether this is, or even should be, the case. A brief survey of synthetic biology projects that have
reached, or are near to, commercial application outside laboratories shows that they showed very
few of these attributes. Instead, they featured much trial and error, and the use of specialized, custom
components and assays. What is more, consideration of the special features of living systems suggest
that a conventional engineering approach will often not be helpful. The article concludes that the
engineering approach may be useful in some projects, but it should not be used to define or constrain
synthetic biological endeavour, and that in fact the conventional engineering has more to gain by
expanding and embracing more biological ways of working.
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1. Introduction

Most contemporary synthetic biology [1], as distinct from the first-era synthetic biology of the
late 19th and early 20th century [2], aims to build new properties into living systems so that they do
or make something useful. Common goals include creation of organisms that synthesize therapeutic
or industrial molecules, that produce biofuels efficiently from waste or solar energy, that remediate
contaminated land, that detect and report environmentally or medically significant molecular markers,
or that manipulate or report on the activities of natural organisms for scientific investigation (reviewed
by [3–6]). There is, in addition, a quite different aspect of synthetic biology, which aims to create life
from non-living constituents: the character and aims of this type of synthetic biology are so different
from the biotechnological aspects mentioned above that it will not be discussed further here. Reviews
of its history and current status are available elsewhere [1,7].

The word ‘engineering’ permeates most introductions to synthetic biology, and it is used in
two distinct ways. The first use, as a simple verb, refers merely to the physical process of altering
the cell, as in the phrase ‘engineering a cell to make substance X’; this use is trivial and will not be
discussed further. The second use of ‘engineering’, as a noun, evokes the outlook, working practices
and technical culture of the engineering profession. This use appears because a very large number
of influential accounts of 21st-century synthetic biology claim either that synthetic biology should
adopt the engineering approach [8] or that it already does [9–12]. Indeed, an engineering outlook
has been used by some authors as their way of distinguishing synthetic biology from other types of
biotechnology. Examples of these statements include; “Synthetic biology is a recently emerging field
that applies engineering formalisms to design and construct new biological parts, devices, and systems
for novel functions or life forms that do not exist in nature.” [9]; “A key aspect of synthetic biology
. . . is the application to biology of techniques which are normally used in engineering design and
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development. . . . Systems are normally built from standard devices, which in turn are built from
standard parts. The standard parts and devices are all fully characterised and may be used in the
design of multiple systems...” [10]; “ Synthetic biology . . . . combines the investigative nature of
biology with engineering design principles” [11]; “Building novel parts, devices and in particular
complex systems will require a systematic approach that relies on modularity and abstraction... This is
synonymous to following an engineering approach. . . . Synthetic biology with its engineering vision
aims to overcome the existing fundamental inabilities in system design and system fabrication...” [12].

The engineering approach outlined in the above quotations, and explained in more detail in the
articles from which they come, differs from other methods of creation (e.g., those of arts and crafts)
in several ways. Engineering usually involves a clear definition of the goal, followed by a careful
design phase, which usually uses well-defined models that can predict, for example, the behaviour
of a transistor when presented with a signal, or the bending of a bridge deck when presented with
a load. Tasks and physical entities are usually divided into modules, and modules themselves are
built from standard components (machine screws, resistors etc.), manufactured in bulk to reliable
specifications. The behaviours of the components and the entities into which they are combined
are measured and described in standard ways, and their interactions are well understood. Design is
usually hierarchical; while an integrated circuit designer may worry about the details of his silicon chip,
a computer motherboard designer can take the behaviour of each chip for granted and concentrate
only on the interconnections of chips of different kinds to perform a high-level function, and a network
designer can take the function of each computer in the network for granted and concentrate on the
topology and performance of the network as a whole. A software engineer can take all of this for
granted, and write her code for the applications that will run on these systems; typically, she will make
use of libraries of existing code modules that are well characterised and can be re-used in a multitude
of projects.

Engineering also involves a professional culture. Its practitioners generally subscribe to notions
of professional knowledge, training, qualification and behaviour that effectively make them, too, into
standardized, predictable components that will produce a broadly predictable and consistent outcome
when applied to a well-defined task. This cultural aspect of engineering is seldom mentioned explicitly
in articles about the importance of engineering approaches in synthetic biology, but it is implicit, for it
would be very difficult for all other aspects of engineering to be adopted wholeheartedly without the
adoption of the underlying culture.

