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Background: Mitochondrial DNA (mtDNA) mutations are associated with essential hypertension (EH), but the molecular mechanism 
remains largely unknown.
Objective: The aim of this study is to explore the association between mtDNA mutations and EH.
Methods: Two maternally inherited families with EH are underwent clinical, genetic and biochemical assessments. mtDNA mutations 
are screened by PCR-Sanger sequencing and phylogenetic, and bioinformatics analyses are performed to evaluate the pathogenicity of 
mtDNA mutations. We also generate cytoplasmic hybrid (cybrid) cell lines to analysis mitochondrial functions.
Results: Matrilineal relatives exhibit variable degree of clinical phenotypes. Molecular analysis reveals the presence of m.A14693G 
and m.A14696G mutations in two pedigrees. Notably, the m.A14693G mutation occurs at position 54 in the TψC loop of tRNAGlu, 
a position which is critical for post-transcriptionally modification of tRNAGlu. While the m.A14696G mutation creates a novel base- 
pairing (51C-64G). Bioinformatic analysis shows that these mutations alter tRNAGlu secondary structure. Additionally, patients with 
tRNAGlu mutations exhibit markedly decreased in mtDNA copy number, mitochondrial membrane potential (MMP) and ATP, whereas 
the levels of reactive oxygen species (ROS) increase significantly.
Conclusion: The m.A14696G and m.A14693G mutations lead to failure in tRNAGlu metabolism and cause mitochondrial dysfunction 
that is responsible for EH.
Keywords: EH, mt-tRNAGlu m.A14693G m.A14696G, mitochondrial dysfunction, Chinese families

Introduction
EH was a very common chronic disease which was becoming an urgent public health problem worldwide, it had been 
estimated that ~9.4 million hypertensive patients died each year.1 EH was regarded as a risk factor for coronary heart 
disease (CHD), stroke and renal failure,2 thus, understanding its pathophysiology had become a major research focus. 
Since the landmark discovery of the draft sequences of human genome, experts announced that within 10 years they 
expected to determine the important of the genome as related to EH.3 Some great advance had been made toward the 
molecular basis of EH, for example, nuclear genes such as Nr2f2,4 CUL3,5 and EIF2AK46 had been identified to be 
associated with EH. However, the detailed molecular mechanism of EH was still unknown.

While the nuclear genome had been studied extensively with respect to EH, we noticed that mtDNA mutations also 
played active roles in EH. Mitochondrion was a small symbiotic organelle combined with aerobic bacteria and primordial 
eukaryotic cells.7 It had its own DNA, called mtDNA, encoding 37 genes spanning tRNAs, rRNAs and the subunits of 
the respiratory chain.8 As the adaptor that decoded the mRNA sequence into protein, the basic aspects of mt-tRNA 
structure and function were central to all studies of mitochondrial biomedicine. Unlike canonical tRNAs such as human 
cytosolic tRNAs, human mt-tRNAs had specific features such as non-classical G-C pairs and mismatches.9 In fact, most 
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mt-tRNAs from all domains of life had a highly conserved cloverleaf structures, consisting of acceptor arm, D-arm, 
anticodon stem, variable region and TψC loop, with an average length of 73 nucleotides. Mutations in mt-tRNAs had 
been reported in some cases of maternally inherited EH, such as tRNAIle A4263G,10 tRNASer(UCN) 7471delC,11 and 
tRNAGln/tRNAMet A4401G mutations.12 These mutations may reduce the steady-state level or aminoacylation ability of 
corresponding mt-tRNAs, affect the 5’ or 3’ end processing, CCA addition, cause the defects in chemical modification 
and lead to failure in mt-tRNA metabolism, and subsequently impair mitochondrial translation and function, which was 
involved in the progression and pathogenesis of EH.13

