
Structural bioinformatics

A comprehensive benchmark of RNA–RNA

interaction prediction tools for

all domains of life

Sinan U�gur Umu1,2,* and Paul P. Gardner1,2,3

1School of Biological Sciences, 2Biomolecular Interaction Centre and 3Bio-Protection Research Centre, University

of Canterbury, Christchurch, New Zealand

*To whom correspondence should be addressed.

Associate Editor: Cenk Sahinalp

Received on January 20, 2016; revised on October 21, 2016; editorial decision November 13, 2016; accepted on November 13, 2016

Abstract

Motivation: The aim of this study is to assess the performance of RNA–RNA interaction prediction

tools for all domains of life.

Results: Minimum free energy (MFE) and alignment methods constitute most of the current RNA

interaction prediction algorithms. The MFE tools that include accessibility (i.e. RNAup, IntaRNA

and RNAplex) to the final predicted binding energy have better true positive rates (TPRs) with a

high positive predictive values (PPVs) in all datasets than other methods. They can also differenti-

ate almost half of the native interactions from background. The algorithms that include effects of in-

ternal binding energies to their model and alignment methods seem to have high TPR but relatively

low associated PPV compared to accessibility based methods.

Availability and Implementation: We shared our wrapper scripts and datasets at Github (github.-

com/UCanCompBio/RNA_Interactions_Benchmark). All parameters are documented for personal

use.

Contact: sinan.umu@pg.canterbury.ac.nz

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA biology has become more prominent after the discovery of non-

coding RNAs (ncRNAs) and their versatile functions (Ambros, 2004;

Barquist and Vogel, 2015; Kidner and Martienssen, 2005; Mattick,

2004; Mattick, 2009; Storz et al., 2011; Waters and Storz, 2009). The

versatility of RNA molecules has led to the idea of an ‘RNA world’

where RNA formed the first primitive life forms (Gilbert, 1986). The

importance of RNA biology is highlighted by the relatively small frac-

tion of protein-coding regions of most eukaryotic genomes (Mattick,

2004, 2009). For example, 1.2% of the human genome contain pro-

tein coding genes, while 76% is transcribed into RNA (Pennisi,

2012). Likewise, prokaryotic cells contain various ncRNAs genes

(Gottesman, 2004; Holmqvist and Vogel, 2013; Thébault et al.,

2014; Vogel, 2009) and have also been shown to have transcriptional

complexity like eukaryotes (Barquist and Vogel, 2015; Cohen et al.,

2016; Güell et al., 2011, 2009; Lindgreen et al., 2014). ncRNA mol-

ecules often utilize RNA–RNA base pairing such as bacterial/archaeal

small RNAs (sRNAs) (Prasse et al., 2013; Storz et al., 2011), small

interfering RNAs (siRNAs) (Carthew and Sontheimer, 2009),

microRNAs (miRNAs) (Carthew and Sontheimer, 2009; Cuperus

et al., 2011), spliceosomal small nuclear RNAs (snRNAs) (Karijolich

and Yu, 2010), small nucleolar RNAs (snoRNAs) (Brown et al.,

2001; Gardner et al., 2010; Kiss, 2002; Omer et al., 2000), cajal-body

specific small nuclear RNAs (scaRNAs) (Darzacq et al., 2002), clus-

tered regularly-interspaced short palindromic repeats (CRISPR) RNA

(Bhaya et al., 2011) and piwi-interacting RNAs (piRNAs) (Brennecke

et al., 2007; Klattenhoff and Theurkauf, 2008). It seems some long-

noncoding RNAs (lncRNAs) may also engage into RNA–RNA inter-

actions (Kung et al., 2013), which are quite abundant in eukaryotes

(Zhao et al., 2016).

VC The Author 2016. Published by Oxford University Press. 988

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 33(7), 2017, 988–996

doi: 10.1093/bioinformatics/btw728

Advance Access Publication Date: 30 December 2016

Original Paper

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw728/-/DC1
Deleted Text: <xref ref-type=
Deleted Text: ; Storz <italic>et<?A3B2 show $146#?>al.</italic>, 2011; <xref ref-type=
Deleted Text: &hx201D;
Deleted Text: &hx201D; 
Deleted Text: <xref ref-type=
Deleted Text: <xref ref-type=
Deleted Text: <xref ref-type=
Deleted Text: ; Cohen <italic>et<?A3B2 show $146#?>al.</italic>, 2016
Deleted Text: RNA-RNA
Deleted Text: ; Prasse <italic>et<?A3B2 show $146#?>al.</italic>, 2013
Deleted Text: Gardner <italic>et<?A3B2 show $146#?>al.</italic>, 2010; 
Deleted Text: ; Brennecke <italic>et<?A3B2 show $146#?>al.</italic>, 2007
Deleted Text: RNA-RNA
http://www.oxfordjournals.org/


In addition to endogenous ncRNAs genes, many experimental

techniques take advantage of RNA–RNA interactions such as gene

silencing (i.e. knock-out) by artificial siRNAs (Deleavey and

Damha, 2012; Reynolds et al., 2004) and designing oligonucleotides

for ribosomal RNA (rRNA) depletion in RNA-seq experiments

(O’Neil et al., 2013).

