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Abstract: Soft sensors based on deep learning have been growing in industrial process applications,
inferring hard-to-measure but crucial quality-related variables. However, applications may present
strong non-linearity, dynamicity, and a lack of labeled data. To deal with the above-cited problems,
the extraction of relevant features is becoming a field of interest in soft-sensing. A novel deep
representative learning soft-sensor modeling approach is proposed based on stacked autoencoder
(SAE), mutual information (MI), and long-short term memory (LSTM). SAE is trained layer by
layer with MI evaluation performed between extracted features and targeted output to evaluate the
relevance of learned representation in each layer. This approach highlights relevant information and
eliminates irrelevant information from the current layer. Thus, deep output-related representative
features are retrieved. In the supervised fine-tuning stage, an LSTM is coupled to the tail of the SAE
to address system inherent dynamic behavior. Also, a k-fold cross-validation ensemble strategy is
applied to enhance the soft-sensor reliability. Two real-world industrial non-linear processes are
employed to evaluate the proposed method performance. The obtained results show improved
prediction performance in comparison to other traditional and state-of-art methods. Compared to
the other methods, the proposed model can generate more than 38.6% and 39.4% improvement of
RMSE for the two analyzed industrial cases.

Keywords: soft sensors; deep learning; stacked autoencoders; mutual information; LSTM

1. Introduction

Several hardware sensors supply data for monitoring and control process optimization
in industrial production processes [1]. However, traditional sensors cannot measure a
category of key variables, such as concentrations, melt index, and octane number, in real-
time. Laboratory analysis and online analyzers present measurement delays and high
cost, then they do not fulfill increasing industrial requirements [2]. Data-driven models
named soft sensors have been developed as a successful alternative to the above-mentioned
issue [3]. Basically, soft-sensing uses secondary variables (i.e., easy-to-measure variables)
to estimate primary variables (i.e., hard-to-measure variables) [4,5]. Countless soft sensors
have been designed using traditional methods: principal component regression (PCR) [6,7],
partial least square (PLS) [8,9], support vector machine (SVM) [10,11], gaussian process
regression (GPR) [12,13], artificial neural network (ANN) [14,15], and so on.

As mentioned before, measuring quality-related variables requires large intervals, and
it can be a high-cost procedure. In this particular case, the labeled data is minimal, while
the unlabeled data samples are abundant and easily obtained. Traditional methods require
labeled data for training only. However, building models with a limited amount of labeled
data demonstrates unsatisfying performance [16]. In such a case, semi-supervised methods
present a viable alternative using labeled and unlabeled samples for soft-sensing [17–19].
The extensive volume of unlabeled data stores latent information, and when it is extracted
and applied adequately, it can reveal meaningful features about the process data. As a
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consequence, model reliability enhances, and prediction performance improves. Therefore,
a soft-sensing key factor is the feature representation of process data.

In recent years, deep learning-based models have demonstrated solid representa-
tion proficiency and succeeded in many computer science fields with innovative results
included image processing, natural language processing, speech recognition, computer
vision, etc. [20–22]. Among the most extensively used deep networks architectures are
stacked autoencoder (SAE) [23,24], deep belief network (DBN) [25,26], convolutional neural
network (CNN) [26,27] and long short-term memory (LSTM) [28,29]. For deep learning
structures such as SAE, the greedy layer-wise unsupervised pre-training and supervised
fine-tuning are very significant. The SAE weights are computed by the unsupervised
pre-training are applied for the fine-tuning supervised stage, which is a more effective
strategy than random weight initialization [30]. For this reason, several industrial case-
applied soft sensors have been proposed based on SAE [30–37]. The cited-above successful
applications of SAE-based deep learning demonstrate a strong ability for feature extrac-
tion. The unsupervised layer-wise pre-training and supervised fine-tuning procedures
allow deep structures to outperform the prediction performance of traditional techniques
for soft-sensing.

Based on the hypothesis of static process and steady state, proposed industrial soft
sensors are static models. However, the dynamicity of industrial processes, which is always
present, cannot be overlooked. For example, chemical processes are highly dynamic with
the current state related to previous stages. Thus, time-related features of time-series
recorded data matters.

