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Abstract

Motivation: Recent advances in deep learning have offered solutions to many biomedical tasks. However, there
remains a challenge in applying deep learning to survival analysis using human cancer transcriptome data. As the
number of genes, the input variables of survival model, is larger than the amount of available cancer patient sam-
ples, deep-learning models are prone to overfitting. To address the issue, we introduce a new deep-learning archi-
tecture called VAECox. VAECox uses transfer learning and fine tuning.

Results: We pre-trained a variational autoencoder on all RNA-seq data in 20 TCGA datasets and transferred the
trained weights to our survival prediction model. Then we fine-tuned the transferred weights during training the sur-
vival model on each dataset. Results show that our model outperformed other previous models such as Cox
Proportional Hazard with LASSO and ridge penalty and Cox-nnet on the 7 of 10 TCGA datasets in terms of C-index.
The results signify that the transferred information obtained from entire cancer transcriptome data helped our sur-
vival prediction model reduce overfitting and show robust performance in unseen cancer patient samples.

Availability and implementation: Our implementation of VAECox is available at https://github.com/dmis-lab/
VAECox.

Contact: kangj@korea.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer prognosis, including prediction of time to death of a cancer
patient, remains one of the most challenging issues in the clinical do-
main even after decades of effort by cancer researchers (Kourou
et al., 2015; Nicholson et al., 2001). One major factor for this diffi-
culty is censored patient samples, i.e. the status of a patient may be
unknown if a clinic is unable to monitor the patient. Traditional
modelling approaches have difficulty in handling censored patient
samples as they do not have a specific time point of death. Even the
last follow-up time in the record of the censored patient sample can-
not be used as its missing time of death. A model that can handle
both censored and uncensored samples can be effective in time-to-
death prediction. Survival analysis is a statistical method that han-
dles censored samples (Cox, 2018). As survival analysis methods
focus on whether a patient survives at a certain time point rather
than when the patient dies, any patient who survives at a certain
time point can be used in modelling patient survivals.

With the advent of the Human Genome Project (Venter et al.,
2001), high-throughput transcriptomics data of cancer patients has
become accessible and technologies for analyzing the large amount
of transcriptomics data have been developed (Hanahan and
Weinberg, 2011; Van’t Veer et al., 2002). Researchers have found
that transcriptomics data, especially gene expression data, can be
useful for cancer analysis (Lussier and Li, 2012; Valdes Mora et al.,
2018). The Cox Proportional Hazard (Cox-PH) model treats

predicting the survival time of patients as a regression task
(Bradburn et al., 2003; Cox, 1972). The Cox-PH model predicts the
probability of patient death using a hazard function. However, since
the Cox-PH model is based on a linear combination of given fea-
tures, it cannot learn underlying non-linear biological processes
from transcriptomics data for cancer prognosis.

Deep learning has recently started to gain popularity in the bio-
informatics domain due to its advancements in technology and flexi-
bility in modelling (Chaudhary et al., 2018; Ching et al., 2018;
Katzman et al., 2018). Although deep-learning approaches have
been applied to most biomedical tasks, using deep learning on gen-
omic data still remains a challenge. As the amount of cancer patient
data available for deep-learning models is insufficient, using deep
learning can lead to serious overfitting issues. Deep-learning models
in the general domain are less likely to suffer from overfitting issues
where the total number of data samples significantly exceeds the
number of features. In the biomedical domain, the opposite is often
the case. For example, the total number of breast cancer patient
samples in the Cancer Genome Atlas, TCGA, (Tomczak et al.,
2015) is approximately 1100, whereas the number of human genes
for each patient is more than 20 000. From the perspective of ma-
chine learning, the lack of training samples can lead to overfitting
models on the training set, and obtaining poor performance on other
unseen samples.

