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Abstract

Background

Both gray-matter (GM) atrophy and lesions occur from the earliest stages of Multiple Sclero-

sis (MS) and are one of the major determinants of long-term clinical outcomes. Neverthe-

less, the relationship between focal and diffuse GM damage has not been clarified yet. Here

we investigate the regional distribution and temporal evolution of cortical thinning and how it

is influenced by the local appearance of new GM lesions at different stages of the disease in

different populations of MS patients.

Methods

We studied twenty MS patients with clinically isolated syndrome (CIS), 27 with early relaps-

ing-remitting MS (RRMS, disease duration <5 years), 29 with late RRMS (disease duration

� 5 years) and 20 with secondary-progressive MS (SPMS). The distribution and evolution

of regional cortical thickness and GM lesions were assessed during 5-year follow-up.

Results

The results showed that new lesions appeared more frequently in hippocampus and para-

hippocampal gyri (9.1%), insula (8.9%), cingulate cortex (8.3%), superior frontal gyrus

(8.1%), and cerebellum (6.5%). The aforementioned regions showed the greatest reduction

in thickness/volume, although (several) differences were observed across subgroups. The

correlation between the appearance of new cortical lesions and cortical thinning was stron-

ger in CIS (r2 = 50.0, p<0.001) and in early RRMS (r2 = 52.3, p<0.001), compared to late

RRMS (r2 = 25.5, p<0.001) and SPMS (r2 = 6.3, p = 0.133).
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Conclusions

We conclude that GM atrophy and lesions appear to be different signatures of cortical dis-

ease in MS having in common overlapping spatio-temporal distribution patterns. However,

the correlation between focal and diffuse damage is only moderate and more evident in the

early phase of the disease.

Introduction
Multiple Sclerosis (MS) is an autoimmune [1], chronic and disabling disease of the human cen-
tral nervous system, characterized histologically by multifocal areas of inflammatory demyelin-
ation within the white matter (WM) [2], accompanied by varying degrees of axonal loss [3].
Nevertheless, several pathologic and MRI studies have suggested that extensive cortical and deep
gray matter (GM) atrophy occurs from the earliest stages of the disease [4], being one of the
major determinants of long-term clinical outcomes in MS [5,6]. Indeed, physical and cognitive
disability seems to correlate better with GM damage rather than withWM lesion load [6,7].

Understanding the mechanisms underlying cortical atrophy is challenging [8]. GM andWM
damage appear to be at least partly independent, albeit simultaneous components of the disease,
and only a weak relationship has been obtained betweenWM lesion load and cortical lesions [9],
or cortical atrophy [10,11]. Conversely, several MRI studies suggested that cortical thinning [12]
and cortical lesions [13] can be present even at the clinical onset of the disease and in a primary
progressive subset [11], in association with a lowWM lesion load. In the light of these data, it is
unlikely that regional changes in cortical volume are primarily the consequence, via retrograde
degeneration, of ongoing axonal transection in subcortical WM lesions. On the contrary, GM
damage might result from a more diffuse inflammatory process directly targeting the GM itself
[14,15]. Observations on GM lesions in post-mortemMS brain tissues of patients with progres-
sive disease have demonstrated a lower extent of lymphocyte and macrophage infiltration com-
pared to WM lesions [15,16]. However, the presence of both diffuse and lymphoid-like immune
cell infiltrates in the meninges of patients with secondary progressive (SP) MS was recently found
to be associated with increased subpial demyelination, loss of neurons and their extensions, and a
more severe disease course [17]. In line with these data, a recent study on a large number of brain
biopsies from patients with early MS showed a close association between actively demyelinating
CLs and meningeal inflammation [18]. In addition, data from natural history studies suggest that
the outcome severity is largely determined during the initial clinical phase, highlighting the
importance of early pathological changes as determinants of the long-term prognosis [19,20].

Although a correlation between CL load and the severity of GM atrophy was previously
found [6], a conclusive proof of a cause-effect relationship between the appearance of CLs and
the development of cortical atrophy is still lacking.

