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Anderson localization of flexural 
waves in disordered elastic beams
Jesús Calleja Ángel1, José Concepción Torres Guzmán2,3 & Alfredo Díaz de Anda1

We study, both experimentally and numerically, the Anderson localization phenomenon in flexural 
waves of a disordered elastic beam, which consists of a beam with randomly spaced notches. We found 
that the effect of the disorder on the system is stronger above a crossover frequency fc than below it. 
For a chosen value of disorder, we show that above fc the normal-mode wave functions are localized as 
occurs in disordered solids, while below fc the wave functions are partially and fully extended, but their 
dependence on the frequency is not governed by a monotonous relationship, as occurs in other classical 
and quantum systems. These findings were corroborated with the calculation of the participation ratio, 
the localization length and a level statistics. In particular, the nearest spacing distribution is obtained 
and analyzed with a suitable phenomenological expression, related to the level repulsion.

In condensed-matter physics, a perfect lattice has a level energy spectrum in the form of bands with their corre-
sponding wave functions extended. However, if the system presents random imperfections, wave functions can 
be localized. This phenomenon is known as Anderson localization named after the work of Anderson1 and is 
one of the most important subjects in condensed matter physics since it is essential to understand the transport 
properties of materials. It has relevance not only in solid-state studies2–7, but also in optics8–13, cold atomic gases14, 
microwaves15–18, and acoustics19–24. Random imperfections in a system are represented, for example, by the pres-
ence of strange atoms in an otherwise perfect structure or when there are unit cells of different size, which causes 
wave functions to be localized and therefore affects the conductivity of the system. Thus, band theory and the 
theory of the Anderson localization allow us to understand why some materials conduct electricity and why oth-
ers do not. Experimental studies of the Anderson localization are mainly related to the transmission coefficient 
or correlations while measurements of wave amplitudes are rather scarce16,17,25. In this aspect, classical wave-like 
phenomena like elastic vibrating systems, offer an unique advantage over quantum systems: in elastic experiments 
one can measure the wave amplitudes at each spatial point. This allows us to understand the Anderson localiza-
tion phenomenon in a deeper way.

Recently, the Anderson localization has been studied using elastic vibrating rods26,27, in particular torsional 
wave amplitudes were measured in order to obtain the localization length, as a function of the frequency. Other 
measures like nearest-neighbor spacing and the inverse participation ratio were obtained from the experiment. 
Besides torsional waves, one-dimensional elastic systems also exhibit another types of oscillations like compres-
sional and flexural vibrations. The first type is described, as well as the torsional oscillations, by a wave equa-
tion, while the flexural type, is better described by fourth-order differential equations instead, according to the 
Timoshenko beam theory (TBT)28. They result from the coupling of two second order differential Navier equa-
tions and as a consequence of this coupling, flexural oscillations has several characteristics not observed in com-
pressional or torsional vibrations, one of them is the existence of a crossover frequency, beyond that, vibrations 
exhibit two wavelengths29,30 instead of one, as occurs for frequencies below the crossover one. Since the localiza-
tion length has a strong dependence on the frequency in both classical and quantum cases, a natural question that 
arises is how the Anderson localization phenomenon is affected by the crossover frequency.

Results
In this letter we study flexural vibrations in a disordered beam, such as the one shown in Fig. 1. The system con-
sists of N beams of wide w and depth h with lengths di, i = 1, …, N, joined by smaller beams of length ε  di ∀i, 
wide w′ = ηw and depth h′, where the coupling constant η is such that 0 < η < 1. The total length of the system is 
L = 0.95 m. By taking the family {di = d(1 − niΔ)} with ni an uncorrelated random number in the interval [−1, 1], 
the set of numbers {di} are uniformly distributed in the interval [d(1 − Δ), d(1 + Δ)]. Here d = 〈di〉 is the average 
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Figure 1.  Structured beam used in the experiment to measure the Anderson localization. The number of beams 
N, is 10, all of them having a wide w = 2.52 cm and depth h = 1.26 cm. The average value of the length of beams d 
is 0.1 m, the length of the system is L = 0.95 m and the amount of disorder is Δ = 0.4. The smaller beams have a 
length ε = 3 mm, wide w′ = 5.6 mm and depth h′ = 5.6 mm. Thus, the corresponding value of coupling 
parameter is η = .0 2. The measured elastic constants are the shear modulus G = 27.479 GPa, the Young modulus 
E = 68.821 GPa, and the density ρ = 2755.12 kg/m3. The experimental setup used to measure flexural frequencies 
is shown in the lower part of the figure.