Model simplification is one solution to overfitting issues. Cox-
nnet, which was proposed in 2018, has succeeded in predicting the
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survival of patients with various cancer types using simple two fully
connected perceptron layers (Ching et al., 2018). Huang et al.
(2019b) evaluated various machine-learning models and deep-
learning architectures, but found that the artificial neural network
(ANN) with only one or two perceptron layers is the most effective
architecture in analyzing omics data for disease classification. These
results show that when all genes are considered as independent fea-
tures, model simplification greatly helps avoid overfitting. However,
simplifying models inevitably limit the models’ ability to learn com-
plex non-linear relations among features.

An alternative to model simplification is transfer learning.
Transfer learning is a method which involves transferring know-
ledge from a source task to a target task and has been used in vari-
ous deep-learning models (Fernandes et al., 2017; Kandaswamy
et al., 2016; Li et al., 2016). Transfer learning can be diversified de-
pending on its learning setting (inductive, transductive and unsuper-
vised) and transfer approach (instance-based, feature-based,
parameter-based and relational knowledge-based) (Pan and Yang,
2010).

Transfer learning is a method which involves transferring know-
ledge from a task with an abundant number of samples to another
task with an insufficient number of samples. A model can be pre-
trained on a large dataset of a task and the parameters of that model
are transferred to another model of a different but similar task.
Subsequently, the latter model can be fine-tuned on the smaller tar-
get dataset. The number of parameters used in deep-learning models
far exceeds the number of parameters used in conventional machine-
learning models. Deep-learning models often use transfer learning to
avoid overfitting (Fernandes et al., 2017; Kandaswamy et al., 2016;
Li et al., 2016).

In this work, we introduce VAECox, a deep-learning model
architecture that addresses the scarcity of data samples by exploiting
transfer learning and fine-tuning. We pre-trained our variational
autoencoder (VAE) on all the TCGA RNA-seq data of patients with
20 cancer types for extracting common characteristics of cancer.
Then we initialized the weights of our VAECox model with the
weights of our pre-trained VAE model, and fine-tuned our VAECox
model on each cancer patient dataset. Our VAECox model outper-
formed other baseline models such as Cox-PH with LASSO and
ridge penalty and Cox-nnet on the 7 of 10 different cancer-type
datasets.

2 Material and methods

2.1 Dataset and pre-processing
We first downloaded the cancer patient RNA-seq gene expression
data from TCGA. These data are provided by International Cancer
Genome Consortium (ICGC) data portal (https://dcc.icgc.org/). For
evaluating our VAECox model predicting patient survivals, we used
each of the gene expression data for 10 different cancer types used
for one of the baselines (Ching et al., 2018). The 10 different cancer
types are bladder carcinoma (BLCA), breast carcinoma (BRCA),
head and neck squamous cell carcinoma (HNSC), kidney renal cell
carcinoma (KIRC), brain lower-grade glioma (LGG), liver hepato-
cellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC), ovarian carcinoma (OV) and
stomach adenocarcinoma (STAD). The 10 different cancer types
were selected if they had more than 50 uncensored samples. For
each of the 10 different cancer types, we compared the performance
of our VAECox model to those of other baseline survival prediction
models.

As our VAECox model uses transfer learning from another
model trained on heterogeneous cancer sets, we used 24 TCGA can-
cer datasets from the ICGC data portal to train our VAE. 10 cancer
types, BLCA, BRCA, HNSC, KIRC, LGG, LIHC, LUAD, LUSC,
OV and STAD were first included as they are used in survival pre-
diction models. For the remaining 14 cancer types, 3 of them which
are lymphoid neoplasm diffuse large B-cell lymphoma, kidney chro-
mophobe and sarcoma were excluded as they did not contain any
RNA-seq data. In addition, we removed rectum adenocarcinoma as

it has insufficient patient samples. As a result, we used 20 cancer
gene expression datasets for training our VAE model.