In this context, we set out to investigate longitudinally, and at different disease stages, the
regional distribution and temporal evolution of cortical lesions and cortical thinning in MS
patients. In addition, we explored whether the local appearance of new CLs may influence the
development of cortical atrophy in the same region.

Materials and Methods

Study population
Ninety-six consecutive patients, currently followed at the Multiple Sclerosis Centre of the Neu-
rology Section, University Hospital of Verona (Verona, Italy), and having at least 5-year of lon-
gitudinal MRI follow up performed with the same MRI scan and the same MRI protocol at the
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Neuroradiology Unit of Euganea Medica (Padova, Italy), have been included in this retrospec-
tive study (Table 1).

At the beginning of the follow-up (onset, T0), according to the MS diagnostic criteria
[21], 20 patients were considered as having clinically isolated syndrome (CIS), 27 early
Relapsing Remitting MS (RRMS, disease duration< 5 years), 29 late RRMS (disease
duration� 5 years), and 20 Secondary Progressive MS (SPMS). Table 1 shows demographic
and clinical characteristics of the studied population at onset; 21 early RRMS, 22 late RRMS
and 2 SPMS were treated with IFN beta 1a, IFN beta 1b or Glatiramer Acetate, 12 SPMS were
treated with Cyclophosphamide and 4 RRMS (3 early and 1 late RRMS) were treated with
Natalizumab.

By the end of the follow-up 5 years later (endstate, T5), 13 CIS had a transition to early
RRMS, while 3 late RRMS entered the SP phase. Nevertheless, during the data analysis each
patient has been considered belonging to his/her original group despite the switching to one of
the other groups. Fifty-one patients (9 CIS, 41 RRMS, and 1 SPMS) had at least 1 relapse during
the observation period: among these, 32 (4 CIS, 27 RRMS, and 1 SPMS) had an increase in the
EDSS score (median 1.0; range 0.3) related to the relapse and confirmed at 6 months after the
relapse. Sixty-four RRMS were treated with IFN beta 1a, IFN beta 1b or Glatiramer Acetate, 6
RRMS were treated with Natalizumab and 4 with Fingolimod, 3 SPMS were treated with Cyclo-
phosphamide and 4 SPM±S were treated with Azathioprine while the remaining 10 patients
were untreated.

The Ethic Committee of the University Hospital of Verona (Verona, Italy) approved the
study and written informed consent was obtained from all patients before the data analysis.

Image acquisition protocol
Each patient underwent the same MR protocol at T0 and at T5 (range = 62 ± 2 months). All
images were acquired at the Neuroradiology Unit of Euganea Medica (Padova, Italy), using the
same 1.5 T Philips Achieva scanner with 33 mT/m power gradient, and a 16-channel head coil.
No major hardware upgrades of the scanner occurred during the study period. The following
images were acquired from each subject: 1) 3D Double Inversion Recovery (DIR): 3D sequence
without any interpolation techniques, repetition time (TR) 6.500 msec, inversion time 2.800
msec, delay 500 ms, echo time (TE) 265 msec, slice thickness 1.5 mm, number of averages 2,
matrix 256 x 256); 2) 3D Fluid-Attenuated Inversion Recovery (3D FLAIR): TR = 10000 msec,
TE = 120 msec, TI = 2500 msec, ETL = 23, slice thickness = 1.5 mm, a matrix size = 172 x 288,
and a FOV = 250 x 200 mm2; 3) Three volumetric fast-field echo sequence: 120 contiguous axial
slices, TR = 25 msec, TE = 4.6 msec, flip angle = 30°, slice thickness = 1.0 mm, matrix

Table 1. Demographical, clinical, and MRI characteristics of the studied population.

