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Abstract. Parkinson’s disease is a complex and heterogeneous condition, and there are many gaps in the medical commu-
nity’s scientific and practical understanding of the disease. Closing these gaps relies on objective data about symptoms and
signs, collected over long durations. Smartphones contain sensor devices which can be used to remotely capture behavioral
signals. From these signals, computational algorithms can distill metrics of symptom severity and progression. This brief
review introduces the main concepts of the discipline, addressing the experimental, hardware and software logistics, and
computational analysis. The article finishes with an exploration of future prospects for the technology.
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INTRODUCTION

Parkinson’s disease is a heterogeneous condi-
tion, with different individuals experiencing different
combinations of symptoms and different rates of
symptom progression [1]. As of 2020, we do not
have a clear understanding of how to detect the con-
dition in its early stages, and we do not understand
the ultimate causal factors which lead to someone
developing the condition in the first place. Clinimet-
ric tools for measuring symptoms and progression are
therefore required to advance the multiple applica-
tions such as prodromal symptom detection, real-time
symptom fluctuation monitoring, intra-day tracking
of symptom treatment effectiveness, observational
and longitudinal data collection, and assessing the
effectiveness of clinical trials.
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A major difficulty for these applications is that
traditional, subjective, in-clinic measurements of
symptom severity—quantitative rating scales such
as the MDS-UPDRS and PDQ-39—are of limited
use for most practical clinical applications. Today’s
smartphones, owned by a sizable majority of the
population, come equipped with various, commodity
“sensor” devices for recording continuous physical
measurements, including movement, sound, location,
and touch (Fig. 1). This continuous stream of sen-
sor data can be used to measure individual behaviors
which are partially caused by the underlying disease
process. For example, accelerometry recordings of
leg movements may be used to infer changing patterns
of stepping during walking related to bradykinesia,
and patterns of tapping on the smartphone touch
screen can be related to rigidity (see Table 2). Starting
in 2013, a handful of novel academic studies making
use of smartphones for Parkinson’s disease symp-
tom measurement, were conducted (see Table 1),
which kick-started the research discipline across both
academia and industry.
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Fig. 1. Elements of smartphone-based symptom testing. See text for further information and Table 2 for description of how these sensors
can be used for specific symptom measurement.

Table 1
Chronology of early smartphone-based Parkinson’s disease studies

Start year Operating Custom Participating Study Study design Recruitment
[reference] system/ software users (N) duration

hardware application

2013 [6] Android HopkinsPD 20 3 months Remote observational In-clinic
2013 [8] Android HopkinsPD 522 5 years Remote observational In-clinic
2014 [13] Apple iOS Bradyapp 26 N/A In-clinic observational In-clinic
2014 [7] Android HopkinsPD 457 6 months Remote observational Remote
2014 [14] Android Roche Proprietary 79 24 weeks RCT, non-primary endpoint In-clinic
2015 [15] Apple iOS mPower 898 6 months Remote observational Remote

The driving interest behind this extremely active
research field is the development of experimen-
tal methods, computer software, mathematical and
statistical algorithms, to convert commodity smart-
phones into tools for doing high-quality, rapid,
measurements of Parkinson’s disease symptom sever-
ity (see Table 2). The widespread availability of
low-cost smartphones might allow measurements on
large patient populations for the clinical and research
applications mentioned above. This concise review

lays out the state-of-the-art of this field for a non-
technical, clinical audience.

EXPERIMENTAL LOGISTICS OF
SMARTPHONE-BASED MEASUREMENT

For sensor-based data recording, the body place-
ment, social and physical environment of the smart-
phone, in relation to the subject’s behavior, are critical
factors. For example, if the goal is to measure gait



M.A. Little / Smartphones for Remote Symptom Monitoring of Parkinson’s Disease S51

Table 2
Common smartphone sensors and usage in detection of specific symptoms

Sensor Physical measurement Symptoms (body placement)

Accelerometer Sum of dynamic and gravitational acceleration Gait impairment (hip)
Sit-stand transitions (hip)
Balance disturbance (hip)
Tremor (hand)

Gyroscope Rate of rotation (spin) Gait impairment (hip)
Balance disturbance (hip)