When analyzing the dataset, we found some patient samples
with a high number of missing gene expression values. We assumed
that these patient samples would not be helpful in training our
model. Even if we impute the missing values using the existing val-
ues, the imputed values cannot be reliable due to the high number of
missing values. Therefore, we filtered samples with a high number
of missing values to reduce the noise from them. If the missing value
rate of the patient samples was more than 15%, the patient and the
gene were excluded from the dataset. Since we extracted common
traits of pan-cancers and transfer the knowledge to each cancer
model, we selected 20 502 genes commonly included in cancer gene
expression datasets. To regularize the scale of gene values, then we
applied feature-wise Z-normalization to each gene expression data-
set for the 20 cancer types. Table 1 provides the number of patient
samples of each cancer type used in our study. The first 10 cancer
types are used in survival prediction models. We imputed the miss-
ing values of the remaining patients using a matrix factorization-
based algorithm as other straightforward methods such as mean,
median or zero-value imputation are known to have limitations such
as reducing the variance of the imputed variables. We used the
LibFM (Rendle, 2012) package to impute the missing values and the
parameters were optimized using a Monte Carlo Markov Chain
algorithm.

2.2 Dimension reduction using autoencoder and VAE
An autoencoder (AE) is a neural network model where the encoder
compresses an input vector to a latent vector and the decoder
decompresses the latent vector to reconstruct the input vector
(Hinton and Salakhutdinov, 2006). The AE is trained to generate an
output vector that is as similar as possible to its original one. During
compression, the encoder learns salient features and achieves dimen-
sion reduction (Wang et al., 2016). As the number of our patient
samples is much smaller than the number of features, we can achieve
transfer learning using the pre-trained weights of the encoder. For
input vector x, the encoded vector z and the reconstructed vector x̂
of the AE’s output are mathematically expressed as follows:

z ¼ f ðWexþ beÞ (1)

Table 1. Statistics of transcriptomics data for 10 cancer types on

which VAECox was trained

Cancer type Before pre-processing After pre-processing

# All # Uncensored # All # Uncensored

BLCA 398 108 286 72

BRCA 1039 104 989 100

HNSC 522 170 477 160

KIRC 528 162 512 159

LGG 507 91 433 69

LIHC 343 91 267 72

LUAD 480 122 440 113

LUSC 477 158 404 134

OV 578 301 260 147

STAD 396 84 374 77

CESC 288 60 251 53

COAD 347 52 324 46

GBM 592 446 158 106

KIRP 264 31 209 23

LAML 173 108 149 92

PAAD 181 66 138 45

PRAD 500 8 375 6

SKCM 440 155 401 149

THCA 501 14 495 14

UCEC 540 45 505 43
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x̂ ¼Wdzþ bd (2)

where We and be are parameters of the encoder, and Wd and bd are
parameters of the decoder. f ð�Þ denotes the tanh function which is
expressed as follows:

f ðxÞ ¼ ex � e�x

ex þ e�x
(3)

For training the AE, we use a reconstruction error with root-
mean-square error (RMSE) as its objective function which is math-
ematically expressed as follows:

Lðx; x̂Þrecon ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðxi � x̂i Þ2
s

(4)

where n is the number of samples in the training set.
A VAE is a generative model that exploits the latent distribution

of input data for reconstruction (Doersch, 2016; Kingma and
Welling, 2013). The VAE does not only achieve dimension reduction
but also learns to model a more generalized latent prior distribution
(e.g. Gaussian distribution). Before input reconstruction, the latent
variables are randomly sampled from the probability distribution
made by the encoder. However, these randomly sampled variables
are not differentiable, which makes it difficult to calculate gradients.
As the VAE’s objective is to optimize both the encoding and decod-
ing weights, a re-parameterization trick which involves using the
mean and variances of the latent distribution as deterministic
parameters. Therefore, the mean and variance encoders for model-
ling the latent distribution’s mean and variance, respectively, are
used. This allows for the optimization of both the encoding and
decoding weights in the VAE model. We believe that the pre-trained
encoding weights can be generally used and be effective in various
tasks as they can be used to model richer and more elaborate latent
features of cancer patient data.