Different clades of life utilize regulatory RNA–RNA interactions

with different constraints: various mediator proteins (Carthew and

Sontheimer, 2009; Vogel and Luisi, 2011), binding regions prefer-

ence and distinct complementarity requirements (Ameres and

Zamore, 2013; Millar and Waterhouse, 2005). Thus, many different

tools have been developed to predict stable interactions. Some algo-

rithms solve RNA–RNA interaction as an alignment problem using

local alignment approaches (Hodas and Aalberts, 2004; Wenzel

et al., 2012). Most of these use dynamic programming and min-

imum free energy methods (MFE) (Backofen and Hess, 2010;

Dieterich and Stadler, 2012; Lorenz et al., 2011), which are also

widely used methods for RNA secondary structure predictions

(Markham and Zuker, 2008; McCaskill, 1990; Nussinov and

Jacobson, 1980; Zuker, 2000; Zuker and Sankoff, 1984; Zuker and

Stiegler, 1981). In bacteria, comparative methods are becoming

popular (Kery et al., 2014; Pain et al., 2015; Wright et al., 2013),

but they are restricted to conserved sRNAs, which are quite rare

(Barquist and Vogel, 2015; Lindgreen et al., 2014).

RNA target detection is still a challenging task but it is vital to

understand more about RNA–RNA interactions for functional an-

notation of unknown transcripts while making computationally

feasible and biologically relevant prediction. In this study, we as-

sessed the performance of available RNA–RNA interaction predic-

tion tools on trusted, verified datasets from all domains of life. We

evaluated their ability to recover established RNA–RNA pairs in eu-

karyotic, bacterial and archaeal systems. We also assessed how suc-

cessfully they predict binding scores and reported the significance of

these predictions.

2 Materials and methods

All RNA interaction prediction algorithms are freely available and

cited in the manuscript. We used Python, R, Bash for the scripts and

wrappers, which are shared in our Github repository (github.com/

UCanCompBio/RNA_Interactions_Benchmark). A parser script (or

a wrapper script) has been written for each of the tools bench-

marked here. All the parameters and command line arguments are

also accessible.

2.1 Benchmark datasets
We manually confirmed the correct interaction regions (which con-

tain the binding base-pairs) for all dataset items and used entire tar-

get regions (i.e. UTRs, coding regions or target RNA) to make our

benchmark as realistic as possible. We also manually confirmed that

the true binding regions on target RNAs are consecutive with only

few mismatches.

The eukaryotic benchmark dataset consisted of miRNAs from

human, Arabidopsis, Caenorhabditis elegans (C. elegans) (Chou

et al., 2015; Kozomara and Griffiths-Jones, 2013); C/D and H/ACA

box snoRNAs from human, Arabidopsis, C. elegans, yeast (Brown

et al., 2001; Lestrade and Weber, 2006; Piekna-Przybylska et al.,

2007; Yoshihama et al., 2013); human and yeast U6/U2 snRNAs

(Will and Lührmann, 2011); endogenous siRNAs from Arabidopsis

(Addo-Quaye et al., 2008) and piRNAs from mouse (Gou et al.,

2015). Experimentally verified miRNA/siRNA/piRNA-target

mRNAs and snoRNA/snRNA-target RNAs were selected from dif-

ferent ncRNA families as much as possible (in total 88 pairs)

(Supplementary Table S1).

We compiled a bacterial sRNA and target mRNA dataset from

Salmonella, Escherichia coli (E. coli) and Listeria monocytogenes

(L. monocytogenes) that consists of 60 verified sRNA-mRNA

pairs (Cao et al., 2010; Lai and Meyer, 2015; Peer and Margalit,

2011). The target regions of bacterial sRNAs lie either in 50UTR or

downstream of start codon (Richter and Backofen, 2012; Storz

et al., 2011). We selected regions 200 nucleotides (nts) upstream to

100 nts downstream of the start codons (i.e. 50end mRNA) which

contain verified binding regions. We extracted both sRNAs and tar-

get 50end mRNAs from their associated genome sequences

(Acces. AE006468.1, AL591824.1 and U00096.3) (Supplementary

Table S1).