Figure 2.  Normal-mode frequencies of a disordered beam, obtained numerically by using TBT, as a function of 
the disorder Δ. The vertical line lies at Δ = 0.4, the value chosen in the experiment. Note the qualitative change 
around fc = 63.1 kHz indicated by a red horizontal dashed line. The spectrum has been divided in intervals 
delimited by purple horizontal dashed lines according to Table 1.

Interval # Freq. range (kHz) α (Δ = 0.4) α (Δ = 1)

1 0–3 4.2 2.26

2 3–17 2.4 1.18

3 17–34 23.29 4.82

4 34–50 1.41 0.82

5 50–60 0.38 0.4

6 60–70 0.2 0.26

Table 1.  Obtained α values as a function of the frequency.
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of di and Δ measures the disorder. Notice that, on average, with this disorder, the total length of the beam does 
not change.

In Fig. 2 we show how the spectrum changes with the disorder strength Δ for a fixed realization of ni. One can 
notice that for Δ  1 a band spectrum appears; at higher values of Δ, avoided crossings are observed and the 
structure of bands and gaps disappear. However, one can distinguish two regimes below and above the crossover 
frequency fc, which is indicated in Fig. 2 by a horizontal dashed line at 63.1 kHz. We remark that this qualitative 
change is not observed in other elastic systems.

As the value of Δ is increased up to approximately 0.2, the bands and gaps disappear around and above fc, 
while they remain in the lower part of the spectrum. One can observe that only when the value of Δ is increased 
up to 0.8, the bands and gaps below fc indeed disappear and avoided crossings become more evident. Therefore 
the effect of disorder in the system is stronger above the crossover frequency than below it. To corroborate this 
hypothesis we have chosen a value of 0.4 for Δ in the experiment and measured the normal-mode frequencies and 
some of their corresponding wave amplitudes. On the one hand, the degree of localization of the normal-mode 
wave functions is estimated by two approaches: calculating the inverse participation ratio (IPR) and the localiza-
tion length ξ. On the other hand, the spectrum also provides the nearest-neighbor spacing distribution, which can 
be described by a frequency-dependent parameter α when a distribution, proposed and used to study the kicked 
rotor model in ref.31 is fitted.

Experimental results.  Before the experimental and numerical results are presented, we will mention some 
remarks about the so called independent rod model, successfully used in dealing with elastic localized states of 
the Wannier-Stark ladders32, which states that introducing disorder in {di} is a way to simulate diagonal disorder 
in a quantum mechanical one-dimensional tight-binding Hamiltonian, where the coupling η between nearest 
neighbors is a constant33.

According to the independent beam model, a system of beams, like the ones shown in Fig. 1, in which the 
coupling parameter η is small η  1, the small beams of length di behave almost independent of each other. For 
flexural vibrations and at low frequencies, the Bernoulli-Euler formula holds and a resonant frequency fi of the 
i-th independent beam is inversely proportional to the square of its length di. As the frequency increases, the 
dependence on di becomes more complex, however, it is still well described on the average, by the inverse of the 
square of the length di of the beam30,34.

When the resonant frequency f of the whole system fulfills f = fi, the amplitude is maximum at the location of 
the i-th beam. Furthermore, since in general dj ≠ di for i ≠ j, the neighboring beams of the i-th one will be excited 
only with a smaller amplitude. The states are then localized as shown in Fig. 3, where two wave functions of fre-
quencies 63.265 and 63.854 kHz, respectively, were experimentally measured and in each case, the amplitude is 
maximum only in one constituent sub-beam. A FEM-3D calculation is also in agreement with the experimental 
observations, it shows the amplitudes of vibration for every different sub-beam in a color scale. Thus, the ampli-
tude of the wavefunctions with frequencies 63.265 and 63.854 kHz, are maximum only in the sixth and first 
sub-beam, respectively. Note that these two examples occur at frequencies above fc.