In this study, we added a hidden layer to the encoder and de-
coder of our VAE model architecture. The architecture of our VAE
model is shown in Figure 1A.The VAE model for input vector x, the
outputs of encoder l, � and z, and the reconstructed vector x̂ are
mathematically expressed as follows:

lðxÞ ¼Wlf ðWhxþ bhÞ þ bl (5)

�ðxÞ ¼W�f ðWhxþ bhÞ þ b� (6)

rðxÞ2 ¼ e�ðxÞ; � � Nð0;1Þ (7)

z ¼ lðxÞ þ rðxÞ � � (8)

x̂ ¼Wrf ðW0
hzþ b0hÞ þ br (9)

where l, � and r2 are the mean, log variance and the variance of a
Gaussian distribution, respectively. � is randomly sampled from the
standard Gaussian distribution. W and b are trainable parameters of
our VAE model.

We used a reconstruction error with RMSE as an objective func-
tion for our model. We used the Kullback–Leibler divergence
(Kullback and Leibler, 1951; Press et al., 2007) noted (DKL) as an
additional objective function for measuring the distance between
two distributions: (i) the true latent distribution of a given input; (ii)
the variational latent distribution of a given input encoded by the
VAE model.

DKLðxÞ ¼ �
Xn

k¼1

ð1þ �ðxkÞ � lðxkÞ2 � r2
kÞ (10)

The objective function of our VAE model is defined as follows.

ĥVAE ¼ argmin
h

�
Lðx; x̂Þrecon þDKLðxÞ

�
(11)

where hVAE refers to the parameters our VAE model.

2.3 Survival analysis
The architecture of our VAECox model which can predict patient
survival is shown in Figure 1B. We combined the encoder layers of
the VAE model with the Cox-PH model (Cox, 1972). The Cox-PH
model predicts cancer patients’ hazard ratio after taking censored
patient samples into consideration. Hazard ratio is a measure of

Fig. 1. (A) The architecture of the VAE model used in this study. A hidden layer is added to both the encoder and decoder of the original VAE. We trained this VAE model on

all the TCGA RNA-seq data of patients with 20 cancer types. (B) The architecture of the VAECox model which predicts a patient’s hazard ratio. The parameters of the first

two layers are transferred from the encoder part of the pre-trained VAE model
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how likely a patient is to die. A lower hazard ratio means the patient
is more likely to survive. The Cox-PH model is defined as follows.

hðtjxiÞ ¼ h0ðtÞ exp /i (12)

/i ¼ xT
i h (13)

where / is the log hazard ratio for patient i and h is the trainable
parameters of the model. The objective function of the Cox-PH
model is a negative partial log likelihood defined as follows.

ĥ ¼ argmin
h
�
X

CðiÞ¼1

ð/i � log
X

tj�ti
/jÞ (14)

where t is a sample’s survival time. The condition tj � ti means to se-
lect samples whose survival time is longer than the ith sample’s sur-
vival time. C(i) is an indicator which has a value of 1 when the
death event of ith patient sample is observed.

Our VAECox model architecture is a combination of the encoder
layers of our VAE model and the Cox-PH model. Therefore, the ob-
jective function of VAECox is also the negative partial log likelihood
defined at Equation 14, but the log hazard ratio of our VAECox
using the pre-trained encoder defined at Equation 5 is defined as
follows:

/i ¼WlðxiÞ þ b (15)

where W and b are the trainable parameters of the model.

2.4 Transfer learning
As explained above, transfer learning involves reusing a pre-trained
model which was previously trained on a large dataset. We first
trained our VAE on all TCGA RNA-seq data samples of 20 cancer
types. We then transferred the pre-trained weights to the encoder
layers attached to the Cox-PH layer in our VAECox model. To clar-
ify, the weight values in the VAECox’s encoder layers were initial-
ized with the pre-trained VAE encoder weights, whereas the
remaining ones were randomly initialized. The encoder weights in
VAECox were fine-tuned during training as the gradients were
back-propagated.

2.5 Experimental setting
Prior to using transfer learning, we initially trained the VAE model
on a combined dataset of 20 gene expression datasets of different
cancer types. About 80% of this data was used for training the
model, whereas the remaining 20% was used for evaluating model
performance. The VAE model is trained with unsupervised learning
as the model learns to copy input gene expression values to its out-
put. Then we combined the encoder of the pre-trained VAE model
with the two-layer Cox regression model and denote it as VAECox.
We trained our VAECox with supervised learning. The input is a
sample’s gene expression values and the output is the sample’s log
hazard ratio. The model is trained to predict the log hazard ratio in
the same order as the patients’ survival time based on the negative
partial log-likelihood which is the objective function of VAECox.