Most recently, with the aim of exploring the molecular basis of maternally transmitted EH, we carried out a genetic 
screening program for EH-associated mtDNA mutations in Anhui Province, P.R. China. Herein, we reported clinical, 
genetic and molecular characterizations of two Chinese pedigrees with EH, sequence analysis of the complete mitochon-
drial genomes led us to identify two potential pathogenic mutations: m.A14693G and m.A14696G in tRNAGlu gene. To 
further explore the contributions of mt-tRNAGlu mutations to EH, we analyzed mitochondrial functions in cybrids cell 
lines derived from six patients with tRNAGlu mutations and four controls without these mutations. Subsequently, we 
noticed that m.A14693G and m.A14696G mutations affected mitochondrial functions, decreased mtDNA copy number, 
ATP and MMP, and enhanced ROS production. Therefore, mutations in tRNAGlu caused mitochondrial dysfunction that 
was responsible for hypertension.

Materials and Methods
Subjects
We enrolled two genetically unrelated Chinese families with EH (Figure 1). These pedigrees were ascertained in the 
Department of Integrated TCM & Western Medicine, Mengcheng County Second People’s Hospital in Anhui Province of 
China. This study was complied with the Declaration of Helsinki, and the methodologies for obtaining the blood samples, 
as well as the clinical examination of all participants from two pedigrees were approved by the Ethic Committees of 
Mengcheng County Second People’s Hospital. Besides, 268 unrelated healthy controls were obtained from the volunteers 
in the same area, these subjects were consisted with 160 male and 108 females, aged from 25 to 48 years, with the 
average of 36 years. The inclusion criteria for these control subjects were as follows: healthy individuals without any 
diseases or had any family history of cardiovascular and neurological diseases. Exclusion criteria were ongoing 
maintenance dialysis, a grave acute infectious disease, neoplastic disease, severe liver dysfunction, major surgery, 
a chronic inflammatory disease and autoimmune disease. Patients who suffered severe life-threatening injury to other 
organs were also excluded. Both families provided written informed consent, and furthermore, the informed consent to 
have their case details published were obtained from all subjects enrolled in this study.

Figure 1 Two Han Chinese families with EH, arrows indicate the probands.
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Assessment of BP
The BP of each patient from two families was measured by using a mercury column sphygmomanometer (CARENT 
Devices, China). The first and the fifth Korotkoff sounds were indicative of systolic and diastolic BP, respectively. The 
average of three measured BP readings was taken as the examination BP.14 Notably, EH was defined as systolic BP ≥140 mm 
Hg or diastolic BP ≥90 mm Hg on three consecutive days according to the Seventh Report of the Joint National Committee.15

mtDNA Analysis
To screen the EH-associated mtDNA mutations, we first isolated the genomic DNA from matrilineal relatives from two 
families, as well as 268 control subjects using the Puregene DNA Isolation Kits (Gentra Systems, Minneapolis, MN), 
according to the manufacturer’s instructions. Briefly, 24 overlapping PCR fragments were generated and amplified the 
complete mitochondrial genome, according to a previous study.16 The PCR products were then purified and sequenced by 
the ABI 3700 automated DNA sequencer. The data were analyzed with SeqWeb program GAP (GCG) according to the 
revised Cambridge reference sequences (GenBank accession number: NC_012920.1).17

Analysis of the Conservation Index (CI)
To assess the potential pathogenic roles of mtDNA mutations, the CI of each variant was calculated by using the 
phylogenetic conservation analysis.18 The CI ≥75% was considered to be functional potential.19

Bioinformatics Analysis
To see whether m.A14693G and m.A14696G mutations altered the secondary structure of tRNAGlu, the RNA Fold 
Webserver (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) was used to predict the minimum-free energy 
(MFE) of tRNAGlu with and without these mutations.20

Analysis of mtDNA Content
The mtDNA content was measured by using real-time PCR as suggested previously.21 Briefly, mtDNA content was normal-
ized to a single copy nuclear β-globin gene. The following primers were used for real-time PCR analysis: for β-globin gene: 
forward: 5’-CTATgggACgCTTgATgT-3’; reverse: 5’- gCAATCATTCgTCTgTTT-3’. For mtDNA: forward: 5’- 
CACCAgCCTAACCAg ATTTC-3’; reverse: 5’-gggTTgTATTgATgAgATTAgT-3’. We first generated standard curves for 
both fragments and calculated their respective amplification efficiencies to test if using the 2−ΔΔCT method was appropriate. 
The real-time PCR was then conducted for the calibrator mtDNA content. All experiments were duplicated in three times.