Magnetometer Geomagnetic field strength (direction) Turning problems (hip)
Barometer Ambient air pressure (altitude) Stair climbing difficulties (hip)
Microphone Ambient sound waves Voice and speech impairment (hand)
Touch screen Finger location on screen Dexterity impairments (tapping)
Thermometer Ambient air temperature Heat/cold intolerance
GPS Outside location (latitude, longitude) Mobility disability

impairment, then the smartphone must make good
mechanical contact near the trunk or lower limbs. An
ideal wear location in this case, is a tight-fitting pocket
on the thigh. Clearly, this is not feasible for many
individuals. Similarly, to record speech in naturalistic
settings it is necessary in some legal jurisdictions, to
gain consent from other conversational participants,
and the acoustic environment should be largely free
of extraneous background noise. These constraints
may be difficult to satisfy in practice. As a result,
smartphone-based symptom measurement requires
specialized experimental design and planning.

Active (structured) testing

One practical approach to addressing experimen-
tal difficulties is to structure the measurement of
symptoms using specialized app software, instruct-
ing participants to perform prescribed actions. This
imposes specific behavioral controls that elimi-
nate many confounding effects due to unknown
participant actions within the environment. These
software-guided actions are designed to elicit specific
symptoms according to a certain testing protocol. For
example, a gait impairment test would require partic-
ipants to wear the smartphone in a particular location
and walk in a straight line for a time, a task that might
be difficult to perform with symptoms such as freez-
ing of gait. Another for dexterity issues might require
sequential tapping of on-screen buttons, where tremor
and rigidity might affect tapping strength and speed.

Passive (unstructured) testing

While active testing reduces many behavioral and
environmental confounds, it is not a naturalistic activ-
ity, so it introduces a burden on participants, however
small. To be conducted, typical active tests demand
finding suitable locations and times of the day. This

causes participants to lose interest and willingness to
contribute to studies, to be lost to attrition [2]. An
alternative is to record sensor data opportunistically,
when the smartphone is being worn, so that no explicit
interaction with the smartphone is required. The hope
is that, if the smartphone is worn for a substantial
portion of the day, symptoms such as gait impair-
ment or tremor severity can be monitored without the
need to interrupt the subject at all. However, because
this approach lacks behavioral control, it is prone to
substantial contextual confounding.

FROM SENSOR DATA TO SYMPTOM
MEASUREMENT

Sensor data captured on the smartphone is not read-
ily interpretable in clinical terms, nor can it be directly
explained in terms of the relationship to the underly-
ing disease process. Further processing is necessary.
Typically, this processing requires mathematical and
statistical algorithms which are too complex to be
carried out on the smartphone itself. Thus, the sensor
data is encrypted and transmitted to a remote server
where the processing takes place. This processing
“pipeline” has evolved over the years as the field has
matured [3].

The first step is quality control. In the case of
active testing, participants do not always adhere to
the test protocol which invalidates the test sensor
data. Automated QC algorithms “clean” the sensor
data to improve the reliability of the recording [3,
4]. In the case of passive testing, the sensor data is
segmented into contiguous intervals representing the
behavior of interest. For instance, gait impairment
testing requires isolating sufficiently long intervals
of intentional walking [5].

The next step is preprocessing and feature extrac-
tion. The cleaned sensor data is standardized (for
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example, accelerometry data is transformed into a
body-centric coordinate frame) and then summarized
down to a few metrics. For example, with voice
recordings, typical preprocessing standardizes the
amplitude to compensate for distance of the patient’s
mouth to the microphone, followed by extracting
measures of loudness across a range of frequencies
[6].

The final step involves clinical prediction. Here,
the extracted features are analyzed together to pro-
duce a clinically-interpretable metric of some aspect
of the disease process. For example, one clinical
application is that of tracking intraday symptom
response to dopaminergic drug treatment, in which
case the prediction is the ON/OFF status of the partic-
ipant on, say, 4–8 eight hourly intervals [7]. Another
example is of detecting the overnight presence or
absence of a prodromal symptom such as sleep dis-
turbance [8]. An even more “continuous” metric
might be medication-induced, gait performance fluc-
tuations, measured on a minute-by-minute basis [5].