For a fair comparison, our VAECox was evaluated in the same
way as Cox-nnet (Ching et al., 2018). We compared our VAECox
with baseline models on 10 TCGA gene expression datasets of dif-
ferent cancer types. Each cancer-specific VAECox model was
trained on a different cancer dataset. We used 80% of the gene ex-
pression data as training data and evaluated the performance of the
trained models on the remaining 20% of the data. The optimal
hyperparameters of each model were selected based on fivefold cross
validation on the training data. To avoid a sampling bias caused by
the random split of training and test data, we repeated this entire
evaluation process 10 times and obtained the average performance
of each cancer-specific VAECox model. We used the concordance
index (C-index), which is one of the most commonly used metrics to
evaluate the performance of survival prediction models (Harrell Jr,
2015). C-index, which ranges from 0 to 1, measures the correlation

between the ranked predicted hazard ratios of patients and the
ranked survival times of patients.

We implemented all the baseline models using the PyTorch
framework, and have made the implementations available in our
GitHub repository. In the case of Cox-nnet, we used the same model
structure including the number of layers, the number of hidden
nodes and the activation function. Since Cox-LASSO and Cox-ridge
are simple extensions of the Cox-PH model, they do not have model
hyperparameters. By fivefold cross validation, we found the optimal
learning rate and the regularization factors for all the baseline
models.

The optimal hyperparameters of our VAECox model are shown
in Supplementary Table S1. The third layer of VAECox has 12 hid-
den units. We used tanh as our activation function and optimized
our model with Adam optimizer. We used PyTorch framework to
implement our model. We used 80% of the gene expression data as
training data, 10% of the data as validation data and the remaining
10% as test data, The hyperparameters were selected based on valid-
ation results. Training our VAECox including the VAE for a single
cancer type takes around 4 h and 6 GB GPU memory. We used a
NVIDIA Titan XP (12 GB) GPU to train and evaluate our VAECox.

3 Results

3.1 Survival prediction results
As shown in Figure 2, our VAECox model outperformed Cox-ridge,
Cox-LASSO and Cox-nnet on most of the cancer types. Among the
10 cancer types selected for evaluation in this study, our VAECox
model outperformed the other baseline models on seven cancer types
(BRCA, HNSC, KIRC, LGG, LIHC, OV and STAD) in terms of
average C-index. We also calculated the micro-average C-index on
10 cancer types. Micro-average considers the number of samples
evaluated for each cancer type, when computing the average metric
for all 10 cancer types and is mathematically expressed as,

avg ¼

P10

i¼1

ðni � ciÞ

P10

i¼1

ni

(16)

where ni is the number of samples and ci is the C-index for cancer-
type index i.

Our VAECox model outperformed Cox-ridge, Cox-LASSO and
Cox-nnet by 0.046, 0.040 and 0.016 in terms of micro-average C-
index, respectively. These results confirm that our transfer-learning
method is a viable approach for improving the performance in pre-
dicting patient survival for most cancer types.

The VAECox model was also utilized to perform further survival
analysis. We divided the patient samples for each of the 10 cancer
types into high- and low-risk groups based on their predicted hazard
ratios. A patient sample is included in high-risk group when the haz-
ard ratio of the sample is higher than the median hazard ratios of all
patient samples. We also carried out same analysis with the baseline
Cox-nnet. Figure 3 shows the Kaplan–Meier plots and the log-rank
test results of the high- and low-risk groups. The interesting observa-
tion is the P-value of our VAECox is lower than P-value of Cox-
nnet in BLCA where our VAECox does not outperform Cox-nnet in
terms of C-index. It means our VAECox shows a better performance
to split samples into the high and low risk groups than the Cox-
nnet.