We gathered a set of archaeal C/D box snoRNAs consisting of 5

snoRNAs and their ribosomal RNA targets (Omer et al., 2000). We

also added a member of less studied archaeal sRNA (from

Methanosarcina mazei) (J€ager et al., 2012). Selected genes and tar-

gets were obtained from their associated archaeal genomes

(AE008384.1) or Genbank (Supplementary Table S1).

2.2 Accuracy measures for binding site predictions
We calculated TPR (sensitivity) and PPV (precision) scores of each

algorithm based on prediction of RNA–RNA binding regions for

154 manually curated interactions from the scientific literature.

They include functionally characterized RNA–RNA interactions

from Archaea, Bacteria and Eukaryotes. Verified binding regions be-

tween ncRNAs and target RNAs are annotated with published base-

pairing interactions. These interactions can be used to assess over-

laps between predicted and true binding regions on target RNAs. In

this work, true positives (TPs) are the number of nucleotides on a

correctly predicted binding region, false positive (FPs) are the num-

ber of nucleotides in a falsely predicted binding region (i.e. a pre-

dicted target that is not part of the curated set of interactions), and

false negatives (FNs) are the number of nucleotides in a binding re-

gion where interactions are not predicted (Supplementary Fig. S1).

True negatives (TNs) are generally not used for the treatment of

RNA structure as the number of true negatives grows exponentially

with sequence length while TP, FP and FN grow linearly (Wenzel

et al., 2012). We can calculate an approximation to the Matthews

correlation coefficient (MCC) (Matthews, 1975) by using the geo-

metric mean of TPR and PPV (Gorodkin et al., 2001; Wenzel et al.,

2012). These can be defined as:

TPRðsensitivityÞ ¼ TP=ðTPþ FNÞ (1)

PPVðprecisionÞ ¼ TP=ðTPþ FPÞ (2)

MCC �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPR � PPV
p

(3)

2.3 A significance test for prediction scores
Besides these well-known accuracy measures, we also assessed the

scores generated by the algorithms, which usually show the stability

of interaction (e.g. a binding MFE). For each true and verified target

(positive control), we created 200 dinucleotide shuffled sequences

(negative controls) using the esl-shuffle tool (Eddy, 2011) to prevent

possible biases caused by the nearest-neighbour energy model of

structure prediction (Workman and Krogh, 1999). To determine the

significance of native interactions, we fitted the binding energies

shuffled interactions (as a background) into both normal and
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Gumbel distributions (using negative energies) (Gumbel, 1958),

since MFE values mostly follow an extreme value distribution

(Rehmsmeier et al., 2004; Tjaden, 2008). In short, we assessed sig-

nificance of positive controls using a set of negative controls. A simi-

lar methodology showed an avoidance of crosstalk RNA–RNA

interactions in prokaryotes which can be measured as a binding en-

ergy shift (Umu et al., 2016). We applied this approach only to bac-

terial dataset due to time constraints, and the uniform distribution

of bacterial targets (i.e. identical 300 nucleotides long target

mRNAs).

We selected the best scoring interaction as the native interaction

if an algorithm produces more than one interaction, which is also

true for all our analyses.

3 Results and discussion

3.1 RNA–RNA interaction prediction tools
The RNA–RNA interaction prediction methods are divided mainly

into three groups: alignment like methods, MFE methods and com-

parative (homology) methods. We can also further divide the MFE

methods into three different sub-classes based on whether their ap-

proach considers intramolecular base-pairs (internal structure), neg-

lects intramolecular structure or measures the accessibility of the

binding region. There are also other machine learning algorithms

(O�gul et al., 2011; Yang et al., 2008), and probabilistic approaches

like RactIP (Kato et al., 2010), which uses the CONTRAfold model

(Do et al., 2006) for RNA interaction prediction.

RIsearch (Wenzel et al., 2012), Bindigo (Hodas and Aalberts,

2004) and Guugle (Gerlach and Giegerich, 2006) are examples of

alignment-like methods. The RIsearch algorithm was mainly de-

veloped for rapidly searching genomes to detect RNA–RNA pairs

from genome sequencing data by combining the Smith-Waterman-

Gotoh algorithm with a nearest-neighbor energy model (Wenzel

et al., 2012), while Bindigo adopts an optimized Smith-Waterman

to find optimal oligonucleotide-RNA pairs (Hodas and Aalberts,

2004). Guugle uses suffix arrays to seek RNA targets based on RNA

helix rules that allow G-U pairs (Gerlach and Giegerich, 2006).

Besides these alignment based methods, tools like BLAST

(Altschul et al., 1990), Blat (Kent, 2002), ssearch (Pearson and

Lipman, 1988) or other local alignment implementations can be

used to rapidly collect long (reverse) complementary regions by

including G-U pairs (C-U or G-A for the reverse complement) in the

scoring matrix (Gerlach and Giegerich, 2006; Thébault et al., 2014;

Wenzel et al., 2012).