The recurrent neural networks (RNN), specifically the LSTM, are suitable for time-
series processing since its structure uses past-state information to set the present state.
Regarding soft-sensing, LSTM is appropriate to handle industrial process dynamics by
considering the previous condition to compute the current state and preserving high ca-
pability for assimilating inherent non-linearity of the process [38,39]. Recently, industrial
scenarios are the study-case for soft-sensing based on LSTM. In [40,41], authors proposed
soft sensors based on LSTM for quality prediction in wastewater treatment plants. More-
over, LSTM-based soft sensors to estimate key quality variables in the fermentation process
and debutanizer column [42]. Also, proposed LSTM soft-sensor models for predicting
boiling points of heavy naphtha and aviation kerosene in [43]. However, those works do
not use unlabeled samples for unsupervised pre-training, which may cause poor feature
representation. In [44,45], the researchers proposed structures that merged unsupervised
hidden features mining and supervised dynamic modeling. A denoising autoencoder
(DAE) extracts meaningful features that serve as inputs for an LSTM soft-sensor applied to
Fluid Catalytic Cracking (FCC) unit [44]. Also, in [45], an Xgboost is used to select features,
acting as an encoder to feed a soft-sensor based on LSTM that extracts dynamic information
hidden in-process data. However, for soft-sensing, the extracted representations must
be related to the target-output variables. Otherwise, the overall soft-sensing prediction
performance does not enhance.

In this work, a novel semi-supervised soft-sensing approach based on deep relevant
representation learning is proposed to cope with all the above-cited problems. Mutual
information (MI), SAE, and LSTM integrate the proposed method named MISAEL. In
the unsupervised pre-training phase, SAE is trained layer-by-layer using all available
unlabeled and labeled data. After each layer training, MI analysis evaluates the learned
representations by calculating a correlation coefficient between target-output and the
current-layer output. This strategy eliminates irrelevant information, and the current
layer retains representative information only. The process repeats itself until the last SAE
layer, modeling an SAE structure with target-output-related representations only. Thus,
the first stage of the proposal exploits the unlabeled data by extracting deeply hidden
features, and then MI highlights the most relevant learned representations for soft-sensing
purposes. Representative features are one of the main factors for industrial soft-sensor
modeling. However, the SAE may not represent the inherent spatial-temporal dynamicity
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of the industrial process adequately. To accomplish such a task is necessary to model the
time dynamic behavior for the final prediction. In the supervised fine-tuning phase, an
LSTM couples to the last SAE layer. The entire deep architecture composed of pretrained
MI-based SAE and the LSTM is trained using the labeled data. The proposed method
allows MISAEL to extract hidden features and select the most relevant representations
adaptively, also handle dynamic behavior properly. Therefore, the integrated in-depth
learning-based approach can improve industrial soft-sensor prediction performance, refine
robustness, and enhance reliability. The main contributions of this research are as follow:

1. A novel semi-supervised soft-sensor modeling based on deep representative learning
is proposed to enhance soft-sensing prediction performance. The proposed method
can be applied to soft sensors under scarce labeled data, high non-linearity, and
dynamic behavior.

2. A deep representative learning method extracts high-level features from unlabeled
data and then eliminates non-relevant representations and highlights relevant infor-
mation for efficient soft-sensing development.

3. MI analysis evaluates the relation among targeted-output variables and an SAE model
representations in a layer-by-layer manner. Thus, the pretrained deep architecture is
more suitable and reliable for soft-sensing.

4. An LSTM model couples to the pretrained SAE to address the inherent dynamic
features of the process. A soft-sensor specifically trained to handle systems dynamic
outperforms other traditional and enhanced-SAE-based methods.

The above-mentioned contributions have been demonstrated acceptable and success-
ful for soft-sensing by using two industrial plant study cases, a debutanizer column, and
a sulfur recovery unit process. The rest of this paper is arranged as follows. In Section 2,
preliminaries are described. Section 3 gives the details of the proposed approach, integrat-
ing the SAE, MI evaluation, and LSTM modeling. Industrial process case studies are used
to evaluate the proposed method performance, and the results are present in Section 4.
Finally, Section 5 summarizes the conclusions of the work.

2. Preliminares
2.1. Stacked Autoencoders

The autoencoders (AE) represent a network formed by three layers: an input layer,
hidden layer, and output layer as Figure 1 describes. Although the encoder identifies
low-dimensional features from the input data, the decoder exploits the extracted hidden
features to rebuild the input data. An AE learns valuable features from data restoring input
data as similar to the original input.

Figure 1. Basic AE schematic.
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The encoder computes input x = [x1, x2, · · · , xn]T ∈ Rn and maps it into a low-
dimensional hidden features h = [h1, h2, · · · , hm]T ∈ Rm. In addition, the decoder pro-
cesses the obtained hidden features to approximate the input data. Equations (1) and (2)
describes the cited operations:

h = f (Wex + be), (1)

x̂ = g(Wdh + bd), (2)

where We ∈ Rn×m, be ∈ Rm, Wd ∈ Rm×n and be ∈ Rn are weight matrices and bias of
the encoder and decoder, respectively. Terms f and g are the commonly used activation
functions sigmoide or ReLU [46].