In this review, I will begin by examining some successful synthetic biology projects of the last
two decades, with a view to answering the question “is synthetic biology operating like a normal
engineering discipline now?”. I will then go on to consider the pillars of conventional engineering
culture in the light of synthetic biology, to address the question “Should it?”. The answers will be
“No”, and “Not necessarily”.

2. Features of the Engineering Approach

Before asking whether successful synthetic biological projects of the 21st century really have
followed an approach typical of conventional engineering, it is necessary to define what that approach
is. Many authors have outlined the features of the engineering approach (e.g., [1,13–19]) and, while they
do not agree on absolutely everything, their writings reach a broad consensus on the presence of the
following features;

1. a design phase that uses predictive models
2. designing as much as possible using standard, well-characterised components
3. hierarchical design using functional modules
4. manufacture using reliable, quality-assured systems
5. testing of (at least samples of) finished devices using standardised measurement techniques.

This approach is depicted in Figure 1.
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Figure 1. A diagrammatic representation of the ‘engineering approach’ discussed here. The design 
phase uses, as much as it can, standard components and pre-existing modules, themselves, made of 
standard components, to find a plan for the desired device. The plan will as far as possible divide the 
device into modules, which can be designed in detail separately (perhaps by separate teams). In 
complex projects, this modularity may be hierarchical, modules themselves being made of sub-
modules etc. The design phase involves modelling, drawing on the known properties of the 
components and modules used, and on representations of the connections between them. This 
modelling is used to optimize the design before it is realized in wet-ware. Actual construction and 
testing are by standard methods, and in the unlikely event that the device does not work as intended, 
its actual behaviour is fed back to modelling to improve the design. The result is a quality-assured 
product, and also increased knowledge (and perhaps an increased base of modules) that can be used 
for other projects. Credit for graphics: Romaine, Raúl Ruano Ruiz, Everado Coelho, Magnus Manske, 
Halfak, NIAID, all obtained from Wikimedia Commons under a CC4.0 or CC0 licence. 

3. To What Extent Have Past Successes Followed the Engineering Approach? 

To answer this question, it is first necessary to define ‘success’. As every engineer knows, the 
success of a project can be measured in many different ways. The simplest, ‘does the device work?’, 
is one of the least stringent measures of success, while ‘is the device actually useful in the external 
world?’ is a much more stringent test, and one that is of much more interest to investors. A vast 
number of devices, in all fields of engineering, pass the first of these tests but fail the second, usually 
because some other thing works better (does more/is more economical/safer etc.). A great deal of 
public spending on synthetic biology has been justified in terms of real-world impact [20–22] and 
reviews of the field also stress its potential to find industrial, medical and agricultural application 
[23–26]. It is therefore reasonable to define, ‘success’ as a project that has resulted in a product that is 
either achieving practical industrial or medical use in the world outside the research laboratory, or 
that is at a stage of translation that makes such a use likely. This definition has a second advantage: 
where a field has an ideological attachment to a particular way or working (e.g., the engineering 
approach discussed here), it is obvious that the total work done in the field, whether useful or not, 

Figure 1. A diagrammatic representation of the ‘engineering approach’ discussed here. The design
phase uses, as much as it can, standard components and pre-existing modules, themselves, made
of standard components, to find a plan for the desired device. The plan will as far as possible
divide the device into modules, which can be designed in detail separately (perhaps by separate
teams). In complex projects, this modularity may be hierarchical, modules themselves being made
of sub-modules etc. The design phase involves modelling, drawing on the known properties
of the components and modules used, and on representations of the connections between them.
This modelling is used to optimize the design before it is realized in wet-ware. Actual construction and
testing are by standard methods, and in the unlikely event that the device does not work as intended,
its actual behaviour is fed back to modelling to improve the design. The result is a quality-assured
product, and also increased knowledge (and perhaps an increased base of modules) that can be used
for other projects. Credit for graphics: Romaine, Raúl Ruano Ruiz, Everado Coelho, Magnus Manske,
Halfak, NIAID, all obtained from Wikimedia Commons under a CC4.0 or CC0 licence.