MFE methods form the majority of the RNA–RNA interaction

prediction tools (Backofen and Hess, 2010; Dieterich and Stadler,

2012; Lorenz et al., 2011). Many secondary structure prediction

tools also utilize MFE methods (Lorenz et al., 2011; Markham and

Zuker, 2008; Mathews and Turner, 2006; Zuker and Sankoff,

1984). Some MFE methods including RNAhybrid (Rehmsmeier

et al., 2004), RNAduplex (Lorenz et al., 2011), DuplexFold (Reuter

and Mathews, 2010) and TargetRNA (Tjaden, 2008) neglect intra-

molecular structures for the sake of algorithmic speed. Algorithms

like Pairfold (Andronescu et al., 2005), RNAcofold (Bernhart et al.,

2006) and bifold (Reuter and Mathews, 2010) take intramolecular

base-pairing into account. RNAup (Mückstein et al., 2006),

RNAplex (Tafer and Hofacker, 2008) and IntaRNA (Busch et al.,

2008) compute the accessibility of binding regions to report the final

MFE of the RNA duplex, which is considered more realistic bio-

physically (Richter and Backofen, 2012). AccessFold includes acces-

sibility using a method defined as pseudo-energy minimization

(DiChiacchio et al., 2015). BistaRNA also includes accessibility and

can predict multiple binding sites (Poolsap et al., 2011). Lastly, tools

like TargetRNA2 (Kery et al., 2014), CopraRNA (Wright et al.,

2013), miRanda (John et al., 2004), TargetScan (Lewis et al., 2005),

PETcofold (Seemann et al., 2011) and DIANA-microT (Kiriakidou

et al., 2004) exploit homology and evolutionary conservation to pre-

dict interactions

Some RNA–RNA interaction prediction tools are developed to

achieve a specific task or to predict very specific group of inter-

actions. For example, PLEXY is designed for C/D snoRNAs (Kehr

et al., 2011), RNAsnoop (Tafer et al., 2010) for H/ACA snoRNAs

and TargetRNA (Tjaden, 2008) for bacterial sRNAs (E. coli and

Salmonella). In this study, we tried to assess the versatility of predic-

tion tools on different datasets as well as their prediction power

where applicable. We excluded tools designed for specific RNA fam-

ilies such as specialized miRNA algorithms (reviewed in Witkos

et al., 2011), specialized snoRNA target prediction algorithms and

comparative bacterial sRNA prediction methods (reviewed in

Backofen and Hess, 2010, Pain et al., 2015). We also excluded

inteRNA (Alkan et al., 2006), IRIS (Pervouchine, 2004), piRNA

(Chitsaz et al., 2009b) and biRNA (Chitsaz et al., 2009a), as they

are either no longer supported or obsolete.

In summary, our final list of selected tools used for further ana-

lyses consisted of RIsearch (Wenzel et al., 2012), IntaRNA (Busch

et al., 2008), RNAcofold (Bernhart et al., 2006), RNAhybrid

(Rehmsmeier et al., 2004), RNAduplex (Lorenz et al., 2011),

RNAplex (Tafer and Hofacker, 2008), RNAup (Mückstein et al.,

2006), pairfold (Andronescu et al., 2005), bifold (Reuter and

Mathews, 2010), DuplexFold (Reuter and Mathews, 2010), ssearch

(Pearson, 1991), RactIP (Kato et al., 2010), bistaRNA (Poolsap

et al., 2011), AccessFold (DiChiacchio et al., 2015) and NUPACK

(Dirks et al., 2007) (Supplementary Table S2).

3.2 Overall prediction performances
Our analyses of the overall performances of RNA interaction predic-

tion algorithms show that three accessibility based algorithms

(RNAup, IntaRNA and RNAplex) scored highest for sensitivity and

precision. RNAup was highly precise compared to other tools

(Fig. 1 and Table 1). IntaRNA was the second algorithm (almost

identical to RNAup) with a reasonable running time. RNAplex was

comparable to both algorithms. RNAduplex had the best overall

TPR score, but it was not as precise as IntaRNA. Table 1 summar-

izes the ’cumulative’ TPR, PPV and MCC scores, while Figure 1

shows their distribution for all interactions (n¼154) on all domains

of life.