3.2 Effectiveness of VAE
We performed further analysis to investigate how the transferred
weights of our pre-trained VAE model affects the performance of
our VAECox model in predicting patient survivals. The results
obtained after transferring and fine-tuning weights in three cases are
provided below:

• Weight transfer from VAE without fine-tuning yielded a micro-

average C-index score of 0.569.
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• No weight transfer from VAE yielded a micro-average C-index

score of 0.629.
• Weight transfer from VAE with fine-tuning yielded a micro-

average C-index score of 0.649, which is our best result.

Interestingly, our pre-trained VAECox model achieved better C-
index results than the randomly initialized VAECox model on the
same seven cancer types where our pre-trained VAECox outper-
forms Cox-nnet. The results demonstrate the effectiveness of trans-
fer learning. Both randomly initialized VAECox and Cox-nnet do
not use transfer learning.

Our VAE model may have difficulty in learning survival-related
characteristics of cancer types as VAE is designed for dimension re-
duction and reconstruction of input data. However, considering the
results obtained after transferring encoder weights to VAECox and
fine-tuning them during training, we can assume that the learned
parameters of the VAE model based on pan-cancer expression data
can be beneficial to the Cox model in learning cancer survival-
related features. This is further discussed in Section 4.

We also conducted additional experiments to verify the validity
of training the VAE with samples of heterogeneous cancer types. We
trained the VAE with only samples of target cancer type and trans-
ferred the encoder part of the AE to our Cox regression layer. The
micro-average of 10 concordance index scores of this experiment is
0.626, which is 0.023 lower than the performance of originally pro-
posed VAECox. These results show that the VAE trained with het-
erogeneous cancer types are more beneficial to our VAECox model.

Finally, we did experiments on the transfer learning and Cox re-
gression approach setting with other AEs, a simple AE and a stacked
de-noising AE. We obtained 0.623 of micro-averaged concordance
indices when using the simple AE, and 0.638 of micro-averaged con-
cordance indices when using the stacked de-noising AE. The result
shows the model structure of simple AE is not sufficient to capture

the common characteristics of heterogeneous cancer types, and the
stacked de-noising AE is better than the simple AE because of the
increased model complexity but does not outperform the VAE.

3.3 Feature analysis of VAECox
We further investigated the hidden nodes of the model to find which
genes were significant and which pathways were important for pa-
tient survival. We assumed that hidden nodes with high variance
have a crucial role to discriminate the patient samples. At first, we
extracted the top nodes with the highest variance in each of the se-
cond and third hidden layers. Then we calculated Pearson’s correl-
ation between the values of each hidden node and the expression of
each gene across all patient samples in the BRCA dataset. Figure 4
shows the correlation values of the top five genes which have the
highest absolute correlation values for each hidden node of the third
layer.

To examine the association between breast cancer and the genes
highly correlated with the hidden nodes of the Cox layer shown in
Figure 4, we conducted a literature survey on the genes. Most of the
genes are cancer-related genes, and some of them have an explicit as-
sociation with breast cancer and breast cancer patients’ survival.
The CDC20 gene is an essential component of cell division, and the
high CDC20 expression is reported to be associated with the poor
survival of breast cancer patients (Jiang et al., 2011; Karra et al.,
2014). Overexpression of the C9orf86 gene, also known as RBEL1,
is correlated with the survival of breast cancer patients (Li et al.,
2013; Yoshimura et al., 2016). The MAMDC2 gene, whose func-
tion is unknown, is reported to be highly correlated with the disease-
free survival of breast cancer patients (Mannelqvist et al., 2014;
Meng et al., 2016). The high HJURP expression level of is reported
to be a prognostic marker of breast cancer (de Oca et al., 2015; Hu
et al., 2010). IKGKB is a type of NF-kappa B genes and reported to