CIS (n = 20) Early RRMS (n = 27) Late RRMS (n = 29) SPMS (n = 20)

Gender (F; M) 13; 7 19; 8 19; 10 15; 5

Age (years) 30.1±9.8; 18–51 31.4±10.0; 18–48 32.8±7.7; 19–55 43.1±8.4; 33–59

Disease duration (years) 0.4±0.1; 0–0.8 3.2±0.9; 1–4 8.6±2.3; 6–13 16.8±5.9; 10–22

EDSS 1.0±0.6; 0–2.0 1.6±0.6; 1–3.5 2.5±0.9; 1.5–4.5 4.5±1.2; 3.0–7.0

T2 WM lesion load (cm3) 1.3±1.0; 0.4–3.9 7.4±5.4; 1.6–19.2 9.5±5.4; 1.8–23.9 16.6±10.3; 4.7–45.9

Global CTh (mm) 2.50±0.21; 2.01–2.93 2.42±0.18; 1.88–2.89 2.28±0.10; 1.68–2.6 2.15±0.20; 1.75–2.61

CLs number 1.1±0.7; 0–4 2.3±1.0; 0–6 3.9±1.6; 0–12 6.9±1.7; 2–28

F = female, M = male; WM = white matter; CTh = cortical thickness; CLs = cortical lesions.

doi:10.1371/journal.pone.0135428.t001
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size = 256 x 256, and a FOV = 250 x 250 mm2 were acquired. At follow-up, subjects were care-
fully repositioned according to published guidelines for serial MRI studies of MS [22].

Image analysis
All images were evaluated by a neurologist (MC) and a neuroradiologist (AM) both with large
experience on neuroimaging of MS patients.

Regional cortical thickness/volume evaluation. Cortical reconstruction and volumetric
segmentation was performed at T0 and at T5 on a volumetric T1-weighted data set by means
of the longitudinal stream included in the Freesurfer image analysis suite (release v5.3.0), avail-
able online (http://surfer.nmr.mgh.harvard.edu/). The technical details of these procedures
have been described previously [23]. Topological defects in cortical surfaces due to white mat-
ter hypointensities were detected and manually corrected to have an accurate cortical segmen-
tation. Since no significant differences were observed between right and left hemisphere, we
decided to average the measures from both hemispheres [4,12].

The cortical parcellation (for regional analysis) was performed on the base of the Talairach
Atlas, included in Freesurfer [23].

Cortical and WM lesion evaluation. At T0 and T5, the number of new and pre-existing
CLs was assessed region by region on DIR images by consensus following the recent recom-
mendations for CL scoring in patients with MS [24]. Since no difference between right and left
hemisphere were observed [25], an averaged measure was calculated. The same procedure was
applied to FLAIR images to identify brain WM lesions, thus obtaining the number of brain
WM at T0 and T5.

Statistical analyses
Differences among MS subtypes, between patients having more or less than 5 years of disease
duration, and patients developing or not new CLs during the study, were assessed through
analysis of variance (ANCOVA), including treatment as covariate (this considering the possi-
ble effect of disease modifying drugs on grey matter atrophy) [26] and post hoc Tukey HSD
procedure to account for multiple comparisons. Also differences between CTh changes in
region with new CLs compared to regions without new CLs were assessed through analysis of
variance (ANOVA). Since CLs were not homogeneously distributed, the Mann-Whitney test
was used to compare populations with respect to their CL number. Pearson Chi Square was
applied to test the difference between patients. Univariate correlation using the Pearson coeffi-
cient has been applied to test the correlation between the baseline number of CLs and the entity
of the global CTh change and also between the number of new CLs and the global CTh change.

Results and Discussion

Spatiotemporal distribution of cortical lesions across different MS
subtypes
Aminimal, anonymized dataset underlying the results of the present study is available (S1
Dataset). At baseline, in the whole group 334 CLs were identified (22 in CIS, 61 in early RRMS,
113 in late RRMS and 138 in SPMS; Table 1). The most affected areas were the cingulate
cortex (9.3% ± 2.1%; range 5.6%-14.2%), the hippocampus and the parahippocampal gyrus
(8.8 ± 2.6%; range 4.2%-12.4%), the insula (8.2 ± 3.2%; range 3.2%-15.2%), the superior frontal
gyrus (8.1 ± 1.7%; range 5.3%-11.4%) and the cerebellum (7.9 ± 3.2%; range 4.2%-16.2%).
However, the distribution was not homogeneous in all subsets of patients: in CIS and early

Gray Matter and Multiple Sclerosis
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RRMS, CLs were located more frequently in fronto-temporal regions while they were more
widespread in late RRMS and SPMS (Fig 1).