Normally, mean square error (MSE) between x and x̂ is the loss function in the training
of AE as Equation (3) demonstrates. The parameters set (We, be, Wd, bd) is used to minimize
the reconstruction error.

JAE =
1
m

m

∑
i=1

(
1
2
‖x̂i − xi‖2

)
(3)

Furthermore, this work applies two strategies to enhance the overall AE performance.
A weight of decay to avoid overfitting [34], and sparse restriction regularization to penalize
hidden units with high activating ratio [47]. Equations (4) and (5) show both regularization
techniques. In Equation (4), λ is the component to regulate JWD and ul indicates layer
l units. Also, in Equation (5), β is the adjustment parameter, m is hidden layer units, ρ
is the wanted activatin ratio, and ρj is the average activation value for the j-th hidden
layer neuron.

JWD =
λ

2

2

∑
l=1

ul

∑
i=1

ul+1

∑
j=1

(wji)
2, (4)

JSR = β
m

∑
j

ρ log
ρ

ρj
+ (1− ρ) log

1− ρ

1− ρj
. (5)

The reconstruction loss function including the regularization parameters JWD and JSR
are given as follows:

JAE = JAE + JWD + JSR (6)

A deep structure able to learn high-level features is conceived by stacking several AE,
and thus each AE is an SAE layer. As shown in Figure 2, the stacked autoencoder (SAE)
uses the previous layer output to feed the next layer input. Two stages compose the SAE
training, unsupervised pre-training and supervised fine-tuning. In the unsupervised phase,
the pre-training layer-by-layer minimizes the reconstruction loss function Equation (6). In
contrast, the supervised fine-tuning optimize all SAE parameters through prediction error
minimization [48,49].

Figure 2. Stacked Autoencoders schematic diagram.

SAE uses unlabeled and labeled samples to implement semi-supervised soft sensors,
but not necessarily the network learned meaningful representations for soft-sensing quality
variables. Traditionally, unsupervised pre-training disregards target-output data, which
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may lead to irrelevant learned features for the prediction task [50]. The unimportant
information distributed all over the layers can degrade prediction performance even after
a successfully fine-tuning. Hence, the elimination of irrelevant representations in the
pre-training stage can improve soft-sensing efficiency.

2.2. Mutual Information

Mutual Information (MI) evaluates the correlation between two random variables
regarding entropy quantitatively [51,52]. MI describes the linear, periodic, or non-linear
relationship among arbitrary variables, and thus it is more comprehensive than traditional
methods such as correlation coefficient [53].

The MI between two given random variables X and Y is defined as follows [51]:

MI(x, y) =
∫∫

x,y
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy, (7)

where p(x) and p(y) represent the marginal probability distributions, and p(x, y) is the
joint probability distribution between x and y. Moreover, Shannon entropy of a random
variable x is described as H(x) [51]:

H(x) = −
∫

x
p(x) log p(x)dx. (8)

Then, Equation (7) becomes the following:

MI(x, y) = H(x) + H(y)− H(x, y), (9)

where H(x, y) corresponds to the joint entropy between the variables x and y. H(x, y) is
computed as follows [51]:

H(x, y) = −
∫∫

x,y
p(x, y) log(p(x, y))dxdy. (10)

According to the equations above, estimating the probability density functions (PDFs)
is necessary to compute MI values. Both parametric and non-parametric procedures can
calculate the PDFs, but the PDF estimation is not a simple task in practical applications [54].
K-nearest neighbor (K-NN) non-parametric method to calculate MI was proposed in [51].
Through the above-cited technique, calculation complexity of MI decreases since it relies
upon the given data only. Hence, this work adopts the (K-NN) method for MI calculation.

2.3. Long-Short Term Memory

Long-Short Term Memory (LSTM) is an improved version of RNNs which replaces
hidden neurons for LSTM units. LSTM unit is named memory cell ct, which is the core
of LSTM and retains previous time-step information. Three gate structures compose the
LSTM unit, namely input gate, forget gate, and output gate. The gates capture both
short-term and long-term memory and control the portion of information to keep or
relieve in the subsequent time step. Beyond preserving RNN advantages, LSTM proves
enhanced performance when dealing with time-series. Thus, LSTM has modeled time-
series applications to handle non-linear dynamics lately.