3. To What Extent Have Past Successes Followed the Engineering Approach?

To answer this question, it is first necessary to define ‘success’. As every engineer knows,
the success of a project can be measured in many different ways. The simplest, ‘does the device work?’,
is one of the least stringent measures of success, while ‘is the device actually useful in the external
world?’ is a much more stringent test, and one that is of much more interest to investors. A vast number
of devices, in all fields of engineering, pass the first of these tests but fail the second, usually because
some other thing works better (does more/is more economical/safer etc.). A great deal of public
spending on synthetic biology has been justified in terms of real-world impact [20–22] and reviews
of the field also stress its potential to find industrial, medical and agricultural application [23–26].
It is therefore reasonable to define, ‘success’ as a project that has resulted in a product that is either
achieving practical industrial or medical use in the world outside the research laboratory, or that is at a
stage of translation that makes such a use likely. This definition has a second advantage: where a field
has an ideological attachment to a particular way or working (e.g., the engineering approach discussed
here), it is obvious that the total work done in the field, whether useful or not, would be dominated
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by that way of working. Restricting our focus to projects that have found real-world success will
break the circularity of this, and will allow us to examine whether that way of working has been a
path to success. It should be noted that the definition of success used here excludes systems designed
primarily for education and training, because the features of an education tool are often very different
from that of a commercial product (contrast a typical ‘learn electronics by building a radio’ kit from a
commercial radio receiver): education will be considered in Section 5 of this article.

Commercial development of synthetic biology is tracked by the synbioproject database, run
independently by the Woodrow Wilson International Center for Scholars and funded by the Alfred P.
Sloan Foundation [27]. This was used as an initial method for identifying projects finding real-world
application. As backup strategies, Pubmed was searched with <“synthetic biology” commercial> and
the general internet search engine DuckDuckGo was searched with the same term, and with ‘market’ in
place of ‘commercial’, and the first 100 hits were examined. These two searches, though they returned
much material, identified only one commercial or near-commercial application that was not already
identified by the synbioproject database. Table 1 shows a variety of synthetic biological projects, which
are already in the commercial market or that seem close to being, taken from this database and the
literature reviews: the table excludes products in the database that are simply chemical derivatives
products of other synbio projects, to avoid double-counting, and it also excludes what seem to be
natural enzymes or trivial modifications of natural enzymes. It also excludes the many projects claimed
in research papers to be of ‘potential’ commercial interest without any evidence of genuine commercial
development. The projects in the table represent the main types of commercial or near-market
applications of the present time. It is striking that the table is dominated by enzyme engineering and
metabolic engineering, presumably because these are the applications of synthetic biology that can
connect most easily with existing industrial processes and needs. To be clear, this type has been viewed
as genuine synthetic biology in reviews of synthetic biology in Nature [28], Science [29], Cell [19] and
EMBO Reports [15], and in reports from academic societies [10] and government agencies [20]: this
current article follows that established practice. Examination of the publications describing the projects
(references are in the table) reveals the extent to which the project used the engineering approach
outlined in Section 2. None of them followed it entirely, and most did not follow even one of its
elements. The one that did—the arsenic sensor—made some use of standard components but did not
show the other features.

Table 1. Attributes of a selection of successful, real-world synthetic biological projects. The use of
components so standard across biology that they are not particularly associated with synthetic biology,
such as commercial plasmids and cloning systems, has been ignored in the ‘standard components’
column: this column refers instead to components drawn from a registry of standard parts intended
for synthetic biology.

Project How Ref Status Predictive Models? Std
Components? Modular? Standard

Testing?

Accelerase Trio
(for biomass
conversion)

Enzyme
engineering [30] Commercial Unknown

No (started with
natural enzymes
chosen for this

specific purpose)

No No
(custom)

Arteminisic acid
synthesis (drug)

Metabolic
path

engineering
[31–33] Commercial No (design was

optimized empirically)

No (custom,
selected from

other organisms)
No No

(custom)

Bioisoprene
synthesis (for

rubber)

Metabolic
path

engineering
[34] Near-market

No (empirical testing of
alternatives was

used instead)

No (custom,
selected from

other organisms)
No No

(custom)

Cellic Ctec
(enzyme for

biomass
conversion)

Enzyme
engineering [35] Commercial Unknown Enzyme

engineering No No
(custom)

Cephalexin
synthesis (drug)

Metabolic
path

engineering
[36] Commercial No (design was

optimized empirically)

No (custom,
selected from

other organisms)
No No

(custom)
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Table 1. Cont.

Project How Ref Status Predictive Models? Std
Components? Modular? Standard

Testing?