Generation of Cybrid Cell Lines
Trans-mitochondrial cybrids were obtained by fusion of mtDNA-less ρ0 human osteosarcoma 143B cells with platelets, 
which were isolated from the blood of six affected individuals (Family 1: II-6; II-8 and III-10; Family 2: II-1, II-6 and III- 
4), together with four controls (C1, C2, C3 and C4), as described previously.22 The transformant clones were cultured in 
DMEM (Sigma-Aldrich) containing 10% FBS (Sigma-Aldrich) at 37°C in a humidified CO2 incubator.

ATP Analysis
The Cell Titer-Glo® Luminescent Cell Viability Assay kit (Promega, Madison, WI, USA) was used for the measurement 
of ATP levels with some modifications.23 Luminescence intensity was analyzed by using a fluorescence microplate reader 
(Molecular Devices, CA, USA), and the amount of ATP was calculated from an ATP standard curve. Each experiment 
was repeated in three times.

Qualification of ROS Levels
The fluorogenic marker 2’, 7’-Dichlorodihydrofluorescein diacetate (H2DCFDA) was live-cell-permeable acetate ester, 
and upon entry, it was then cleaved by cellular esterases, reacted with cellular ROS and emitted green fluorescence. To 
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analyze the ROS level, a total of 2×106 cells were first incubated with H2DCFDA for 30 min, after which the cells were 
analyzed using a fluorescence plate reader, as described previously.24 Each experiment was repeated in three times.

MMP Analysis
To determine whether mt-tRNAGlu mutations affected mitochondrial function, the MMP of mutant and control cell lines 
was performed using JC-1 Assay Kit-Microplate (Abcam). JC-1 was a cationic carbocyanine dye; when it accumulated in 
the mitochondria of low MMP in monomer form, it produced green fluorescence. At high concentrations in high MMP, it 
produced red fluorescence.25 Each experiment was repeated in three times.

Evaluation of the Pathogenicity
We further utilized the pathogenicity scoring system to evaluate the potential pathogenic roles of m.A14693G and m. 
A14696G mutations.26 This pathogenicity scoring system employed a number of weighted criteria covering a range of 
molecular and genetic data, from which an overall pathogenicity score can be obtained. In particular, a variant was 
classified as “definitely pathogenic” with a score >11 points, whereas variant was defined as “possible pathogenic” with 
a core of 7–10 points and a “neutral polymorphism” with a score of <6 points.

Statistical Analyses
Statistical analyses were performed using SPSS 22.0 (SPSS Inc., Chicago, IL, USA). Student’s t-test was used to assess the 
statistical significance between unpaired samples. P<0.05 was considered to indicate a statistically significant difference.

Results
Clinical and Genetic Characterizations of Two Chinese Families with EH
In Family 1, the proband (II-6) was a 75-year-old woman who came from Mengcheng City of Anhui Province. She 
developed EH at the age of 70, her average BP was 150/100 mmHg. She went to our hospital for regular treatment of 
hypertension. After comprehensive history examination, we noticed that several members (II-8, III-3 and III-10) were 
also hypertensive persons. Therefore, the transmission of EH was a typical maternally inheritance. In addition, all 
members in Family 1 did not suffer from vision or hearing loss, cancer, diabetes, neurological disorders, suggested that 
they manifested hypertension as a sole clinical phenotype.

In Family 2, the proband (II-6) was a 66-year-old woman who lived in Mengcheng City of Anhui Province. After the 
genetic counseling, we found that she suffered from EH when she was 60, and her BP was 180/100 mmHg. In addition, 
her mother (I-2) and daughter (III-4) were hypertensive individuals. Moreover, all members in Family 2 did not exhibit 
other mitochondrial disorders such as hearing impairment, vision loss, neurological diseases, cancer and other endocrine 
diseases, indicating that they expressed the EH as sole clinical phenotypes. The clinical characterizations of these 
members from two families were listed in Table 1.