When the disorder is very small, on the other hand, all the sub-beams should be excited with a driving fre-
quency f, so the localization of the wave amplitude grows and could reach the size of the system, as shown in 
Fig. 4, where the amplitude of the wave is maximum over almost half the size of the system, i.e., the wave is 
extended. It is remarkable that these two extreme regimes are indeed observed in the same structured beam. In 
order to understand how this is possible, we point out that above the crossover frequency fc, the complexity of 

Figure 3.  Wave amplitudes as a function of the position along the beam z, corresponding to two normal modes 
of frequency (a) f = 63.265 kHz and (b) f = 63.854 kHz, respectively. The continuous line corresponds to a TBT 
calculation, while filled circles correspond to experimental measurements. Above each plot is shown a three 
dimensional finite element method (FEM-3D) calculation, where it can be observed the different constituent 
beams of the system, and the amplitudes of the wave function within each individual beam in a color scale. 
These calculations were performed using the FEM platform Comsol53. The system was modeled with 103, 283 
nodes and 309, 849 degrees of freedom (DOF).
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the relation between the resonant frequencies and di grows even more, since doublets appear: a series of resonant 
frequencies grouped in pairs where the members of each pair are very close in frequency, as shown in refs30,35.

The presence of doublets cause an increment in the density of states of the i-th independent beam by a factor 
of two, on the average, compared with the density below fc. Correspondingly, the density of states for a structured 
beam like the one shown in Fig. 1, also increases above fc roughly by the same factor. This increment in the aver-
age proximity of neighbor frequencies rises the probability of avoided crossings and the Anderson localization to 
occur when a disorder is introduced in the system through the parameter Δ. Therefore, the effect of introducing 
a disorder Δ in the system is stronger above fc than below it. In Fig. 3 we show that the chosen value of Δ = 0.4, is 
high enough to observe the phenomenon of localization above fc, while below it, the disorder is too small that non 
localized waves are indeed observed, as shown in Fig. 4.

Localization measures.  In order to discuss the degree of localization of the normal-mode waves, we have 
calculated the participation ratio (PR) and the length of localization ξ of the normal-mode wave functions of an 
ensemble of 200 disordered beams with a disorder Δ = 0.4 and using TBT. Here, we find more convenient the 
PR instead of its reciprocal, the inverse participation ratio (IPR). The PR is compared in Fig. 5 with the ones cal-
culated from the experiment, while the localization length ξ is compared in Fig. 6. Notice that low values of both 
PR and ξ are observed above fc ≈ 63.1 kHz, in agreement with the localized wave functions discussed above, while 
below fc both values of PR and ξ reveal a rather complex relation as a function of the frequency.

At very low frequencies, the first normal-modes frequencies occur at practically the same values when 
f < 1 kHz and the PR values corresponding to the wave functions suggest that they are extended, independently of 
the random realization, as can be observed in Fig. 5(b), where a zoom in the regime of low frequencies is shown. 
Meanwhile, the corresponding ξ values show a large localization length, which can exceed the actual size of the 
system by several orders of magnitude, as observed in the zoom of Fig. 6(b) and corroborate the extended nature 
of the normal-mode wave functions. This situation is consistent with one where the disorder has no significant 
effect in the system.

Figure 4.  Measured wave amplitudes as a function of the position along the beam z, corresponding to two 
normal modes of frequencies (a) f = 4.768 kHz and (b) f = 5.125 kHz, respectively.