RIsearch and ssearch were the fastest methods, but they

were not very sensitive or precise (Table 1). AccessFold and bifold

had the longest run time, which appeared to increase for long

RNA sequences like ribosomal RNAs or large target UTR

regions. RIsearch and bifold gave inconsistent results, with com-

bined MCCs of 0.33 and 0.40 respectively (Table 1). However, if

we use a distribution of results as in Figure 1, the median MCCs ap-

pear to be zero for these algorithms. As bifold frequently returned

no duplex structures for some RNA pairs (e.g. C. elegans miRNAs

lin-4, lsy-6-3p, etc.), and RIsearch produced many unsuccessful pre-

dictions for bacterial sRNAs, which produced to zero MCC scores

for both.

3.3 The significance test results of bacterial dataset
The MFE values produced by the algorithms are not very explicit, so

it is common to use negative controls to determine the significance
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of predicted energy values (Rehmsmeier et al., 2004), especially for

structure predictions (Workman and Krogh, 1999). As described

in materials and methods, we created a set of negative controls

for each native RNA–RNA interaction. Some algorithms were

excluded from this assessment, because either they do not produce a

score (i.e. RactIP, bistaRNA and ssearch) or are biased towards in-

ternal structures (i.e. pairfold, RNAcofold, bifold and NUPACK).

Thus, the test of significance includes only 8 prediction algorithms

(Table 2).

These results show that RNAplex and RNAup reported almost

half of the native energies as significant if they are fitted to normal

distributions. It seems the Gumbel fitting of scores is more conserva-

tive which likely decreases the risk of FP predictions on high-

throughput predictions. RNAup results were almost identical for

both distributions. IntaRNA performed slightly worse than these

two algorithms. The last column of Table 2 shows the median rank

of native interactions. If a prediction score of a native interaction

has the highest score (e.g. lowest MFE), it is ranked 1 out of 201.

Therefore, the median ranks in the last column can be interpreted as

the expected number of FPs introduced by the algorithms before pre-

dicting the native interaction.

Table 1. Total run time of algorithms, and the cumulative TPR, PPV

and MCC scores

Algorithm Total run time (s) on TPR PPV MCC

selected files (n 5 50) (Sensitivity) (Precision)

AccessFold 596.44 0.38 0.31 0.35

bifold 404.63 0.37 0.31 0.34

bistaRNA 102.29 0.15 0.16 0.15

DuplexFold 5.33 0.48 0.17 0.29

IntaRNA 24.44 0.59 0.56 0.58

NUPACK 794.2 0.42 0.42 0.42

pairfold 90.24 0.39 0.29 0.34

ractIP 87.62 0.16 0.06 0.1

RIsearch 4.16 0.36 0.45 0.40

RNAcofold 15.28 0.41 0.32 0.36

RNAduplex 6.45 0.66 0.12 0.27

RNAhybrid 32.84 0.56 0.12 0.26

RNAplex 17.19 0.55 0.57 0.56

RNAup 137.48 0.51 0.69 0.60

ssearch 4.69 0.56 0.1 0.23

The cumulative scores (i.e. TPR, PPV, MCC) are calculated by adding indi-

vidual TP, FP and FN values for all predictions.

A

B

C

Fig. 1. The distribution of scores for RNA–RNA interaction prediction algorithms. (A) RNAduplex gave the highest median TPR (sensitivity) followed by IntaRNA.

(B) RNAup was the most precise algorithm based on PPV score followed by the other accessibility based methods IntaRNA and RNAplex. (C) RNAup was the best

prediction algorithm based on median MCC score, with IntaRNA and RNAplex giving similar scores. RactIP produced the worst overall MCC (Color version of this

figure is available at Bioinformatics online.)
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3.4 A summary of RNA–RNA interactions and algorithm

performances for all domains of life
Eukaryotic RNA interactions mostly focus on RNA interference

(RNAi) (i.e. miRNAs and siRNAs) (Ambros, 2004; Carthew and

Sontheimer, 2009; Chen, 2008). In animal RNAi, miRNAs (�20 nts

long) prefer perfect complementarity in the seed region and have

overall lower complementarity than plant counterparts (Ameres and

Zamore, 2013; Axtell et al., 2011). In plants, high complementary

target regions may lie in coding region as well as UTRs rather than

only 30UTRs (Ameres and Zamore, 2013; Axtell et al., 2011; Millar

and Waterhouse, 2005). It is possible for a miRNA to target more

than one region, especially in animals, which is known to increase

efficiency of target gene downregulation (Millar and Waterhouse,

2005). However, in our benchmark we preferred to select miRNA

targets containing a single designated binding region. Piwi associ-

ated piRNAs are also small endogenous RNAs (24–30 nts long)

(Klattenhoff and Theurkauf, 2008; Zhang et al., 2015), some of

which use antisense binding to regulate target RNAs (Gou et al.,

2015) like miRNA and siRNA. H/ACA and C/D snoRNAs have

roles in rRNA and snRNA maturation (Brown et al., 2001; Gardner

et al., 2010; Kiss, 2002). These interactions differ in that C/D

snoRNAs prefer a binding region on target RNA with consecutive

nts around 7–20 bases long with a few mismatches (Gardner et al.,

2010; Kehr et al., 2011), while H/ACA snoRNAs contain a stem

loop within the binding region, which complicates target prediction

(Gardner et al., 2010; Kiss et al., 2004; Tafer et al., 2010).