After 5 years, 331 new CLs (48 in CIS group, 115 in early RRMS group 121 in late RRMS
group and 47 in SPMS group) were identified (mean 3.6 ± 4.1, range = 1–18). No significant
differences were observed in the number of new CLs between early RRMS (4.9 ± 1.8, range = 0–-
18) and late RRMS group (4.2 ± 1.9, range = 0–12) while the number of new CLs was signifi-
cantly lower in SPMS group (1.4 ± 1.3, range = 0–5, p< 0.001) and in CIS group (2.4 ± 1.0,
range = 0–6, p< 0.001). However, when the number of new CLs was calculated only in those
CIS that converted to definite MS during the following 5 years (4.7 ± 1.3, range = 0–6), no sig-
nificant difference was observed compared to RRMS group (p = n.s.).

New CLs appeared more frequently in the hippocampus and the parahippocampal gyrus
(9.1%), the insula (8.9%), the cingulate cortex (8.3%), the superior frontal gyrus (8.1%), and the
cerebellum (6.5%). Importantly, significant differences were observed between different disease
subtypes (Fig 1, Table 2, and S1 Table) and according to the disease duration (S2 Table).

Spatiotemporal evolution of cortical thinning across different MS
subtypes
Global CTh at T0 even after age correction, was significantly lower in SPMS (2.15 ± 0.20 mm;
range = 1.75–2.61 mm) and in late RRMS (2.28 ± 0.14 mm; range = 1.68–2.66 mm) compared
to early RRMS (2.42 ± 0.18 mm; range = 1.88–2.89 mm) and CIS (2.50 ± 0.21 mm;
range = 2.01–2.93 mm), (SPMS vs. CIS: p< 0.001; SPMS vs. early RRMS: p = 0.002; late RRMS
vs. CIS: p = 0.004). As expected, a moderate correlation was observed between global CTh and
disease duration (r2 = -0.574, p< 0.001).

After 5 years follow-up, the mean CTh change was higher in SPMS (4.2% ± 0.9%;
range = 2.7–5.8%) and in late RRMS (3.7% ± 0.7%; range = 2.3–5.9%) compared to early
RRMS (3.0% ± 0.6%; range = 1.8–4.3% p< 0.001 vs. SPMS and p = 0.041 vs. late RRMS) and
CIS (2.5% ± 0.8%; range = 1.7–4.4%, p< 0.001 vs. SPMS and late RRMS), indicating increasing
loss of cortical GM volume with increasing disease duration.

In the whole group, the regional analysis revealed that the insula (5.4%), the cerebellum
(5.2%), the hippocampus and the parahippocampal gyrus (5.2%), and the cingulate cortex
(5.0%) showed the greatest reduction in thickness/volume (Fig 2, Table 2, and S1 Table).

Fig 1. 3D Regional map of the frequency of the appearance of new grey matter lesions during the
5-year follow up in the whole group and in the different MS subsets.

doi:10.1371/journal.pone.0135428.g001
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The development of regional cortical thinning was not homogeneous across different MS
groups. The reduction of CTh and volume of the hippocampus and the parahippocampal
gyrus, the insula, and the cingulate cortex were particularly severe in CIS and early RRMS
patients whereas in late RRMS and SPMS cortical thinning and volume loss were significantly
greater in the precentral gyrus, the postcentral gyrus, and the cerebellum (Fig 2, Table 2, and S1
Table).

Relationship between CLs and CTh evolution
The mean volume of CLs at baseline moderately correlated with global CTh change (r2 = 0.26,
p< 0.001) in the following 5 years; however, such correlation was stronger in CIS (r2 = 0.34,
p< 0.001) and early RRMS (r2 = 0.38, p< 0.001) compared to RRMS (r2 = 0.16, p = 0.029) and
SPMS (r2 = 0.09, p = 0.311).