Figure 5.  (a) Participation ratio PR as a function of frequency for the normal modes of the beam shown 
in Fig. 1. Filled (black) squares were obtained using TBT, while filled (red) circles were obtained from the 
experiment. (Blue) dots correspond to an ensemble of 200 beams with Δ = 0.4. Inset: Participation ratio PR as 
a function of frequency corresponding to the same ensemble of 200 beams but with Δ = 1. (b) A zoom at low 
frequencies.
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Around the frequency value of f = 2 kHz, a residual first band ends and a gap begins, which is consistent with 
a quasi-periodic spectrum and indicative of a weak effect of the disorder in the system. In the interval 1 to 2 kHz, 
the normal-mode frequencies begin to variate depending on the random realization and the corresponding PR 
values decrease, which suggest a localization process. The same trend is observed in the values of ξ, which reach 
low values up to 0.2 m. A close look to the wave functions, allows us to conclude that these functions have signif-
icant amplitudes only in several sub beams, while in the rest of them they are substantially reduced. We observe 
that the end states of the residual band appear to react to the disorder.

A similar situation can be encountered at the beginning of the residual second band, around 3.5 Hz as 
observed in Figs 5(b) and 6(b). However, in the interval 3.5 to 17 kHz, both the PR and ξ values are more dis-
perse, with an average value that tends to grow as the normal-mode frequency does. This observation suggest the 
occurrence of partial and fully extended wave functions as the frequency increases up to 22 kHz, where the PR 
values reach a maximum and their corresponding dispersion is dramatically reduced, which is consistent with 
the occurrence of only fully extended wave functions. This is corroborated again by the corresponding values of 
ξ, which once more exceed by several orders of magnitude the actual size of the system as well as, contrary to the 
PR values, their dispersion.

A comparison between a TBT calculation of PR values and the experiment for the same realization {ni}, on 
the one hand, shows some significant deviations, however the numerical calculations are consistent with the 
experiment. On the other hand, a comparison between a TBT calculation of the length of localization ξ and the 
experiment is very good. In the inset of Fig. 5, we also show the participation ratio for the same ensemble, but for 
a disorder Δ = 1. It is observed that the gap at low frequencies disappear, the dispersion of the calculated PR val-
ues increases significantly below fc while the average value of the PR decreases. This is consistent with a transition 
to a regime where the localization of the wave amplitudes may occur below fc. For normal-mode frequency values 
beyond 30 kHz but below fc, both PR and ξ average values decrease uniformly.

Nearest-neighbor spacing distribution.  In obtaining the wave amplitudes, such as those shown in Fig. 3, 
the spectrum of the disordered beam must first be obtained. This is the case both numerically and experimentally. 

Figure 6.  (a) Localization length ξ as a function of frequency for the normal modes of the beam shown 
in Fig. 1. Filled (black) squares were obtained using TBT, while filled (red) circles were obtained from the 
experiment. (Blue) dots correspond to an ensemble of 200 beams with Δ = 0.4. (b) Zoom of the localization 
length ξ at low frequencies.

Figure 7.  Measured spectrum for the system of Fig. 1. Notice that with the experimental configuration used, 
practically only flexural modes were excited in this interval of frequencies.
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In Fig. 7 the spectrum measured for the system of Fig. 1, is shown. We are then provided with the statistical prop-
erties of the elastic spectra which render themselves to studies like those analyzed in spectral statistics and quan-
tum chaos36,37. In what follows we will calculate the nearest-neighbor spacing distribution p(sj), where 
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 is the normalized spacing, and show how the distribution changes as the frequency is increased. 

Before obtaining the nearest-neighbor spacing distribution, it is necessary to get rid of secular variations of the 
level density. We have therefore performed the procedure known as unfolding36.

We first consider an ensemble of 200 disordered beams from a numerical point of view. The distribution of 
energy levels in complex many particle quantum systems are surprisingly well described by the Gaussian orthog-
onal (GOE), the Gaussian unitary (GUE), and the Gaussian symplectic (GSE) random matrix ensembles38,39. A 
more general distribution that allows to study intermediate statistics between the ensembles just mentioned, is 
the one proposed by Izrailev31
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. The parameter α is deter-
mined by fitting Eq. (1) to the numerical distribution by means of a least-squares fitting procedure. The distribu-
tions pα(s), numerically obtained for several regions of the frequency spectrum, are shown in Fig. 8. Unfortunately, 
the number of frequencies for a single beam is very small and the corresponding statistics is very poor both 
numerically and experimentally. It should be stressed, however, that the parameter α in Eq. (1) has to be consid-
ered as a one that describes globally the nearest-neighbor spacing distribution and not the level repulsion only33, 
since the small spacing behavior (s ≪ 1) in the Anderson model strongly depends on the specific properties of the 
system40–42. For α = 1, 2, 4 the parameter α coincides with the Dyson parameter β43. We remark here that the 
parameter α allow us to characterize the nearest-neighbor spacing distribution, however it is not related to any 
symmetry.