Screening for mtDNA Mutations
As these pedigrees were maternally transmitted, which suggested the involvement of mtDNA mutations in the 
phenotypic manifestation of EH. For this purpose, we amplified the whole mitochondrial genomes from the 
matrilineal relatives of Family 1 (II-6, II-8, III-3 and III-10) and Family 2 (I-2, II-6 and III-4). After PCR 
amplification, the products were sequenced by automatic DNA sequencer and subsequently analyzed by using 
DNA Star software to detect mtDNA variants. The data were listed in Table 2, sequence analysis revealed a set of 
genetic polymorphisms, in addition to the tRNAGlu A14693G and A14696G mutations (Figures 2 and 3). Note that, 
there were 14 variants in D-loop region, four known mutations in 12S rRNA and three mutations in 16S rRNA, 
whereas other genetic polymorphisms were mainly localized at oxidative phosphorylation (OXPHOS)-related genes. 
Moreover, 12 missense mutations were identified, including the ND2 G4924A (Ser to Asn) and C5178A (Leu to Met), 
A8 C8414T (Leu to Phe), A6 A8701G (Thr to Ala) and A8860G (Thr to Ala), CO3 A9327G (Thr to Ala), ND3 
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Table 1 Summary of Clinical Data for Some Members in Two Families with EH

Subjects Gender Age at Test Age at Onset Diastolic BP  
(mmHg)

Systolic BP  
(mmHg)

II-6 (Family 1) Female 75 70 100 150

II-8 (Family 1) Female 72 69 90 145

III-3 (Family 1) Female 50 48 95 130

III-10 (Family 1) Female 45 41 90 160

I-2 (Family 2) Female 88 71 95 145

II-6 (Family 2) Female 66 60 100 180

III-4 (Family 2) Female 40 35 90 155

Abbreviation: BP, blood pressure.

Table 2 mtDNA Sequence Variations in Two Families with EH

Gene Position Replacement Conservation  
(H/B/M/X)a

rCRSb Family 1 Family 2 Previously  
Reportedc

D-loop 73 A to G A G G Yes

146 T to C T C Yes

150 C to T C T Yes

195 T to C T C C Yes

263 A to G A G G Yes

310 T to C T C Yes

489 T to C T C C Yes

524 Del C C Del C Yes

573 C to CCC C CCC Yes

16,189 T to C T C C Yes

16,223 C to T C T T Yes

16,304 T to C T C Yes

16,362 T to C T C Yes

16,519 T to C T C Yes

12S rRNA 709 G to A G/G/A/- G A Yes

750 A to G A/G/G/- A G G Yes

1107 T to C T/C/T/T T C Yes

1438 A to G A/A/A/G A G G Yes

16S rRNA 2706 A to G A/G/A/A A G G Yes

3010 G to A G/G/A/A G A Yes

(Continued)
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Table 2 (Continued). 