Patients with the appearance of at least 2 CLs showed higher global CTh change (3.9% ±
0.6%; range = 1.7%-6.9%) compared to patients with no new CLs (2.5% ± 0.7%; range = 1.7%-
4.0%, p< 0.001). The total number of new CLs moderately correlated with the global CTh

Fig 3. Relationship between the percentage of increase in cortical thinning and the appearance of
new greymatter lesions during the 5-year follow up in the whole group and in the different MS
subsets. As the image shows, patients with new cortical lesions showed higher cortical thinning; but this was
more evident in CIS and early RRMS patients. The results are express as percentage of change from
baseline, being the baseline the cortical thickness change when the number of new cortical lesions are 0.

doi:10.1371/journal.pone.0135428.g003

Fig 2. 3D Regional map of the cortical thickness change during the 5-year follow up in the whole
group and in the different MS subsets.

doi:10.1371/journal.pone.0135428.g002
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change in the whole group (r2 = 0.26, p< 0.001). However, again, such a correlation was stron-
ger in CIS (r2 = 0.50, p< 0.001) and in early RRMS (r2 = 0.52, p< 0.001), compared to late
RRMS (r2 = 0.25, p< 0.001) and SPMS (r2 = 0.06, p = 0.133; Fig 3). On the contrary, the num-
ber of new CLs per region did not correlate with the CTh change within the same region.

Finally, a modest correlation was also observed between T2-WMLV at baseline and the
CTh change (r2 = 0.19, p < 0.001), while no correlation was observed between the appear-
ance of new WM lesions and the CTh change in the whole group nor in the 4 subtypes
(p = n.s.).

GM damage is a relevant and early phenomenon in MS with significant impact on progres-
sion of physical and cognitive disability [5,6]. GM atrophy and lesions are two different expres-
sions of such damage that can be monitored in vivo by MRI [9,10]. Nevertheless, the
distribution and the temporal evolution of regional cortical thinning in MS, and also how it is
influenced by the local appearance of new CLs, have not been clarified yet.

The current 5-year longitudinal study on different subgroups of MS patients shows that
some cortical regions, such as the cingulate cortex, the hippocampus, the insula, the superior
frontal gyrus, and the cerebellum are more susceptible to focal (i.e., lesions) and diffuse (i.e.,
thinning) damage than other regions. Our data are in line with previous MRI studies [25],
including the observation of a correlation between early structural and functional changes in
the hippocampus and the insula, and cognitive dysfunction [27]. The present data are also sup-
ported by robust histopathological evidence [28,29] and also by the observation that extensive
lymphoid-like meningeal immune cell infiltrates, associated with increased subpial demyelin-
ation and localized to the deep sulci, were most frequently detected in the same cortical regions
[16].

Taken together, these results strengthen the hypothesis that a higher susceptibility to neuro-
degenerative processes in key brain regions, known to be related to specific clinical (cognitive)
functions, is likely to underlie the clinical manifestations of at least a subgroup of MS patients
[30]. Nevertheless, the relationship between some clinical manifestations and GM damage is
not exclusive since several data remarked the crucial role of WM tracts integrity, especially in
cognitive deterioration [31]. As several recent studies have pointed out [32,33], it looks like
that the ultimate responsible of clinical and cognitive deterioration is more a combination of a
diffuse WM and GM damage (especially in specific brain areas) rather than a severe but iso-
lated GM or WM damage.

Although understanding the origin of cortical damage in MS is still challenging, some con-
siderations can be done on the basis of this longitudinal study.

First, we observed that the distribution of GM damage is not homogeneous across different
disease subtypes and, in turn, different disease durations. Both focal and diffuse GM damage
seem to affect in the earliest phases of the disease (CIS and early RRMS) the fronto-temporal
regions, especially the hippocampus and the parahyppocampal gyrus, the insula and the cingu-
late cortex, while they become more widespread, involving also the precentral gyrus, the post-
central gyrus and the cerebellum, later in the disease course (late RRMS and SPMS).