The Figure 3 illustrates a detailed LSTM cell, which present three gate controllers
namely the input it, forget ft, and output ot gates. The three gates decide the information
that should be remembered or not, and σ represent their activation function. For the basic
LSTM unit in Figure 3, external inputs are the input vector x, previous hidden state ht−1,
and previous cell state ct−1. An intermediate state ĉt is generated inside the LSTM, which
is part of computation of the current cell state ct. The LSTM model aims to obtain a latent
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variable ht to provide valuable dynamic information. To cope with this issue, LSTM gates
are developed. The input gate it of the LSTM cell is given as follows:

it = σ(Wxixt + Whiht−1 + bi), (11)

where σ is the sigmoid activation function, xt is the input vector and ht−1 represents
previous state latent variables. The Wxi, Whi are the weighting matrices for xt and ht−1 in
the input gate, respectively. Finally, bi is the bias. In addition, tanh activation function
defines an intermediate state c̃t to gather important fraction of the input as follows:

c̃t = tanh(Wxcxt + Whcht−1 + bc), (12)

where Wxc, Whc are the weighting matrices and bc is the bias. Furthermore, the forget gate
defines whether the long-term memory from previous cell remains or not as follows:

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
, (13)

where Wx f , Wh f are the weighting matrices and b f represents the bias. Therefore, the cell
state ct aggregates long-term memory retained information and weighted input. The ct is
defined as:

ct = ft � ct−1 + it � c̃t, (14)

where ct−1 is the previous cell state, and � denotes pointwise multiplication. Moreover,
the output gate connects hidden latent state and cell state to establish a relation between
them. The output gate is denoted as:

õt = tanh(Wxoxt + Whoht−1 + bo), (15)

where Wxo, Who are the weighting matrices and bo points the bias. The pointwise multipli-
cation between ct and ot formulates the current hidden latent state ht as follows:

ht = ot � tanh(ct). (16)

LSTM Cell 

Figure 3. LSTM Cell schematic.

Finally, the estimated output ŷt is given on the basis of hidden latent state as:

ŷt = σ
(
Wyht + by

)
, (17)

where Wy represents the weighting matrix and by denotes the output bias.
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In summary, the Equations (11)–(17) demonstrate the LSTM forward pass network.
LSTM can describe temporal dynamic behavior, which turns LSTM suitable for non-linear
dynamic soft-sensing modeling. Moreover, LSTM better handle the vanishing gradient
problem over the backpropagation through time (BPTT) iterations. Further details about
BPTT are found in [55].

3. The Proposed MISAEL Method

This section details the concept and design of the MISAEL-based soft-sensor step-
by-step. The unsupervised pre-training phase implements an MI-based layer-by-layer
SAE, which learns relevant information and eliminates irrelevant representations. In the
supervised fine-tuning, an LSTM structure couples to the MI-based SAE. The LSTM can
learn the non-linear dynamic behavior of the process regarding its potential in dealing with
time-series problems.

3.1. Data Preprocessing

Data preprocessing normalizes all collected data {X, Y} to a [0, 1] range, which gives
more stability to the model. The dataset is split into two groups: unlabeled {XU} and
labeled {XL, Y} data with ratios of 90% and 10%, respectively. This ratio difference aims
to emulate process situations where labeled data is scarce but unlabeled abundant. The
unsupervised pre-training uses only unlabeled data to reconstruct input and then induces
the model to extract rich hidden features from this non-labeled data. Also, the pre-training
stage uses 10% of unlabeled data for model validation.

The labeled data {XL, Y} is distributed into 3 subsets: {XL, Y}Tr training set, {XL, Y}V
validation set, and {XL, Y}Te testing set, with ratios of 40%, 10%, and 50%, respectively.
Supervised fine-tuning uses the three labeled subsets to train and test the entire deep
architecture MISAEL.

3.2. Unsupervised Pre-training: MI-Based SAE

The reconstruction of input data at the output layer is the main objective of a common
AE. Through the minimization of the loss function in Equation (6), AE learns represen-
tations layer-by-layer. To reconstruct the inputs, all samples in the dataset are equally
considerable for regular applications. For soft-sensing, instead, not all variables are simi-
larly relevant to construct AEs with meaningful representations. Regarding the inference
of target-output values, non-relevant information can disturb predictions since they are
present in each AE layer and interfere in the final output.

This work employs MI to evaluate representations to cope with the above-cited issue.
The Equation (7) calculates the MI among each variable and targeted outputs. When the
calculated MI is smaller than a threshold value, the processed variable xi is not relevant
as follows:

MI(xi, y) ≤ th, (18)

where th is the threshold value. The th is the minimum relevance required to pass a variable
or remove it when its MI is less than th. A MI value between an arbitrary signal, which is
unrelated to the targeted output, and the target-output variables determine the th.