Different intervals in frequency were chosen according to the behaviour observed in the spectrum of Fig. 2, 
and from results of Figs 5 and 6. For zero or very small disorder, Δ ≪ 1, the spectrum should correspond to 
a periodic or quasi-periodic system, therefore the normal-mode frequencies must be equally spaced in each 
band. In this scenario, the nearest-neighbor spacing distribution should be of the form p(s) → δ(s − 1) and the 

Figure 8.  The nearest-neighbor spacing distribution histogram p(s) numerically obtained for an ensemble of 
200 beams with a disorder Δ = 0.4 (left column) and averaged over a frequency interval as specified in Table 1. 
Figures (a–f) correspond to the intervals 1–6, respectively. The continuous (red) curves correspond to least-
squares fittings to Eq. (1) and the corresponding obtained values for α in each case, are also shown in Table 1. 
The nearest-neighbor spacing distribution histogram p(s) obtained for the same ensemble of 200 beams but 
with a disorder Δ = 1 is shown in the right column (figures g–l) and the corresponding values of α are shown in 
the fourth column of Table 1.
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normal-mode wave amplitudes should be fully extended. This situation is observed in Fig. 8 only for the third 
interval of frequencies below fc and for Δ = 0.4, as defined in Table 1, which is also reflected in the relatively 
large values obtained for the parameter α, as shown in the third column of Table 1. This is in agreement with the 
large values of PR and the localization length ξ observed in the same interval of frequency in Figs 5(a) and 6(a). 
We emphasize that increasing the disorder up to Δ = 1, reduces the value of α for frequencies below fc, but it is 
still relatively large for the third interval of frequencies, as shown in the right column of Fig. 8 and in the fourth 
column of Table 1. This result suggest that a quasi-periodicity persists below fc despite the disorder in the system 
is very high.

Surprisingly, in the first and second interval of small frequencies, as defined in Table 1, the distribution p(s) 
for Δ = 0.4, is not a Dirac’s delta distribution, which suggest a weak response to the disorder from the states lying 
on the edge of residual bands, again in agreement with the results of Figs 5(b) and 6(b), and therefore consistent 
with the phenomenon of pre-localization9. For strong disorder, on the other hand, all eigenstates should be local-
ized and the nearest-neighbor spacing distribution must be close to a Poissonian distribution p(s) → exp(−s), 
which is obtained from Eq. (1) in the limit α → 0. This situation is also observed in Fig. 8 for the fifth interval of 
frequencies and accentuated in the sixth interval. In this extreme case, the value obtained for the parameter α 
is close to zero, as shown in the fourth column of Table 1. Once again, this result is consistent with the results of 
Figs 3, 5 and 6.

In between Dirac and Poissonian distributions, we expect intermediate statistics which could be compared 
with the Wigner-Dyson distribution that emerge in classically chaotic systems described by full random matrices 
or in quasi-one-dimensional models described by banded random matrices44,45, when the localization length 
is larger than the sample size33. Thus, in the fourth interval of frequencies (see Table 1), a transition from fully 
extended to localized wave functions is expected and indeed observed, which rises the question about the relation 
between the localization length and the nearest-neighbor spacing distribution parameter α in the transition of 
these two limits. Unfortunately, in our case the density of states is not large enough to perform a statistical analysis 
with more resolution in frequency.