To validate predictive algorithms such as the above
often requires some kind of labelling of the data.
Examples of such labelling include expert deci-
sions: a diagnostic or periodic symptom assessment
applying some clinical criteria to observations of
the patient’s patterns of movement or behavior, or
non-expert annotations, such as assessment of other
behavior (walking indoors versus outdoors) in order
to establish the context of behaviors as discussed
above. Labelling requires care. There are the usual
‘clinimetric’ issues with sufficient training, inter-
rater variability, test-retest reliability and others. In
addition, there are experimental considerations. For
example, to validate predictions of medication effec-
tiveness, it is necessary to collect information on
treatment schedule adherence on an intra-day basis.
Participants in clinical trials may find it a substantial
effort to record this information over the long term
and may therefore be somewhat unreliable or patchy
witnesses. This is one reason why any smartphone-
based remote symptom monitoring technology may
be limited to the ability to label the data for validation
purposes.

FUTURE DIRECTIONS

Given the problems with contextual confounding
of smartphone usage, there is substantial need to dis-
ambiguate sensor data. Current analytical approaches
to smartphone sensor data processing make little use

of simultaneous measurements across multiple sen-
sors. As an example, GPS speed might be a useful
differentiator for separating bicycling from walking
when measuring gait impairment. Novel algorithmic
processing pipelines will need to be developed.

Similarly, as smartphone hardware becomes more
capable, new, non-classical metrics of Parkinson’s
disease may become accessible. In particular, future
smartphones may come equipped with photoplethys-
mographic sensors to measure peripheral blood flow
and oxygenation, which may allow measurement of
pulse to quantify autonomic nervous system dysfunc-
tion. Coupled with standard tests such as sit-stand
transitions, it may be possible to isolate conditions
such as orthostatic hypotension which is a common
condition in Parkinson’s disease.

One of the major difficulties with current smart-
phone-based analysis algorithms is that they are all
associational. That is, they make predictions by asso-
ciating the sensor data with clinical outcomes or other
meaningful symptom labels. We would, in particular,
like to ensure that these associations are not conflated
with causation, to avoid making predictions which
merely reflect spurious correlations. One approach to
avoiding this pitfall is analytical methods from causal
inference [9]. These methods, which seek to identify
cause-effect relationships free from confounding, are
widely used in disciplines such as epidemiology, but
have only more recently started to be incorporated
into computational analysis [10].

While an individual’s smartphone sensor data is
fairly obscure and thus difficult to identify, there are
some streams of data which are highly sensitive, such
as GPS location, and thus require encryption and spe-
cial security measures. If these kinds of sensitive data
are to be used en-masse, it will likely be necessary to
restrict computational processing to the smartphone.
Alternatively, new advances in computational secu-
rity such as differential privacy may be required [11].

Finally, the current evidence (as of 2020) for the
practical effectiveness of smartphone-based moni-
toring does not reach the usual standard for reg-
ulatory approval, e.g., the randomized controlled
trial. All existing studies of smartphone-based test-
ing use retrospective observational, not prospective
interventional, data. For example, testing whether
smartphone-based symptom monitoring is effective
and leads to improved outcomes for patients could
be carried out by performing a novel diagnostic trial
[12].

Over the next decade, smartphones are predicted
to become ever more widely available. With expected
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increases in computation and storage capacity, the
smartphone could also process the sensor data with-
out the delay in moving it over the internet. We can
also expect that the skills and knowledge as described
in this review will become more widespread in the
clinical research communities. As these technolo-
gies mature, become more reliable, understanding
of the function and limitations of these analytical
tools improves, and they enter diagnostic clinical tri-
als for diverse populations, we will likely see the
emergence of fully-approved smartphone software
tools for remote symptom monitoring. These tools
will likely become a common “building-block” for
special applications adapted to particular users’ cir-
cumstances.

To illustrate a future application scenario: for a user
engaged in testing out a change in treatment regime, a
symptom monitoring algorithm may run in the back-
ground on their smartphone, collecting sensor data
and processing it to provide real-time feedback on
symptom changes. An annotated, visual represen-
tation of symptom changes would be displayed on
a daily chart, which would be automatically shared
over the internet with the responsible clinical staff. In
conjunction with the clinician, referring to the chart
as evidence of effectiveness, the change in treatment
would either be acted upon or rejected. This kind of
remote, objective evidence, may have a substantial,
near-term improvement on the medical science and
practice of Parkinson’s disease.
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