The MISAEL unsupervised pre-training can be divided into steps as follows:

Step 1. The first step is the calculation of an effectual MI threshold value. A 1000 ran-
dom vectors are generated under an uniform distribution with values range
of [0, 1]. MI analysis between the generated arbitrary vectors and the targeted
output is performed. MI values are sorted in descending order, and the
50th value indicates the threshold th value. Therefore, MI analysis obtains a
confidence level of 95% when the MI value is higher than th. In the proposed
method, th is not adaptive, and its value does not change during the entire
training process.

Step 2. By using the labeled training dataset {XL, Y}Tr, MI analysis indicates the
relevance of all process variables. The procedure eliminates irrelevant vari-
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ables to use only preserved variables in the training of the first AE. Retained
unlabeled variables xR = {XU

r } are used to train the first AE as follows:

h1 = f
(

W1xR + b1

)
(19)

where h1 is the hidden representation of the first AE. According to Equation (6)
the first AE is trained.

Step 3. As hidden representations of first AE h1 are computed, MI evaluation is
performed to remove irrelevant representations and retain important infor-
mation only. By using {XL}Tr, hidden representations hL

1 are calculated to
perform MI analysis. The MI between each hL

1 representation and the cor-
responding target-output {Y}Tr is evaluated: MI

(
hL

1 , Y
)
≤ th. According

to MI values, the procedure wipes out the respective lines of data in the
weighting matrix W1 and bias b1 that corresponds to non-relevant hidden
representations, generating a new parameters set {WR

1 , bR
1 } . Then unim-

portant representations are eliminated while meaningful representations are
kept and used as input of the second AE.

Step 4. By reiterating the procedure in the previous step over the L stacked AE,
high-level representative information is obtained over all the deep structure.

hL = f
(

WLhR
(L−1) + bL

)
(20)

where hL is the hidden representation of the L-th AE, WL, bL are parameters
set of AE-L, and hR

L−1 the retained representations of the AE-(L-1). A set
of optimized parameters {WR

1 , bR
1 , · · · , WR

L , bR
L} is acquired. Therefore, this

procedure implements an MI-based SAE with soft-sensing relevant represen-
tations only.

The presented model removes non-relevant information present in the parameters set,
and as a result, it emphasizes pertinent representations regarding soft-sensor operation.
The Figure 4 illustrates the described process. Hence, the model can predict outputs with
better performance and improved reliability.

Figure 4. MI-base relevant representation approach.
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3.3. Supervised Fine-Tuning: MI-SAE-LSTM

The L-th layer of the designed MI-based SAE corresponds to high-level relevant
extracted features after the pre-training stage. However, the model may not learn the
inherent dynamic behavior of the system even after the supervised fine-tuning phase. An
LSTM is coupled to an MI-based SAE structure to accomplish the supervised fine-tuning
and obtain a soft-sensor capable of dealing with real application dynamicity. The LSTM
inputs are the meaningful features present in MI-SAE top layer. Moreover, before the
fine-tuning phase begins, a k-fold cross-validation strategy is applied.

The supervised fine-tuning stage is split into steps as follows:

Step 1. The relevant parameters set {WR
1 , bR

1 , · · · , WR
L , bR

L} obtained in the unsuper-
vised pre-training initializes the SAE model for the supervised fine-tuning.
As a result, at layer L, high-level relevant extracted features Φ constitute the
output the SAE and then the input of the next coupled structure.

Step 2. An LSTM model is coupled to the L-th layer of the SAE to address the process
dynamics. Thus, supervised fine-tuning is performed in the entire estab-
lished deep architecture. As the SAE feeds the LSTM, the Equations (11)–(13)
and (15) are updated as follows:

it = σ(WxiΦ + Whiht−1 + bi), (21)

c̃t = tanh(WxcΦ + Whcht−1 + bc), (22)

ft = σ
(

Wx f Φ + Wh f ht−1 + b f

)
, (23)

õt = tanh(WxoΦ + Whoht−1 + bo). (24)

Step 3. The k-fold cross-validation uses the training set {XL, Y}Tr to generate k
subsets randomly. One of the k subsets composes the validation set, and the
remaining k−1 subsets train the deep model. This procedure is then repeated
k times with each of the k subsets used exactly once as the validation set.

Step 4. The previous step generated k MISAEL candidate deep models to compose
the soft-sensor. The output of each candidate model ŷi is correspondingly
weighted to compute ensemble prediction of MISAEL ŷ.

ŷ =
1
k

k

∑
i=1

ŷi, (25)

where k is the number of generated MISAEL candidates.