Spliceosomal snRNAs form ribonucleoprotein (RNP) complexes

with other snRNAs (Karijolich and Yu, 2010), and they are also tar-

geted by snoRNAs (termed scaRNAs) (Darzacq et al., 2002). We

included examples of both snRNA-snRNA and scaRNA-snRNA

interactions to our dataset. It is also known that some lncRNAs use

RNA–RNA interactions (Kung et al., 2013) but these were not

included in our benchmark.

We found that in the eukaryotic dataset, accessibility based

methods performed best based on the average MCC scores (except

AccessFold and bistaRNA) (Fig. 2). IntaRNA (av. MCC: 0.51)

slightly outperformed RNAup (av. MCC: 0.49) and produced a

higher PPV than the other tools benchmarked. RNAplex (av. MCC:

0.48) and RIsearch (av. MCC: 0.48) (an alignment-like method)

were also comparable with these two algorithms for eukaryotic

datasets. Supplementary Table S3 explicitly shows the prediction

scores for all 88 eukaryotic interactions.

Bacterial small RNAs can be divided into three major types: anti-

sense binding sRNAs, Hfq dependent sRNAs and csrA binding

sRNAs (Storz et al., 2011; Vogel, 2009). However, in this study,

bacterial sRNAs refer to either antisense or Hfq dependent sRNAs,

which achieve their role via RNA–RNA base-pairing interactions.

Bacterial sRNAs (50–200 nts long) prefer short binding regions rela-

tive to their size (Storz et al., 2011; Vogel, 2009). This was also true

for our dataset, with an average binding region size of 23 nts, with

the smallest just 7 nts long (Supplementary Table S1). Model bacter-

ial organisms like E. coli or Salmonella contain hundreds of different

sRNAs which points to a complex regulatory system in prokaryotic

organisms (Waters and Storz, 2009). Moreover, increasing number

of RNA-seq studies (Cohen et al., 2016; Sharma and Vogel, 2014;

Sharma et al., 2010) reveal that there are novel regulatory ncRNAs

are spanning in prokaryotes than previously anticipated (Barquist

and Vogel, 2015; Chen et al., 2016; Lindgreen et al., 2014).

We found that in the bacterial dataset, accessibility based meth-

ods performed better than the others based on the average MCC

scores, as with the eukaryotic dataset. RNAup (av. MCC: 0.68)

slightly outperformed IntaRNA (av. MCC: 0.65) in bacterial sRNA

interactions. RNAplex (av. MCC: 0.61) was comparable with the

other two algorithms. In bacterial dataset, RIsearch (av. MCC:

0.31) did not perform as well as on the eukaryotic dataset, which

decreased the overall performance (Fig. 2).

RNA interactions in archaea are not well characterized. Recent

studies have shown that archaeal genomes contain a large number

of ncRNA repositories similar to bacterial genomes (Lindgreen

et al., 2014). Unfortunately, there are not many verified RNA inter-

actions available in archaea, except archaeal snoRNAs. Archaeal

genomes mostly contain C/D box snoRNAs; thus, we added 5 C/D

box snoRNAs (Omer et al., 2000) and one archaeal sRNA (J€ager

et al., 2012) as an archaeal benchmark dataset. The archaeal sRNA

targets a bicistronic gene and trans-regulates expression of two pro-

tein coding genes concurrently (J€ager et al., 2012) (Figs 1 and 2 and

Supplementary Table S3).

We found that in the archaeal dataset, RNAplex (av. 0.65) per-

formed better than the other algorithms, followed by IntaRNA (av.

MCC: 0.61). These two algorithms were followed by RNAup

(av. MCC: 0.53) and RIsearch (av. MCC: 0.40). RIsearch was better

on snoRNA predictions than the single archeal sRNA, which

reduced the average overall performance. RNAplex recovered the

binding region with a perfect MCC score, followed by IntaRNA.

3.5 Limitations of RNA–RNA interaction predictions

algorithms
Unfortunately, 15 out of 154 RNA interaction pairs in our bench-

mark dataset could not be correctly predicted by any of the algo-

rithms (i.e. an MCC score of 0 for all algorithms) (Fig. 2 and

Supplementary Table S3) including 6 human miRNAs, and

snoRNAs from yeast, human and archaea. The mouse piRNA re-

sults were also unsatisfactory, and one (piR-013474) could not be

detected by any of the algorithms. The algorithms benchmarked per-

formed best on Arabidopsis miRNAs, siRNAs and bacterial sRNAs

(Fig. 2).