Fig. 2. The box plot for the performance of the following survival prediction models on 10 cancer types: Cox-ridge, Cox-LASSO, Cox-nnet and our model VAECox. We ran-

domly split the data into training (80%) and test sets (20%). We repeated this process 10 times and obtained 10 C-index scores. The white triangle of each box denotes the

average of 10 C-index scores. The optimal hyperparameters were selected by fivefold cross validation on the training set
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have a major driver in inflammatory breast cancer (Lerebours et al.,
2008). The methylation of the KLHL17 gene is reported to be asso-
ciated with early stage breast tumours and breast carcinogenesis
(Titus et al., 2017). The DOT1L gene is reported to be highly associ-
ated with breast cancer and a new therapeutic target for aggressive

breast cancer (Cho et al., 2015; Lee and Kong, 2015; Nassa et al.,
2019). The BCAP31 gene is reported to activate the downstream sig-
nalling of EGFR and drive triple-negative breast cancer (Fu et al.,
2019). The SCN4B gene is reported to act as a metastasis-suppressor
gene and the under-expression of the SCN4B gene is correlated with

Fig. 3. Kaplan–Meier plots and results of the 10 cancer-types’ test patient samples from the log-rank test with VAECox and Cox-nnet. The patient samples are divided into

high- and low-risk groups based on the predicted hazard ratios. A patient sample is included in high-risk group when the hazard ratio of the sample is higher than the median

hazard ratios of all patient samples
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tumour progression in breast cancer (Bon et al., 2016). KIAA0247,
also known as DRAGO, is reported to cooperate with p53 and
KIAA0247’s overexpression is reported to result in cell death in
breast cancer (Huang et al., 2011; Polato et al., 2014).

We then explored the function of hidden nodes by pathway en-
richment test with the correlation values of genes. As the correlation
value between a gene and a hidden node means how much the gene
contributes to the value of the hidden node, we can obtain a ranked
gene list for each hidden node using the correlation values. Using the
ranked gene list, we found enriched pathways in KEGG pathway
database. Figure 5 shows the enriched pathways for each hidden
node of the third layer, and Supplementary Figure S1 shows that of
the second layer.

We found an interesting difference when comparing the enriched
pathways of the third layer that is the third layer of our VAECox,
and the previous hidden layer that is the second layer of our
VAECox. In case of the third layer, the pathways where many nodes
are enriched are related to cancer, such as pathways in cancer, PI3K-
Akt signalling pathway and Jak-STAT signalling pathway. But the
enriched pathways in the second layer are related to only

metabolism, such as fatty acid metabolism, propanoate metabolism
and retinol metabolism. We can see that the third layer learns bio-
logically basic and essential information and the second layer learns
complex and disease-specific information. This observation is an
interesting example in biological domain showing that a deep-
learning model learns the basic signals in the front layer, and learns
the high-level signals by abstracting the basic signals in the later
layer.

4 Discussion

4.1 Effect of transfer learning for effective parameter

initialization
To use transfer learning, we pre-trained our VAE model on a
combined set of 20 gene expression datasets for different cancer
types. We then transferred the encoder weights of the pre-
trained VAE model to our VAECox model by initializing the
weights of the VAECox model with the transferred encoder

Fig. 4. Pearson’s correlation values of the top five genes which have the highest absolute correlation values for each hidden node of the third layer in the BRCA dataset
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weights of the VAE model. While we did not fine-tune the trans-
ferred weights when training our VAECox model, we found that
our VAECox model did not show significant improvement. Our

pre-trained VAE model is designed to learn compression and
reconstruction-related signals, and not survival-related latent
features.

Fig. 5. Enriched KEGG pathways for each hidden node of the third layer in our VAECox model trained using the BRCA dataset. The pathway enrichment test is conducted