Gene Position Replacement Conservation  
(H/B/M/X)a

rCRSb Family 1 Family 2 Previously  
Reportedc

3107 Del N N Del N Yes

ND1 3348 A to G A G Yes

3970 C to T C T T Yes

ND2 4685 A to G A G Yes

4769 A to G A G Yes

4883 C to T C T Yes

4924 G to A (Ser to Asn) S/N/T/P G A Yes

4985 G to A G A Yes

5178 C to A (Leu to Met) L/T/T/T C A Yes

5301 A to G A G Yes

CO1 6026 G to A G A Yes

6284 A to G A G Yes

7028 C to T C T T Yes

7196 C to A C A Yes

CO2 7768 A to G A G G Yes

8020 G to A G A Yes

A8 8414 C to T (Leu to Phe) L/F/M/W C T Yes

A6 8701 A to G (Thr to Ala) T/S/L/Q A G G Yes

8860 A to G (Thr to Ala) T/A/A/T A G G Yes

8964 C to T C T Yes

CO3 9327 A to G (Thr to Ala) T/T/T/I A G Yes

9540 T to C T C C Yes

9950 T to C T C Yes

ND3 10,398 A to G (Thr to Ala) T/T/T/A A G Yes

10,400 C to T C T Yes

ND4 10,873 T to C T C C Yes

11,719 G to A G A A Yes

ND5 12,705 C to T C T Yes

13,708 G to A (Ala to Thr) A/L/A/A G A Yes

13,928 G to C (Ser to Thr) S/T/S/T G C Yes

ND6 14,455 C to T C T Yes

tRNAGlu 14,693 A to G A/A/A/A A G Yes

(Continued)
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A10398G (Thr to Ala), ND5 G13708A (Ala to Thr) and G13928C (Ser to Thr), CytB A15326G (Thr to Ala) and 
A15851G (Ile to Val).

We used the following criteria to classify mtDNA pathogenic mutations: 1) occurred in <1% of the controls; 2) 
evolutionary conservation (CI ≥ 75%); 3) potential structural and functional alterations; 4) pathogenicity scoring system. 
Phylogenetic conservation analysis including the mtDNA sequences from mouse,27 bovine28 and Xenopus laevis29 was 
also performed. We found that besides the m.A14693G and m.A14696G mutations (Figure 4), others were not well 
conserved from different species. Moreover, further genetic analysis revealed that the m.A14693G and m.A14696G 
mutations were not detected in 268 control subjects (P<0.05 for all), suggesting that the m.A14693G and m.A14696G 
mutations may be involved in the pathogenesis of EH in these families.

In fact, the m.A14693G mutation occurred at position 54 in TψC loop of tRNAGlu, which was extremely conserved 
from bacteria to human mitochondria.30 In addition, the m.A14696G mutation was localized at position 51 in TψC loop 
of tRNAGlu, creating a novel base pairing (51C-64G).31

Table 2 (Continued). 

Gene Position Replacement Conservation  
(H/B/M/X)a

rCRSb Family 1 Family 2 Previously  
Reportedc

14,696 A to G A/A/A/A A G Yes

CytB 14766 C to T (Thr to Ile) T/S/T/S C T T Yes

15,301 G to A G A Yes

15,326 A to G (Thr to Ala) T/M/I/I A G G Yes

15,508 C to T C T Yes

15,851 A to G (Ile to Val) I/A/S/M A G Yes

Notes: aConservation of amino acid for polypeptide or nucleotide for rRNAs in human (H), bovine (B), mouse (M), and Xenopus laevis (X). brCRS: 
revised Cambridge Reference Sequences. cSee the online mitochondrial genome database http://www.mitomap.org.

Figure 2 Identification of tRNAGlu A14693G and A14696G mutations by direct sequencing. 
Abbreviations: MT, mutant; WT, wild type.
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The m.A14693G and m.A14696G Mutations Altered tRNAGlu Structure
The secondary structures of tRNAGlu with and without A14696G and A14693G mutations were predicted by RNA Fold 
Webserver.20 As shown in Figure 5, we noticed that m.A14696G and m.A14693G mutations significantly altered 
tRNAGlu structure, highlighting the impact of these mutations on tRNA functions.32

Figure 3 Secondary structure of tRNAGlu gene with and without the m.A14693G and m.A14696G mutations.

Figure 4 Alignment of tRNAGlu gene from various species, arrows indicated the positions of 51 and 54, corresponding to the m.A14696G and m.A14693G mutations.
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The m.A14693G and m.A14696G Mutations Decreased mtDNA Copy Number
As shown in Figure 6A, patients with m.A14696G and m.A14693G mutations exhibited much lower levels of mtDNA 
copy number when comparing with the controls (P=0.0030).

Figure 5 Prediction of tRNAGlu secondary structure with and without the m.A14696G and m.A14693G mutations.