We applied the significance test to some of these failed eukary-

otic interactions (e.g. mouse piRNAs, human miRNAs), aiming to

see whether the predicted scores enabled the detection of true inter-

actions (and separate scores for native interactions from back-

ground) rather than using correctly predicted binding regions. The

comparison of two methods revealed consistent results as expected.

For example, the native interaction of piR-013474 cannot be differ-

entiated from background by any algorithm. This is also similar for

Table 2. The test of significance results of selected algorithms on

bacterial sRNAs.

Algorithm Total # of significant

(P < 0.05) correct

predictions for Gumbel

dist. (n ¼ 60)

Total # of significant

(P < 0.05) correct

predictions for

normal dist. (n ¼ 60)

Median rank

of native

interactions

AccessFold 15 17 41.75

DuplexFold 2 8 63.5

IntaRNA 23 26 19

RIsearch 13 14 52.25

RNAduplex 8 11 54.25

RNAhybrid 5 6 76

RNAplex 23 30 10.5

RNAup 28 29 13.5

Higher is better for the second and third columns. Lower is better for the

fourth column.
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other piRNAs and human miRNAs, where all algorithms consist-

ently failed.

The lengths of target RNA regions (which include binding re-

gions) seem to influence prediction quality (also discussed by Lai and

Meyer, 2015). The average length of a eukaryotic target RNA is

1690 nts long in our dataset. However, this rises to around 2400 nts

for those miRNAs which did not give prediction scores, and longer in

piRNAs. As described in materials and methods, we did not truncate

the targets (e.g. UTRs) that contained binding regions. We found a

significant reverse correlation (Pearson’s r¼ -0.28, p < 0.05) between

the lengths of target RNAs and average MCCs (i.e. overall perform-

ances). However, some of the algorithms (RNAup, RNAplex,

RIsearch, RNAcofold and NUPACK) are less prone to this length

bias (p > 0.05) (Supplementary Table S4), making them ideal for use

on untruncated targets.

Another explanation for inadequate prediction may be the qual-

ity of the dataset. Not all experimental protocols are equally strong

at detecting correct binding regions, functional characterization or

identifying new targets (Chou et al., 2015; Kuhn et al., 2008;

Thomson et al., 2011; Vogel and Wagner, 2007). However, the in-

correctly predicted human miRNAs (hsa-miR-21-5p, hsa-miR-29b-

3p, etc.) were validated by relatively strong evidence (Chou et al.,

2015), which could rule out this explanation.

RNA structure prediction (and also RNA–RNA interaction pre-

diction) algorithms are based on biophysical assumptions where the

influence of tertiary interactions and other factors are neglected

(Mathews, 2006; Mathews and Turner, 2006; Wuchty et al., 1999).

RNA structures with the lowest free energy may not be the biologic-

ally active form, which may have multiple different conformations

with different MFEs (Mathews, 2006; Mathews and Turner, 2006).

Many algorithms ignore computationally expensive RNA structures

(e.g. pseudoknots) (Do et al., 2006; Hofacker et al., 1994; Lorenz

et al., 2011). MFE methods also become inaccurate with longer

RNA sequences (Lai and Meyer, 2015; Lange et al., 2012; Mathews

and Turner, 2006; Meyer, 2008). RNA interaction prediction algo-

rithms generally do not consider multiple binding regions—only a

few of which such as bistaRNA and ractIP, include multiple binding

positions in their model (Kato et al., 2010; Poolsap et al., 2011).

Cellular dynamics (i.e. interaction with other molecules, ion concen-

trations, etc.) can influence RNA structures (Onoa and Tinoco,

2004) and RNA interactions (Meyer, 2008; Mückstein et al., 2006),

which is hard to factor into prediction models.

The ssearch tool uses the Smith-Waterman algorithm (Pearson

and Lipman, 1988) and is the only pure alignment tool in our bench-

mark, although it is possible to use similar tools, such as BLAST or

Blat, to extract complementary regions for high-throughput predic-

tions. Once the gap penalty and scoring matrix parameters were

tweaked to make it more suitable for RNA–RNA interaction predic-

tion, ssearch was quite successful and even comparable with some

MFE methods (e.g. RNAhybrid and DuplexFold) (Fig. 1).