Conclusion
In conclusion, in this letter we have presented, both numerically and experimentally, evidence of the Anderson 
localization in an elastic system under flexural oscillations. The localization of the normal-mode wave functions 
was experimentally observed by measuring the wave amplitude of an elastic beam and by calculating the par-
ticipation ratio PR and the length of localization ξ. A good agreement between the numerical simulations and 
the experimental values was obtained. We have also calculated the parameter α describing the nearest-neighbor 
spacing distribution. We have found that the effect of the disorder is stronger above the crossover frequency fc 
than below it, which is produced by a higher level density above fc. Completely localized or extended wave func-
tions have been observed in the same system at relative high frequencies. The first ones, occur above fc which is 
corroborated by the calculated values of PR, ξ and α, while the second ones occur below fc at frequencies that are 
not small. It is worth to mention that our findings have been not observed in other systems.

Methods
The Timoshenko beam theory.  The Timoshenko beam theory used to numerically study the Anderson 
phenomenon in flexural oscillations is based on the following equation, obeyed by the displacement ζ of the 
neutral axis29:
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Here E and G are the Young and shear moduli, respectively, ρ is the mass density, I is the second moment of 
area and S is the cross section area of the beam. The only free parameter in this theory is the so called Timoshenko 
shear coefficient κ, which summarizes all the information about the distribution of shear stresses over the cross 
section of the beam. Analytic expressions of κ for different cross sections are available in the literature46–49, which 
are obtained under the common assumption that the cross section of the beam remains flat under flexural oscilla-
tions. This assumption however, is not always true, as demonstrated by experimental measurements30,35, specially 
at relatively high frequencies. Therefore, a dynamic coefficient κ is required in order to describe more accurately 
the bending oscillations of a beam like the one shown in Fig. 1.

Besides the transverse displacement in the x-axis direction ζ(z, t), Timoshenko introduced an angular varia-
ble ψ(z, t), which indicates the rotation of the cross section with respect to the y-axis. Variables ζ and ψ obey the 
following system of coupled equations:

κ ψ ζ ρ ζ



∂
∂

+
∂
∂






=
∂
∂

GS
z z

S
t

,
(4)

2

2

2

2

and

κ ψ
ζ ψ

ρ
ψ




+
∂
∂



 −

∂
∂

= −
∂
∂

.GS
z

EI
z

I
t (5)

2

2

2

2

From these two equations, the fourth-order Timoshenko Eq. (3) for transverse displacement ζ of a uniform 
beam is obtained. An identical equation holds for angle ψ. Imposing normal-mode conditions ζ(z, t) = χ(z)eiωt 
and ψ(z, t) = ϕ(z)eiωt, where ω = 2πf, f being the frequency, the Timoshenko equation admits the solution
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nature of the solutions changes drastically when ω crosses the crossover value ωc: below it, the first and third of the 
terms in Eq. (6) correspond to periodic oscillations while the other two, the second and fourth correspond to 
spatial exponential decay and growth, respectively. In this regime, only one wavelength appears, λ1 = 2π/|k1|, 
where |k1| denotes the amplitude of k1. For ω > ωc, however, the two terms corresponding to spatial exponential 
decay and growth become propagating periodic oscillations and therefore, a second wavelength appears, 
λ2 = 2π/|k2|.

The relative phase of the two wave-components appearing above ωc, becomes crucial in the dynamics of the 
vibrating beam, since they can interfere constructively or destructively. In ref.50 it was shown that constructive 
interference causes the warping of the end cross sections for half of the normal modes of a uniform free-free 
beam, while destructive interference results in flat end cross sections for the other half of normal modes30. These 
findings show that the assumption of flat cross sections, made in obtaining analytic expressions for κ, no longer 
holds above ωc. However, by means of a least-squares fitting procedure applied to the spectrum of frequencies, 
calculated using a three dimensional finite element method (FEM 3D), we obtain a simple relation for κ as a func-
tion of the frequency ω, which reproduces the normal-mode frequencies with an error smaller than 2%

κ ω κ ω ω ω ω
κ ω ω

=





+ + <
>

a b( ) , ,
, , (9)