Figure 5 illustrates the summarized procedure to build proposed method MISAEL.
In the unsupervised pre-training phase, an MI-SAE trained layer-by-layer until the L-th
layer. MI analysis eliminates irrelevant information and, consequently, keeps relevant
representation for each layer of the SAE. Moreover, an LSTM network couples to the
tail of the acquired MI-SAE. The supervised fine-tuning of the entire deep architecture is
performed by using a k-fold cross-validation strategy. Thus, k candidate MISAEL models
are created, and then their output is aggregated to constitute the output.
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Figure 5. Proposed MISAEL method flowchart.

4. Case Studies and Results

Through a debutanizer column and a sulfur recovery unit (SRU) processes the MISAEL
performance is tested. Models used for comparison purposes are as follows:

1. traditional learning methods: PLS, MLP, and SVR.
2. Deep learning-based methods: SAE.
3. Proposed deep relevant learning-based soft-sensor: MISAEL and eMISAEL (ensemble

MISAEL) designed by using the proposed soft-sensing method.

The root-mean-square error (RMSE) and coefficient of determination (R2) are the
applied metrics to quantify the prediction efficiency of the developed soft-sensing methods:

RMSE =

√√√√ 1
NTs

NTs

∑
i=1

(ŷi − yi)
2 (26)

R2 = 1− ∑NTs
i=1(ŷi − yi)

2

∑NTs
i=1(yi − yi)

2 (27)

where yi and ŷi are the real and predicted outputs, respectively. The y represents the mean
value, and NTs denotes the number of samples in the testing set.

RMSE evaluates the prediction error and is traditionally used to assess the prediction
performance of soft-sensing methods. This metric measures the overall expected deviation
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between predicted and actual values in a squared error sense [56]. Therefore, RMSE highly
reflects the prediction performance and reliability of soft sensors to be tested [12]. A small
RMSE score indicates better generalization and prediction performance. Also, regarding the
inherent uncertainty of predicting quality-related process variables, the standard deviation
of the attained results over different runs is adopted as the uncertainty range metric. This
approach is widely accepted and has been adopted as one of the evaluation metrics of
sensors and soft sensors [57,58]. The R2 represents the correlation among predicted and
actual outputs [59]. R2 value provides the total variance that can be clarified about the
targeted-output by a model. As a result, a high R2 indicates better performance, and the
reliability of the model can be reflected by this index as well [30].

4.1. Industrial Debutanizer Column Process

Debutanizer columns are applied for desulfurization and naphtha cracking in an
industrial refinery. A debutanizer column attempts to withdraw propane (C5) and butane
(C4) from the naphtha stream [60,61]. Process performance improves when butane content
is reduced, and then high-quality naphtha final products are acquired. However, hardware
sensors are not able to measure butane content in real-time. As an option, soft-sensing
is an interesting approach to infer butane concentration online. Figure 6 illustrates the
primary flowchart of the debutanizer column used in this work. The main devices are
the heat exchanger, head reflux pump, bottom reboiler, overhead condenser, head reflux
pump, feed pump to the splitter, and reflux accumulator. In Figure 6, gray circles indicate
the several hardware sensors that measure the process quality variables on the plant. The
described debutanizer column aims to eliminate C3 and C4 from the naphtha stream.
By minimizing the C4 concentration in the bottom of the debutanizer, product quality
improves. However, gas chromatographs measure C4 concentration, and they do not
provide online C4 concentrations for real-time control due to interval delays. As an
alternative, soft sensors can handle difficulties in real-time measurements, providing real-
time estimations of C4 concentration for real-time process control. In [3], process dataset is
available as well as further details.

Figure 6. Schematic representation of the debutanizer column process [3].

In real industrial scenarios as chemical process, labeled data is normally limited.
From the debutanizer column, a total of 2384 samples were collected, but only 10% of
samples denote the labeled set. The 90% of samples left represent the unlabeled dataset.
The unsupervised pre-training uses the unlabeled samples as follows: 80% for training,
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20% for validation. Moreover, three parts divide the labeled dataset: 100 samples for
supervised fine-tuning, 20 samples for parameter optimization, and 120 samples for testing.
PLS, MLP, SVR, and SAE soft-sensor models use all process variables from the labeled
set as the input. MISAEL and eMISAEL models use selected inputs by performing MI
analysis. Debutanizer column process variables are defined in Table 1. Furthermore,
feature engineering is employed to add features that may incorporate former feature
values to deal with process dynamics. Hence, soft-sensor inputs can be described as
X = [u(t), . . . , u(t− dx), y(t− 1), . . . , y(t− dy)], where dx and dy represents the maximal
delayed interval. In this work, dx = dy = 6.

Table 1. Description of debutanizer column process variables.