Figure 6 Analysis of mitochondrial functions in cybrids. (A) mtDNA copy number; (B) ATP analysis; (C) ROS analysis; (D) MMP analysis.
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ATP Decreased in Cells Carrying tRNAGlu Mutations
Since mitochondria generated ATP through OXPHOS, impairment in ATP synthesis was thought to be involved in 
mitochondrial function.33 As shown in Figure 6B, approximately 33% reduction of ATP was observed in patients 
carrying the mt-tRNAGlu mutations when compared with the healthy subjects (P<0.05).

Enhancement of ROS Production
As shown in Figure 6C, patients with m.A14693G or m.A14696G mutations showed an approximately 37% increased in 
ROS production as compared with controls without these mutations (P<0.05).

Decreased in MMP
Decreased in MMP was an early event for apoptosis and critical for mitochondrial function.34 As shown in Figure 6D, 
subjects with mt-tRNAGlu mutation showed an approximately 31% reduction in MMP as compared with controls without 
these mutations (P=0.0001).

The m.A14693G and m.A14696G Mutations May Be Risk Factors for EH
According to the revised pathogenicity scoring system by Yarham et al,26 the total scores of m.A14693G and m. 
A14696G mutations were 11 and 9 points, respectively (Table 3), suggesting that they belonged to “definitely patho-
genic” and “possibly pathogenic” at this stage.

Discussion
In the current study, we carried out clinical and genetic assessments of two Chinese families with EH, and further 
investigated the contributions of mtDNA mutations to EH. Notably, members of these pedigrees expressed variable 
degrees of BP and different age at onset of EH. Interestingly, the age of onset of EH in Family 1 ranged from 41 to 70 
years, with the average of 57 years. Meanwhile, the age of onset of EH in Family 2 ranged from 35 to 71 years, with the 
average of 55 years. In addition, compared with the first and second generations of this pedigree, members in the third 
generation had an earlier age of onset of EH, indicating that screening for the mtDNA pathogenic mutations was 
necessary for early diagnosis and prevention of EH.

Table 3 The Pathogenicity Scoring System for m.A14693G and m.A14696G Mutations

Scoring Criteria m.A14693G 
Mutation

Score m.A14696G 
Mutation

Score Classification

More than one independent report Yes 2 Yes 2 ≤6 points: neutral polymorphisms; 

7~10 points: possibly pathogenic; 

≥11 points (including trans- 
mitochondrial cybrid studies): 

definitely pathogenic.

Evolutionary conservation of the base pair No changes 2 No changes 2

Variant heteroplasmy No 0 Yes 2

Segregation of the mutation with disease Yes 2 Yes 2

Histochemical evidence of mitochondrial disease No evidence 0 No evidence 0

Biochemical defect in complex I, III or IV No 0 No 0

Evidence of mutation segregation with biochemical 

defect from single-fiber studies

No 0 No 0

Mutant mt-tRNA steady-state level or evidence of 

pathogenicity in trans-mitochondrial cybrid studies

Strong 

evidence

5 Weak 

evidence

3

Maximum score Definitely 

pathogenic

11 Possibly 

pathogenic

9
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Analysis of the entire mitochondrial genomes from the matrilineal relatives revealed the presence of homoplasmic mt- 
tRNAGlu A14693G and A14696G mutations, as well as sets of polymorphisms belonging to human mitochondrial 
haplogroup Y2 and D4a,35 respectively. Notably, nucleotide at position 54 was more prone to be modified than other 
positions of tRNA.36 The nucleotide modification at this position had been shown to have a pivotal role in the 
stabilization of tertiary structure and the biochemical function of tRNAGlu.37 Therefore, the m.A14693G mutation caused 
an impairment of tRNA modification and mitochondrial translation.38 Moreover, the m.A14693G mutation had been 
reported to be related to Leber’s hereditary optic neuropathy (LHON) and acted as a modifier for increasing the 
penetrance and expressivity of m.A1555G-induced deafness.39,40