Biodiesel
Metabolic

path
engineering

[37] Near-market

No (a model was used
to inform overall plan

and to assist with
analysis but not to
predict based on

components)

No (custom,
selected from

other organisms)
No No

(custom)

Fuelzyme
amylase

Enzyme
engineering [27] Commerical Unknown

No (custom,
selected from

other organisms)
No No

(custom)

Luminase PB-100 Enzyme
engineering [27] Commercial Unknown No (custom) No No

(custom)

Resveratrol
synthesis (drug)

Metabolic
path

engineering
[38] Near-market No (design was

optimized empirically)

No (custom,
selected from

other organisms)
No No

(custom)

Arsenic sensing
Novel genetic
‘circuit’ with

sensor
[39,40] Near-market

Yes (ODE-based model
using estimated
parameters for

performance prediction
and sensitivity analysis)

Yes (BioBricks) No Partially

A good example of the gulf between the engineering approach that is claimed to be at the
heart of synthetic biology, and the actual paths to success, is given by one of the most famous
real-world applications, the synthesis of precursors of the anti-malarial drug, artemisinin (second
entry, Table 1). A synthetic biology route to this was first described by Ro et al. [31], and worked
by introducing enzymes from other organisms into a laboratory microorganism to create a new
metabolic pathway, together with some inhibition of natural paths. According to the description
in their paper, Ro et al. designed their pathway in a step-wise process, adding features (e.g., gene
encoding enzymes), measuring the effect, and then adding the next feature; this was typically done
with choices, the best-performing strain being chosen post-hoc rather than predicted quantitatively.
There is no mention in the methods section of any predictive modelling. The genes used for the
pathway enzymes were not drawn from any Registry or Catalogue of standard components, but were
rather taken from other organisms with desired metabolic features and connected in a manner designed
specifically for this one project. The performance of the system was tested according to assays designed
for that specific system, and not according to any general scheme of metrics. The productivity of
the system described in 2006 was inadequate for commercial production, and further work was
needed to optimise the system [41]. Much of this optimisation was iterative, observations made on the
results of early attempts (e.g., cells suffering oxidative stress) being used to inform later stages of the
work, for example changing the transcription rate of some genes, and adding others [32]. The group
responsible achieved something very important and laudable, but their path (summarised in Figure 2)
was quite different from the engineering approach claimed by others to be at the heart of the field.

Similarly, synthetic biological production of D-Phenylglycine, a building block for the antibiotic
cephalexin, was done by designing a metabolic pathway using components borrowed from other
organisms. This pathway has been assembled, tested empirically, then improved in a stepwise manner
by suppressing pathways that produced unwanted byproducts [36]. The final function of the system
was tested using assays specific to the project rather than any generic suite of metrics. This pattern of
empirical exploration in place of prediction is not confined to older projects or to those that involve
pathway engineering. A recent synthetic biological project to confer additional interaction domains
control on the CRISPR DNA-editing enzyme Cas9, for example, achieved its aim not through optimised,
predictive design but through a carefully planned search strategy that tried almost every possible
position of a control insert in a host protein to find the optimum [42]. These data were later built
on to make hormone-controllable Cas9 and cpf1 but, even though these designs were based on the
knowledge obtained from [42], it was still necessary for another stage of empirical testing of different
versions of the design, only some of which showed satisfactory performance [43].
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example for strain choice, and some events (e.g., ADH, Gal80) have been presented together when in 
reality they were sequential and would have added another turn to the diagram. The story, which is 
even more complicated than this already messy diagram suggests, is told with great clarity in ref [32]. 

So, we are forced to conclude that the actual application of the engineering approach to synthetic 
biology projects that are old enough to be in or near the market is not universal and may in fact be 
rare, and that typical projects proceed by processes much closer to those in Figure 3 than Figure 1. 
This conclusion is supported by the analyses of others [1,28,44]. In the words of a recent report from 

Figure 2. A representation of the progress of the project to produce artemisinic acid (precursor for
the antimalarial compound artemisinin) by synthetic biological means. It should be noted that this
diagram shows only the path to ‘first success’ and not to final commercial optimization, and also that it
has been simplified in the interests of clarity: in reality there are more turns of this spiral, for example
for strain choice, and some events (e.g., ADH, Gal80) have been presented together when in reality
they were sequential and would have added another turn to the diagram. The story, which is even
more complicated than this already messy diagram suggests, is told with great clarity in ref [32].