Variable 1 Variable Description Unit

u1 Top temperature ◦C
u2 Top pressure kg/cm2

u3 Reflux flow m3/h
u4 Flow to next process m3/h
u5 Sixth tray temperature ◦C
u6 Bottom temperature A ◦C
u7 Bottom temperature B ◦C

Output Butane C4 content in IC5 -

Through the strategy described in Section 3, the MI threshold is calculated and set
to 0.076. SAE includes three AEs with 52, 49, and 46 hidden neurons at the beginning of
the unsupervised pre-training stage. Hyperparameters as activation function, learning
rate, and batch size are set as ReLU, 0.00085, and 30, respectively. The LSTM structure
with 128 cell units is added to the SAE for fine-tuning and dynamic features learning after
unsupervised pre-training. Also, three strategies to avoid overfitting are applied: early
stopping, L2 regularization, and cross-validation.

Figure 7 illustrates the calculated MI values for the representation of the AE where
the red line is the th value. MI values between input and the output variables are plotted
in Figure 7a. The MI values among hidden representations of each AE and the output are
plotted in Figure 7b–d, respectively. Variables are retained in the respective AE structure
when its calculated MI values are greater than th.

Table 2 describes and compares the prediction performance among traditional models,
state-of-art SAE-based models [33,62], and the proposed model MISAEL. The linear method
PLS leads to the worst performance compared to all the other techniques that handle non-
linearities. By using the unlabeled dataset in the pre-training, SAE-based models perform
better than MLP and SVR, which do not use unlabeled data. As intended, MISAEL
presents enhanced prediction performance compared to the SAE structure. MISAEL
only has relevant representations within its acquired knowledge, turning MISAEL more
suitable for soft-sensing. Moreover, the performance prediction of two state-of-art SAE-
based methods was tested using the same debutanizer column process used in this work.
These two methods are Hybrid VW-SAE [33], and SSED [62], and they are compared to
MISAEL to strengthen the proposed method. According to the quantitative comparison
illustrated in Table 2, MISAEL outperforms both HVW-SAE and SSED. HVW-SAE and
SSED are enhanced-SAE structures as MISAEL, but MISAEL uses an LSTM model to handle
the inherent dynamic behavior, which explains its improved performance. In addition,
eMISAEL and MISAEL present the lowest standard deviations (SD) of RMSE, which
indicates their stability under uncertain conditions. Finally, MISAEL and eMISAEL point to
the best results in comparison to other traditional and SAE compared soft sensors methods.
Also, MISAL outperforms two state-of-art methods [33,62] under same test conditions. The
use of unlabeled data for pre-training, MI-SAE with relevant representations only, and
coupled LSTM for fine-tuning are the three predominant benefits exploited for the MISAL
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model. Furthermore, eMISAEL exploits one more advantage, a k-fold cross-validation
ensemble strategy which improves MISAEL prediction performance even more.

Figure 7. MI between input representations and the output variables for the debutanizer column.
Subfigure (a) illustrates MI values of the input features. In addition, subfigures (b–d) indicate MI
values hidden units present in AE-1, AE-2, AE-3, respectively.

Table 2. Prediction performance of debutanizer column soft-sensor models.

Model RMSE ± SD R2

PLS 0.0935 ± 0.00918 0.7594
SVR 0.0667 ± 0.00682 0.8777
MLP 0.0538 ± 0.00716 0.9204
SAE 0.0396 ± 0.00603 0.9568

HVW-SAE [33] 0.0308 ± NOT PROVIDED 0.9615
SSED [62] 0.0339 ± NOT PROVIDED 0.9557
MISAEL 0.0208 ± 0.00482 0.9880
eMISAEL 0.0194 ± 0.00331 0.9897

In Figure 8, the parity plots illustrate the achieved prediction results using the testing
dataset. As expected, eMISAEL and MISAEL show more accuracy than the other methods.
Furthermore, Figure 9 illustrates the relative prediction errors with boxplots of the six
techniques eMISAL, MISAEL, SAE, MLP, SVR, and PLS in descending performance order,
respectively. Inside each box, the central red mark represents the median value, and the
edges of the box indicate the 25th and 75th percentiles. Above and below the box, the
“whiskers” represent maximum and minimum values that are not outliers. The wider is the
width of the box, the more dispersed prediction errors are. The narrowest box ranges of
eMISAEL and MISAEL indicate the best prediction performance between the six compared
methods mainly because MISAEL extracts non-linear features, selects the most relevant
representations, and copes with the dynamicity of the process. Figure 9 plots a few outliers
individually represented by red points as industrial processes contain uncertainties that
should be considered [63]. High relative prediction errors may result from inadequate soft
sensors due to both unsuitable initial parameters and outliers. Instead, an acceptable soft-
sensor gives stationary relative prediction errors on the same data. Therefore, stationery
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predictions reflect the robustness of the model as well [64]. As a result, MISAEL and
eMISAEL implement a soft-sensor with improved performance, enhanced reliability, and
stronger robustness.