Fig. 2. This heatmap shows MCC values of each tool for entire dataset. The red cells display a higher MCC value denoting a better prediction. Similar methods

are mostly clustered together based on these predictions (dendrogram at top). Row labels show the type of interactions. Predictions for the single archaeal sRNA

are on the last row. An in depth examination of these results show that the algorithms are poor at predicting human miRNA-mRNA interactions (av. MCC: 0.22),

snoRNAs (weaker for H/ACA as expected, av. MCC: 0.09), mouse piRNAs (av. MCC: 0.07). Conversely, they perform best on Arabidopsis miRNAs (av. MCC: 0.72),

siRNAs (av. MCC: 0.71) and bacterial sRNAs (av. MCC: 0.40), which is most likely an effect of high complementarity in binding regions for these
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Those MFE methods that include internal structures (e.g. pair-

fold, RNAcofold, bifold, NUPACK) are biased towards internal

structures as many ncRNAs have stable internal structures (Clote

et al., 2005). Therefore, using negative controls may lead to false

significant predictions due to internal structures of interacting part-

ners, giving misleading MFE scores. We also observed this effect in

our predictions (data not shown), and so excluded those algorithms

from the significance test. They also have relatively slow running

times, and some have problems utilizing memory (e.g. bifold).

NUPACK is the best among this type of prediction methods and

RNAcofold is the fastest (Table 1).

It is apparent that the algorithms do not necessarily perform

equally for all types of RNA–RNA interactions, and it is better to se-

lect algorithms appropriate to the input dataset. For example,

RIsearch is fast and accurate for eukaryotic datasets, and would be

suitable for high throughput predictions which can be combined

statistical significance testing of the predicted scores. IntaRNA and

RNAplex seem to be reliable and relatively fast for all datasets.

RNAup is precise and less prone to length bias (Supplementary

Table S4).

4 Conclusion

Here we present one of the most comprehensive benchmark of

RNA–RNA interaction prediction methods that covers almost all

RNA–RNA interactions in RNA biology. We extended the previous

work (Lai and Meyer, 2015; Pain et al., 2015) by including all types

of RNA–RNA interactions and the latest algorithms (DiChiacchio

et al., 2015) in the RNA interaction prediction field. We have

included a test to determine the statistical significance of the pre-

dicted scores by each algorithm. We have also reported that increas-

ing length of target RNAs which contain binding regions also

negatively influences overall prediction quality (Supplementary

Table S4).

Three accessibility based algorithms, RNAup, IntaRNA and

RNAplex, performed best for all types of interactions. We found

that the accessibility based MFE methods could also differentiate al-

most half of the native interactions from background in our bacter-

ial dataset (Table 2). Therefore, carefully designed negative controls

(e.g. dinucleotide shuffling) allow for the use of predicted MFE val-

ues and separate scores for native interactions from the background.

This makes the accessibility algorithms ideal tools for de novo pre-

dictions, especially those with smaller run-times such as IntaRNA

and RNAplex, since candidate target RNAs can be thousands of nts

long. RNAplex is also effective on detecting correct interaction re-

gions buried in larger RNA targets (Results and Supplementary

Table S4).

RNA interaction prediction is still an expanding field. Advances

in sequencing technology has unveiled a vast number of novel

uncharacterized ncRNA transcripts in different clades of life. These

methods are also showing that many ncRNAs utilize RNA–RNA

interactions (Kudla et al., 2011; Lu et al., 2016; Sharma et al., 2016)

which makes RNA target prediction an important asset to determine

functions of novel genes. Comparative methods are becoming popu-

lar (Lai and Meyer, 2015; Pain et al., 2015; Seemann et al., 2011;

Wright et al., 2013), and may increase the prediction accuracy (Pain

et al., 2015; Wright et al., 2013). However, some other results sug-

gest that there is little to be gained from comparative approaches for

predicting interactions (Lai and Meyer, 2015; Richter and Backofen,

2012) due to low conservation of many ncRNAs (Lindgreen et al.,

2014). Unfortunately, most of the verified interactions in the RNA

literature still belong to model species (human, C. elegans,

Arabidopsis and E. coli, etc.) which also raises the risk of overfitting

results to a modest numbers of known interactions. Weak prediction

rates for piRNAs may suggest inadequacy of prediction methods for

novel regulatory RNAs, but even well-known miRNA interaction

predictions have failed to be detected by any of the algorithms

benchmarked (Fig. 2). Archaeal regulatory systems are also not well

studied, and only a handful of archaeal sRNAs have been identified.

Therefore, non-comparative methods are still a robust way to

produce ab initio interaction predictions. Our benchmark will help

researchers to find an appropriate algorithm for functional annota-

tion of unknown transcripts or a basis from which to improve or

develop new methods. Our scripts and datasets are publicly avail-

able at Github (github.com/UCanCompBio/RNA_Interactions_

Benchmark).
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