using the correlation values between a vector of hidden node and a vector of gene expression value across all BRCA samples
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However, the encoder weights of the pre-trained VAE model
contain information related to cancer, which were obtained when
training our VAE model on the combined set of 20 gene expression
datasets. As mentioned above, our objective is to optimize our
VAECox model designed to predict the survival of cancer patients.
We can use the encoder weights as the initial weights for our
VAECox model and fine-tune the weights when training VAECox.
The performance of our VAECox model improved more when the
transferred encoder weights were fine-tuned compared to when the
weights of VAECox were randomly initialized. The performance of
VAECox was also higher when the transferred weights were fine-
tuned than when transferring the encoder weights that were not
fine-tuned. This indicates that the encoder weights of our pre-
trained VAE model are effective when the transferred weights are
used as the initial weights of our VAECox model and optimized to
predict patient survival. The optimization of the transferred
weights is required since the optimization enables the transferred
weights to have survival-related information. In other words, the
transfer-learning approach for customized weight initialization is
effective in training our VAECox model on cancer data. Previous
studies examined the importance of weight initialization (Dewa
et al., 2018; Hanin and Rolnick, 2018; Li et al., 2017; Sutskever
et al., 2013). The well-initialized weights can help a model learn
and improve its performance as it help escape the model trapped at
local optima, which is one of the main reasons for model
overfitting.

4.2 VAE as a pre-trained model
The main objective of the pre-training phase is to extract common
cancer knowledge on multiple heterogeneous cancer types. A simple
AE is prone to overfit on some features among various cancer char-
acteristics as it aims to perfectly reconstruct the given input data.
However, as a VAE is trained using the objective function based on
the reconstruction loss between a given input and a decoded output
based on a randomly sampled vector, it can learn robust features
among various cancer characteristics.

The main objective of the survival prediction phase is predicting
deterministic patient survival, not generating probabilistic samples.
The l vector from the mean encoder in VAE can be treated as pa-
tient representation signals while the r vector from the variance en-
coder in VAE can be treated as confidence signals aligned with the l
vector signals. We decided to transfer only the mean encoder
weights to VAECox since the patient representation may change due
to fine-tuning, depending on which type of cancer survival predic-
tion the patient representation is used in.

4.3 Cancer types where VAEcox did not outperform the

baseline model
Although our VAECox model did not outperform Cox-nnet on
three cancer types (BLCA, LUAD and LUSC) in terms of C-index,
our log-rank test results (Fig. 3) demonstrate that VAECox obtains
higher P-value than Cox-nnet in BLCA survival prediction. We
investigated why our VAECox model did not outperform Cox-nnet
in LUAD and LUSC survival predictions. Both LUAD and LUSC
are subtypes of non-small cell lung cancer (NSCLC). Among vari-
ous types of cancer, NSCLCs are known to have distinct and het-
erogeneous characteristics. Therefore, we believe that common
cancer characteristics extracted from samples of various cancer
types affected the relatively poor survival of the heterogeneous
LUAD and LUSC patients as the transferred knowledge acted as
noise.

The objective of this study is to demonstrate that our VAECox
model’s approach of using a VAE of multiple heterogeneous cancer
types and transfer learning is effective in improving the prediction of
patient survival. Even though VAECox does not outperform the
baseline model on all cancer types, we believe VAECox can be used
to complement other state-of-the-art survival analysis models, in-
stead of replacing them.

5 Conclusion

In this work, we introduced VAECox which is a deep-learning-
based survival prediction model. VAECox is a combination of a
VAE and a Cox-PH model. We trained the VAE on transcriptomics
data for 20 cancer types, and transferred the knowledge to cancer-
specific survival prediction models. We showed that our VAECox
model outperforms other baseline models on 7 cancer types among
10 cancer types, and extracted genes significant for patient survival
based on predicted risks. In addition, we investigated the effective-
ness of our VAE and discovered that the pre-trained encoder weights
help train our VAECox model to learn features that can be used for
patient survival prediction.

We believe that our VAECox model which can be used for can-
cer patient survival analysis can benefit researchers in various fields.
We also believe that this study which demonstrates the effectiveness
of transfer learning will aid researchers in other fields.

Despite of our efforts, overfitting still remains an obstacle.
When it comes to high-dimensional transcriptomics data, the
number of features still greatly exceeds the number of patient
samples. One of the alternative approaches to address this issue
is applying prior knowledge. Recent works have suggested taking
biological interactions between different genes or proteins into
consideration to develop more effective, robust models
(Dimitrakopoulos et al., 2018; Huang et al., 2019a). In future
works, we plan to utilize biological networks such as protein–
protein interactions to better represent the omics information of
cancer patients.
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