0
2

0

1 0

where κ0, a, b and κ1 are fitting parameters. Here, ω0 = 60 kHz.
For a structured beam like the one of Fig. 1, we introduce local coordinates, thus the amplitude χj(z) in the 

j-th beam is given by

χ = + + +− − − −z A e B e C e D e( ) , (10)j j
k z z

j
k z z

j
k z z

j
k z z( ) ( ) ( ) ( )j j j j j j j j1, 2, 3, 4,

and a similar expression for ϕj(z). Here zj ≤ z ≤ zj+1, j = 1, 2, .., N, and km, j with m = 1, .., 4 is given by an identical 
equation to Eq. (7), but now S and I in Eq. (8) should be replaced by Sj and Ij, the cross sectional area and the 
second moment of area, respectively, of the j-th beam. Continuity conditions of amplitude functions χ and ϕ, 
bending moment

ψ
= −

∂
∂

M z EI
z

( ) ,
(11)

and shear force

κ ψ ζ
= −





+
∂
∂



Q z SG

z
( ) ,

(12)

at zj+1 (j = 1, 2, .., N) are then applied to Eq. (10), which allows the coefficients Aj+1, Bj+1, Cj+1 and Dj+1 to be 
expressed in terms of Aj, Bj, Cj and Dj as follows,

=+ + + + → +A B C D A B C DM( , , , ) ( , , , ) , (13)j j j j
T

j j j j j j
T

1 1 1 1 1

where T means the transpose and Mj→j+1 is a 4 × 4 diagonal matrix calculated as in ref.34. Applying successively 
Mj→j+1 we obtain

= ⋅ ⋅ ⋅ ⋅ .− → − → − →A B C D A B C DM M M( , , , ) ( , , , ) (14)N N N N
T

N N N N
T

1 2 1 1 2 1 1 1 1

Vanishing of bending moment and shear force at z = z1 and z = zN provide the boundary conditions. These 
lead to two algebraic equations for coefficients A1, B1, C1, D1 and two more for coefficients AN, BN, CN, DN. If this 
last set of coefficients is eliminated using Eq. (14) we obtain a homogeneous system of algebraic equations in the 
four unknowns A1, B1, C1, D1. The determinant of such algebraic system must vanish to obtain the normal-mode 
frequencies.

Experimental measurements.  Experimental measurements were performed using the electromagnetic- 
acoustic transducer (EMAT) described in ref.51. The EMAT can be used either to detect or excite oscillations and 
according to the relative position of the magnet and the coil of the EMAT, it can either excite or detect selectively 
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compressional, torsional or flexural vibrations. This transducer has the advantage of operating without mechani-
cal contact with the beam, which turns out crucial to avoid perturbing the shape of the localized wave amplitudes. 
Both the detector and exciter can be moved automatically along the beam axis and then the wave amplitudes 
can be measured easily. However, a process of elimination of modes corresponding to compressional and tor-
sional vibrations is still required35. This procedure may become quite tedious and is the reason that only a few 
normal-mode wave functions were obtained in the experiment. In Fig. 1 we show the general setup used to excite 
and detect flexural waves. A signal generator sends a sinusoidal signal to the power and lock-in amplifiers, which 
serves as a reference signal for the latter. The power amplifier sends the amplified signal to the exciter. Then, the 
detector sends the signal to the lock-in amplifier which is responsible for the filtering of the signal. At the end, 
the signal is sent back to the digital-to-analog converter (DAC) and then to the computer, which records the data.

Inverse participation ratio and localization length.  For a given normal-mode wave function χ the 
IPR is given by

Σ χ

Σ χ
=

( )
IPR ,

(15)

j j

j j

4

2 2

which on the average measures the number of sites that contribute significantly to the wave function. For localized 
states, the IPR is directly connected with the localization length ξ52, which measures how the wave amplitudes 
of the normal modes decay exponentially and is defined trough the amplitude envelope of the wave function χ

χ χ
ξ

=



−

| − | 




⁎x xexp ,
(16)env 0

where χ0 is a constant and x* is the position of the maximum of the wave amplitude. Notice that in this letter we 
use the PR instead of its reciprocal, the IPR, for reasons of convenience.
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