So, we are forced to conclude that the actual application of the engineering approach to synthetic
biology projects that are old enough to be in or near the market is not universal and may in fact be
rare, and that typical projects proceed by processes much closer to those in Figure 3 than Figure 1.
This conclusion is supported by the analyses of others [1,28,44]. In the words of a recent report from
Cambridge Consultants, “The field of synthetic biology is still to become the fully- edged engineering
discipline it is aiming towards” [45].
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Figure 3. A diagrammatic representation of the general approach actually taken in the majority of
the projects in Table 1. They used custom parts chosen specifically for the project, and achieved most
optimization steps by testing different versions of the real wet-ware construct (not a computer model)
and using the information to produce a better design. Many projects involved random variation and
selection of the best alternative, rather than relying on purely predictive design. Credit for graphics:
Romaine, Raúl Ruano Ruiz, Everado Coelho, Magnus Manske, Halfak, all obtained from Wikimedia
Commons under a CC4.0 or CC0 licence.
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4. Should Synthetic Biology Follow the Engineering Approach in the Future?

The examples described in Section 3 show that synthetic biology projects can be successful even
when operating in ways that involve a great deal of trial and error, with very little standardisation.
Many authors have argued for replacement of this way of working with the engineering approach
outlined in Section 2 [1,11–13,44,46,47]. Is this really desirable? This section will consider the
advantages and disadvantages of each of the five features of that approach.

4.1. A Design Phase That Uses Predictive Models

Of all of the features of the engineering approach, this is the easiest to champion because predictive
design would be very useful if it were one day to become possible. Building synthetic biological
constructs in DNA, transferring them into cells, selecting for stable clones and verifying their behaviour
is expensive in time and money: it would be much better to use models to optimise designs before they
are realized in wet-ware. The power of models in conventional engineering stems from their predictive
power, and that in turn stems from the precision with which the properties of construction components,
and their ways of interacting, are known. This includes both the properties of active components
(e.g., transistors) and also the confidently known inertness of supporting structures such as a radio
chassis or printed circuit board. Engineering components (transistors, gears, chassis) are themselves
the product of design and they are therefore very well understood. The components of synthetic
biology, which are generally derived and adapted from natural molecules and gene sequences, are not
understood nearly as well (even when the genes are synthesized de novo, the elements of proteins
for which they code are usually derived from the study of functional domains in natural proteins).
More critically, the properties of host cells are understood only in outline: the whole science of cell and
molecular biology exists precisely to work these details out, and there are no signs that the enterprise
is close to completion. In the light of this, the arrogant way in which some synthetic biologists dismiss
the host cells as a mere ‘chassis’ is somewhat surprising.

The fact that we cannot yet model the behaviour of synthetic systems with precision, and that we
may not be able to do so in the foreseeable future, does not mean that modelling has no place in the
design phase. It can certainly be used to explore ideas with idealised components, and it can be very
useful for sensitivity analysis (determining which parameters are critical to a system, and which can be
anywhere in a wide range without disrupting function). Its power might increase if systems were to be
measured in standard ways and the results fed back into models, either explicitly or through machine
learning techniques. However, in the absence of complete data on components and host biology,
modelling cannot be relied upon to find the optimum design, so a degree of parameter space-searching
in the wet-ware phase will remain necessary for projects for which efficiency is critical.

4.2. Designing as Much as Possible Using Standard, Well-Characterized Components

From the dawn of 21st century synthetic biology, leading authors have argued for the construction
of libraries of standard, well-characterised parts from which modules and devices can be assembled,
in much the same way that radios, televisions and karaoke machines are assembled from standard
electronic components (reviewed in [48]). To anyone with a sense of engineering history, the wisdom of
this may appear self-evident. Joseph Whitworth’s standardisation of machine screw threads, making
nuts of a given specification interchangeable so that they did not have to be custom-made to fit a
particular machine screw or bolt, made manufacture and maintenance of machinery much faster and
more economical [49]. The development of standard electronic components in place of the hand-built
resistors and hand-blown vacuum tubes of the early days made the radio, television and information
ages possible. Similar stories can be told in almost all other fields of engineering. This, together
with educational considerations, prompted Tom Knight to found the Registry of Standard Biological
Parts (‘Biobricks’: [50,51]), a set of generic elements (promoters, reporters, terminators etc.) that were
classified, schematised, listed and described in much the same way that components appear in an
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electronics catalogue. The Registry is open to all and can be examined at https://parts.igem.org/
Main_Page.

The use of standard parts confers three advantages in conventional engineering; (i) it simplifies
design because the designer can specify the use of a component with known, well-described properties
and need not normally worry about its internal details of that component or how it is manufactured;
(ii) it brings economy of manufacture, because the same basic component can be used as a standard
part in a large number of different final devices so some manufacturers can devote themselves to
manufacturing components at high volume; (iii) maintenance is made much easier by the fungibility
of components carrying the same part number. In synthetic biology, the value of the first advantage
depends on how known the properties are, a problem that has already been discussed in Section 4.1.
The last two advantages are irrelevant to synthetic biology; living systems, once made, reproduce
themselves so that almost all cost of manufacture is the production of the prototype only, and cells
maintain themselves.