While the homoplasmic m.A14696G mutation occurred at position 51 in the TψC loop of tRNAGlu, which was also 
very conserved from various species.41 Interestingly, the m.A14696G mutation created a novel base pairing (51C-64G) 
and may result a failure in tRNA metabolism. Importantly, the stem of TψC loop harbored a wobble composed of 
nucleotides 50 to 51 and 63 to 64 in human mt-tRNAGlu,42 therefore, the mutant 14,696 reduced the wobble and may lead 
to a failure in tRNA metabolism. Furthermore, bioinformatic analysis revealed that the m.A14693G and m.A14696G 
mutations caused obviously change of tRNAGlu secondary structure, indicating that the alternation of tRNA structure 
may affect its steady-state level, as well as its aminoacylation ability, as in the case of tRNALeu(UUR) A3243G and ND6 
T14502C mutations.43

To see the contributions of m.A14693G and m.A14696G mutations to EH, we analyzed mitochondrial functions 
including mtDNA content, ATP, MMP and ROS in hypertension patients and healthy controls. As a result, markedly 
decreased in mtDNA copy number, ATP and MMP were observed in patients carrying tRNAGlu mutations, whereas ROS 
increased significantly. In fact, mtDNA copy number was a mitochondrial function marker that reflected its depletion, 
energy reserves and oxidative stress.44 Recent experimental studies indicated that decreased peripheral mtDNA copy 
number was associated with the risk of heart failure and long-term outcomes.45 MMP reflected the pumping of hydrogen 
ions across the inner membrane during the process of electron transport and OXPHOS.46 The defects in MMP may be 
due to strongly decreased efficiency of respiratory chain-mediated proto extrusion for the matrix, as in the case of 
tRNAHis T12201C mutation.47

Additionally, a decreased mtDNA copy number had been demonstrated to lead to increased ROS levels; ROS induced 
by mitochondrial dysfunction can increase mitochondrial Ca2+ accumulation and may act as potential pathophysiological 
mechanism in hypertension.48 Furthermore, the ATP dropped significantly indicated that the OXPHOS complexes were 
impaired in subjects with m.A14693G and m.A14696G mutations. Through the application of the pathogenicity scoring 
system,26 the total scores of m.A14693G and m.A14696G mutations were 11 and 9 points, respectively, belonged to 
“definitely” and “possibly” pathogenic at this stage (Table 3).

However, the homoplasmic form, late onset and incomplete penetrance of EH observed in these Chinese families 
carrying the tRNAGlu mutations suggested that the m.A14693G and m.A14696G mutations were involved in the 
development of EH but may be insufficient to produce a clinical phenotype; hence, other factors such as nuclear 
genes (ADD1; ALDH1A3),49,50 environmental components (air pollution), epigenetic modification (histone modification, 
DNA methylation)51,52 and personal lifestyle (smoking or high salt intake) may contribute to EH expression in these two 
families.53,54 In particular, mito-nuclear communication played a putative role in the pathogenesis of cardiovascular 
disease.55 The main limitations of this study were the relatively small sample size, further studies including more EH 
patients and controls, as well as the examinations of tRNA functions in the cybrids were needed to verify this conclusion.

Conclusion
Our study indicated that mt-tRNAGlu A14693G and A14696G mutations altered the tRNA structure and functions, led to 
mitochondrial dysfunction that was involved in EH, screening for tRNA mutations was recommended for early diagnosis 
and detection of EH.

Abbreviations
EH, essential hypertension; mtDNA, mitochondrial DNA; cybrid, cytoplasmic hybrid; MMP, mitochondrial membrane 
potential; ROS, reactive oxygen species; mt-tRNA, mitochondrial tRNA; CHD, coronary heart disease; BP, blood 

Pharmacogenomics and Personalized Medicine 2024:17                                                                      https://doi.org/10.2147/PGPM.S436235                                                                                                                                                                                                                       

DovePress                                                                                                                          
23

Dovepress                                                                                                                                                            Wang et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


pressure; CI, conservation index; MFE, minimum-free energy; H2DCFDA, 2’, 7’-Dichlorodihydrofluorescein diacetate; 
OXPHOS, oxidative phosphorylation; LHON, Leber’s hereditary optic neuropathy.
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