Only in CIS and early RRMS we have found a strong correlation between the appearance of
CLs and the CTh change suggesting that, at least at the beginning of the disease, the early focal
cortical pathology plays a relevant role in the development of brain atrophy. This is in line with
natural history studies, demonstrating that the outcome severity is primarily determined dur-
ing the early phase [19,20]. The late disease evolution becomes relatively stereotyped among
patients and largely uninfluenced by the early rate of disability accumulation. Taken together,
these data further support the notion that pathological mechanisms, affecting the long-term
prognosis, are already active during the early course of the disease.
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It is worth to underline that such correlation, and even the partial overlap between focal and
diffuse damage, do not imply that CLs are the main cause of cortical thinning. Indeed, the rela-
tionship between new CLs and cortical thinning does not exist at the level of single cortical areas
but only, in the whole brain, between the total number of new lesions and the global cortical thick-
ness change. This means that, at least at the beginning of the disease, those patients with the high-
est accumulation of new CLs showed the greatest global cortical thinning. In the advanced disease
phases, it seems that other factors may influence the development of cortical atrophy as suggested
by the high cortical thinning in some regions, such as the calcarine fissure, that show low fre-
quency of CLs presence.Whether this is the consequence of tissue destruction in the subcortical
WM, involving axonal transection and retrograde neurodegeneration [34], it is has not been clari-
fied yet. However, a voxel base morphometry analysis showed that peripapillary retinal nerve
fiber layer thinning was specifically associated with atrophy of the visual cortex thus suggesting
that trans-synaptic degeneration might be a contributor to chronic axon damage inMS [35].

A second hypothesis is that cortical thinning in these areas might be more dependent on dif-
fuse subpial CLs [15], which are the most frequent type of CLs seen in post-mortemMS brains,
but almost invisible by MRI. We are aware that the main limitation of our study is that it was
performed on a 1.5 T scanner, which even though using the DIR sequence, does not allow a
clear identification of the entire cortical pathology and especially of subpial demyelination. We
are also aware that it is generally accepted that 7T MRI is much better at detecting cortical
lesions compared to conventional 3T MRI and 1.5T MRI [36,37]. Nevertheless, the identifica-
tion of subpial demyelination is still a challenge even on a 7T MRI and a longitudinal study
including high number of patients is almost unworkable at 7T MRI. Moreover, a recent histo-
pathological study has confirmed a significant correlation between MRI visible CLs (at 1.5T)
and the total amount of GM tissue damaged [38], suggesting that MRI visibility of CLs seems
determined more by lesion size than by any distinctive underlying pathology.

A third hypothesis suggests that, in addition to the role of demyelination in cortical thin-
ning, there is a diffuse loss of neurons, axons, and synapses in the non-demyelinated normal
appearing gray matter [17,39,40], which might explain the more general GM atrophy not asso-
ciated with lesions. This would be also in line with recent imaging studies showing several early
abnormalities even in the normal appearing GM [41,42].

This retrospective study is not free from limitations, mainly related to the low MRI field
applied and to the low sensitivity of DIR sequence for GM damage when compared to the
neuropathological approach. Moreover, the study do not provide any MRI data about the
pathology of the normal appearing WM that may significantly contribute to cortical atrophy
progression in MS [43].

However, this work has also several strengths: the longitudinal approach, the high number
of patients included in the analysis, and the fact that, for the first time, a comparison between
the appearance of CLs and cortical thinning has been done region-by-region and in different
MS populations.

Concluding, from the clinical point of view, considering the potential effect of some new
disease-modifying drugs on the cerebro-spinal fluid (CSF) proteome and on the accumulation
of CLs [42,44], the present results would suggest that these drugs should be used as early as
possible when their effect on the accumulation of CLs might be still in time to prevent the
development of cortical atrophy and consequent irreversible disability.

Supporting Information
S1 Dataset. Minimal, anonymized dataset underlying the results of the present study.
(XLSX)
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S1 Table. New cortical lesions and cortical thickness change after 5 years follow-up.
(PDF)

S2 Table. New cortical lesions and cortical thickness change after 5 years follow-up of
patients with DD<5 years and DD>5 years. The asterisk (�) indicates p< 0.001 compared
to Patients with DD>5 years (RRMS and SPMS). Regions with more than 0.5% of cortical
lesions are shown in the Table.
(PDF)
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