There are, on the other hand, two potential disadvantages to using standard parts. The first
is inefficiency; in most cases, the combination of standard parts required to perform a task will be
larger and more complex than a custom part designed for the job. This is especially true in fields like
metabolism, for which a route-by-standard-parts may be much longer than one mediated by a custom
enzyme (or one borrowed from another organism that happens to feature a desired transition in its
own metabolism). Anyone involved in designing or maintaining mechanical or electronic devices will
be familiar with the compromises accepted in the interests of avoiding the expense of an optimised,
custom component. This is not important in typical consumer or industrial applications, where there
is no great penalty for using a few more components or a little more energy than strictly necessary.
In living cells, however, any additional metabolic load can be deleterious and create selection pressures
favouring cells that manage to inactivate the synthetic construct. The other, long-term disadvantage
of standarization second is vulnerability. One of the strongest defences of natural organisms against
microbial attack is their diversity, maintained by gene shuffling through sexual reproduction. Clones
of identical organisms grown in monoculture are very vulnerable to any pathogen adapted to them,
as demonstrated by the Irish potato blight and its associated famine [52]. Economies that rely on
standardized interconnections of standardized computers are now routinely attacked by criminals
intent on disrupting their activities or holding them to ransom. The standardisation of systems and
interconnection protocols makes these attacks much easier since so many devices work in the same
way. If our agricultural, energy and industrial economies come to rely on synthetic biological devices,
we may be much safer if they have been built from diverse and unique custom parts rather from a
common set of standard components.

4.3. Hierarchical Design Using Previously-Characterised Modules

The use of modules (collections of components arranged for a particular task) is very common
in the engineering industry; motors, gearboxes, amplifiers, memory boards and prefabricated roof
trusses are familiar physical examples. Ubiquitous, but less obvious except to software engineers, is the
extensive use of libraries of pre-written modules that are used in most everyday computer applications;
these libraries can be called upon in code and are included when the software is compiled (translated,
by existing software, from human-friendly languages to machine code).

There are two main advantages of building a complex project from modules. The first and most
obvious is that it allows the use of pre-existing modules to perform some functions, instead of having
to design designing everything from first principles. The cliché about ‘not re-inventing the wheel’ is
precisely about using an existing hub-and-spoke-and-tyre module because it is available. If a module
performs the exact task required, and nothing that is not required, then reusing it in a new design
may make sense. It is common, however, for modules to have features additional to the minimum
required and therefore to be larger than they need to be. The effect of using them anyway can easily
be appreciated by the rapid rise in the size and memory requirements of computer applications, a

https://parts.igem.org/Main_Page
https://parts.igem.org/Main_Page
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trend captured in the informal term ‘bloatware’. In two illuminating essays, the programmers Nikita
Propokov and Jordan Scales examine many examples of this [53,54]. A typical one is the current
Google Keyboard App, the function of which is to draw 30 ‘pressable’ keys on a tablet screen: this app
uses three times more memory than the entire Windows 95 operating system did! They also discuss
how software has become so terribly inefficient. Two strong themes are the use of modules with
unnecessary functionality in addition to the function needed, and the creation of new functions by
building on layers of existing modules, which were themselves built on deeper layers, creating webs
of interactions and dependencies that increase the size of applications, decrease their speed, and give
them far more unpredicted behaviour than software written from scratch would have.

The effects of this in computers are almost tolerable because computer hardware has become
more powerful at a rate that has kept up with decreasing efficiency of software (routine tasks on an
office computer, such as scrolling through a document or finding an e-mail, take about as long now as
they did 20 years ago; the bloatware adds new, less commonly used features). However, the capacity
of living cells to provide resources for additional systems is limited and will not rise in the way that the
capacity of computer systems has. We cannot make the same mistakes in designing synthetic biology
systems that we have made in writing consumer and business software, because host cells will simply
not support the resulting mess. Instead, synthetic biological devices will need to be as optimized as
possible, with no use of modules with unnecessary features.

There is a second advantage to modular construction that applies even where no pre-existing
modules exist. In conventional engineering, modular construction allows abstraction and hierarchical
design [13,55], allowing a complex project to be broken down into sub-units that can be designed
independently: as long as the connections between the modules (power supply, signal level and types
etc.) are well-defined, design teams of one module can ignore the internal architecture of others.
This ‘decoupling’ [13] works because the interactions of modules can be limited, for example to only
those points where wires connect one module to another. Sometimes, even in conventional engineering,
problems arise when interactions are not as controlled as expected (radio-frequency emissions, heat
and vibration being common media of unexpected coupling). In synthetic biology, most components
diffuse freely in the cell and their interactions are not limited by wires. In electronics, teams making
different electronic modules are free to use exactly the same bistable memory latch device: memory
latches exist in synthetic biology too, and most use diffusible proteins to control transcription (reviewed
in [56]) so that, if two modules used the same latch design internally they would interact strongly.
Design teams of one module therefore need to be very aware of the architecture of other modules so
that they do not use components that interact. The problem cannot be solved merely by avoiding use
of identical components; potential interactions can be subtle and hard to predict in advance, especially
when they proceed via the host physiology [57]. This does not mean that modular construction cannot
or should not be used, but it does mean that the gains from this way of thinking will not be as great as
they are in conventional engineering, and that they have higher risks of introducing unintended ‘bugs’
into the system.

4.4. Manufacture Using Reliable, Quality-Assured Systems

This is relevant, and largely achieved, for manufacture of the lowest-level components such as
DNA sequences, and for the use of established synthetic biological systems for making drugs safe
enough for human use. It is much less relevant for the production of the engineered cells themselves,
because it is usually so simple to select the one-in-10,000 cells that have been made properly and use
the self-reproducing feature of life to increase their numbers as required.

4.5. Testing of Devices Using Standardised Measurement Techniques

The creators of a synthetic biological device intended to perform a specific task will almost certainly
have to apply unique tests to it, designed around the desired outcome, to verify its performance. They may
also choose to apply standard tests to the whole system and to its subcomponents [58]. The value of
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performing standard tests is more to the community as a whole than to the project itself [46]. By associating
devices and cellular and environmental contexts with standard measures of performance, and submitting
this data to an open repository, synthetic biologists contribute to the development of better predictive
models for the design phase. The utility of this will be greatest when the components themselves are
drawn from a standard set, and least when they are custom-built for only one purpose. There is therefore a
kind of cultural feedback in operation: if a team commits to use of standard components it will make sense
for them to commit to standard measurements as well (in addition to any custom ones), for the sake of the
whole standards-centred community. If a team eschews standard components for custom design, there is
much less point in their using standard measurements. There is scope, however, for something like the
‘yellow card’ scheme for reporting adverse drug interactions or side-effects, run by the UK’s Medicines and
Healthcare Regulatory Agency (MHRA). If synthetic biologists using even very non-standard components
could submit reports of any unexpected interactions (between components and between components and
host cell) in a simple way, more could be learned about risk of failure, if only at the level of identifying,
statistically, host cell systems most likely to be involved in unexpected interactions.

5. Where the Engineering Metaphor Is Useful

Because this article is written as a challenge to a vigorously promulgated but, in the author’s view,
unhelpful dogma that synthetic biology always uses, or should aspire always to use, an engineering
approach, there is a risk that it may read as unbalanced. To be clear, I am not arguing that there is no
place in synthetic biology for practices derived from conventional engineering—only that these must
not be allowed to confine the development of the field. There are clearly aspects of synthetic biology in
which the engineering metaphor is appropriate.

The first and most obvious aspect is in education. The iGEM series of annual competitive
workshops (reviewed in [18,59]), at which many young people gain their first taste of synthetic biology,
depends for its success on the BioBricks Registry of Standard Biological Parts [60,61]. These adhere to
a well-defined set of standards to ensure a reasonably high chance of their being assembled easily in a
large variety of combinations [51]. It is precisely because student teams can choose well-characterized
parts ‘off the shelf’, as they might chose components for a project in electronics, mechanics or hydraulics,
that it has been possible for inexperienced teams to achieve so much in so short a time. Use of standard
parts is of course much quicker than designing or modifying custom ones. However, it must be
remembered that the primary aims of iGEM are engagement and education, not the design and
production of an optimized system for real-world use. For education, speed of design and assembly
are important and final efficiency is not; the effectiveness of the process as a learning experience
matters much more than the effectiveness of the cells doing their new job. Some iGEM-derived devices
are taken on towards real-world applications (e.g., the arsenic sensor of [62]), but this process usually
requires optimization steps [39,63,64] that move away from the standard components and involve
careful custom-engineering and evaluation of several different alternatives whose properties could not
be predicted (or at least were or in fact predicted) in advance.

The most important use for the engineering-derived practice of standardisation is probably in the
area of metrics and description. Many areas of science have been improved by the adoption of codes
of practice that specify a minimum data set to describe a particular analysis. The MIAME standard
for description of micro-array experiments and the MISFISHE standard for description of in-situ
hybridisation experiments, and MIBBE for biology in general are three outstanding examples [65–67].
Adoption of minimum data sets for describing or characterising synthetic biological systems, many of
which already exist [8], will be very useful in aiding comparison between performance of different
devices, but it is again important that the standards are flexible enough to be able to be adapted to
new types of devices or measurements that were not thought of when the standards were drawn
up. It would be a tragedy if an insistence on rigid adherence to a standard system of metrics and
description were allowed to prevent the development of new devices for which the old standards are
not appropriate. A simple method of dealing with this, a method that is drawn from open-source
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software engineering, is ‘forking’: making a copy of an established open system (of standards, in this
case), without the need for any permission from the original developers of that system, and then
altering it for a particular new purpose and making that altered version fully available for all to
use [68].

6. Conclusions

This article has argued that the dogma that synthetic biology already operates like, or that it must
in the future operate like, conventional engineering is false. That does not mean that the engineering
approach should be excluded; merely that it should not be insisted upon. The unique features of
biological systems, in particular that we still understand them so completely, makes the classical
engineering approach of less value than it is in the world of non-living technologies and makes other
approaches more valuable than they would be in the physical world.

There is a deeper point to be made. The authors cited at the beginning of this article, and many
others like them, wish to improve biological technology through the application of knowledge and
practices adopted from conventional engineering. What might be more fruitful is a flow of ideas
in the opposite direction. Biologists, including their main ‘engineering’ flank, surgeons, physicians,
and veterinarians, have evolved ways of working that allow them to manipulate living systems to
achieve desirable outcomes by adapting their approach to the characteristics of life, rather than the
other way around. When a natural system is not understood in detail (which is almost always the
case), biologists start by optimising not the design of their new device (e.g., a drug), but by optimising
the design of a high-throughput screen that will explore a vast volume of parameter space (chemical
structure, concentration, timing, etc.) to find the candidate that works best [69–71]. When they wish to
modify a cell line or organism, either by deliberate genetic manipulation or by random mutagenesis
and breeding, they design selection pressures to mimic evolution, so that even a very rare desirable
genotype will come to dominate a culture within a few generations. They also often perform this
iteratively, combining elements of promising lines randomly and again selecting for the best (this is
the basis of classical breeding). None of this involves truly predictive modelling and the structure of
the best device, when analysed retrospectively, is often a surprise.

This way of working is anathema to most classical engineers, but it has served our species well
for thousands of years—far longer than industrial engineering—and even now crop breeding can
still outperform genetic manipulation [72]. One field of engineering has been receptive to borrowing
ideas from biology: at least in fields devoted to designing adaptive or ‘intelligent’ systems, genetic
algorithms and neural net strategies, both based entirely on biological principles, have been adopted
and are proving successful [73]. Of all the engineering disciplines, software is the most like biology
anyway because it shares the attributes of rapid, almost cost-free reproduction and of very large
numbers of variants being able to co-exist and compete in an ‘ecosystem’. However, given that one use
of software is to conduct the predictive modelling at the beginning of the classical engineering process,
it would be perfectly possible for this evolutionary, exploratory way of working to be used to generate
and evaluate many models of a desired object (a submarine hull, say) and to find an optimum plan,
even if the engineers do not understand explicitly why it is the optimum. The idea has been used to
design optimum wiring networks [74] and the ‘evolved design’ of NASA’s ST5 spacecraft antenna is
an example of a plan that arose this way [75]. The use of a ‘biological’ rather than conventional method
of working on this project, a micro-satellite in which efficiency was very important, is telling, and very
relevant to the restraints of synthetic biology.

So, in conclusion, synthetic biology has not always used the classical engineering approach so far,
and there is no good reason that this approach should define it in the future. Rather than allowing
classical engineering to constrain synthetic biology, we would be much wiser to borrow ideas from
classical engineering when they can help us, and also to allow biologists’ ways of working to expand
and enrich the realm of engineering. With the right kind of synthesis, the title of this paper will become
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meaningless, as ‘engineering’ will have expanded to embrace a much richer variety of ways of working,
their unifying feature being the way that they result in the optimum solution to any given problem.
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