Figure 8. Real values of butane content and the predicted values using eMISAEL, MISAEL, SAE,
MLP, SVR, and PLS soft-sensor models.

Figure 9. Relative prediction error of testing results for debutanizer column process using eMISAEL,
MISAEL, SAE, MLP, SVR, and PLS models, respectively.
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4.2. Sulfur Recovery Unit Process

In an industrial oil refinery, an acceptable sulfur emission rate is vital and, to accom-
plish such a task, a sulfur recovery unit (SRU) is employed. The SRU removes environ-
mental pollutants and deals with the acid gas streams adequately. In this work, the chosen
SRU unit is used in [65,66]. This SRU consists of four sulfur-lines subunits that transform
acid gasses MEA and SWS, which are rich-in-H2S, into sulfur. SRU schematic process
is shown in Figure 10. The content present in the tail gas is a crucial value to guarantee
steady production and control airflow. Residual H2S and SO2 composes the tail gas, and
their measurement is vital. However, using online analyzers to measure tail gas is not
feasible due to its weak robustness and frequent maintenance. In such a case, soft-sensing
techniques can estimate SO2, for example, as an alternative.

MEA GAS

SWS

ATM

Sulfur Sulfur

Sulfur

Steam

MAXISULF

Figure 10. Simplified scheme of a SRU line based on [65].

A total of 10,081 samples were collected from the explored SRU process, but only
10% of samples are pointed as labeled. As in the first study-case, the unsupervised stage
uses the unlabeled samples as follows: 80% for training, 20% for validation. The labeled
dataset is split into three parts: 420 samples for training, 85 samples for validation, and
504 samples for testing. SRU process variables are defined in Table 3. Furthermore,
the feature engineering strategy creates features that can include previous features to
handle process dynamics. Moreover, soft-sensor inputs are formed as X = [u(t), . . . , u(t−
dx), y(t− 1), . . . , y(t− dy)], where dx and dy represents the maximal delayed interval. In
this work, dx = dy = 6.

Table 3. Description of SRU process variables.

Variable 1 Variable Description Unit

u1 Gas flow MEA GAS Air Nm3/h
u2 Air flow AIR MEA Nm3/h
u3 Secondary air flow AIR MEA 2 Nm3/h
u4 Gas flow in SWS zone Air Nm3/h
u5 Air flow in SWS zone Nm3/h

Output Concentration of SO2 in the tail gas -

The calculated MI threshold th is 0.032. SAE consists of three AEs with 41, 35, and
29 hidden units, respectively. After grid search, the activation function is ReLU, the
learning rate set to 0.000750, and the batch size set to 10. A 512 cell-units LSTM structure
couples to the tail of the SAE for fine-tuning after the unsupervised stage, intending to
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learn dynamic behavior. Early stop, L2 regularization, and cross-validation are applied to
avoid overfitting.

Figure 11 plots MI values with th represented by the red line. MI numbers between all
input variables and the target-output variable are illustrated in Figure 11a. Figure 11b–d
illustrates the MI values among hidden learned representations of each AE and the output
variable, respectively. The proposed method retains input variables and hidden information
that showed MI numbers greater than th.

Figure 11. MI between input representations and the output variables for the SRU process. Subfigure
(a) illustrates MI values of the input features. In addition, subfigures (b–d) indicate MI values hidden
units present in AE-1, AE-2, AE-3, respectively.

Table 4 shows the comparison details regarding the built soft sensors. As seen in a pre-
vious study case, PLS leads to the worst prediction since it does not handle non-linearities
properly. As the unsupervised pre-training uses the unlabeled data, SAE-based models
drive higher prediction performance than MLP and SVM. In contrast, MISAEL performs
better than SAE-based models since only relevant representations are present and an LSTM
structure enables dynamic features learning. Furthermore, a state-of-art SAE-based model
named SIAE [30] was proposed and tested using the same SRU process used in this work.
Regarding Table 4, MISAEL outperforms SIAE. As MISAEL, SIAE is an improved SAE-
based model, but MISAEL takes advantage of dynamic LSTM-learning property, which
establishes its enhanced performance. Additionally, eMISAEL and MISAEL demonstrate
the lowest standard deviations (SD) of RMSE, which points to their stability under adver-
sities. eMISAEL and MISAEL lead to the best performance results in comparison to the
other traditional models MLP, SVR, PLS implemented in this work. Moreover, MISAEL
outperforms the implemented SAE structure, and the state-of-art model SIAE [30] under
same test conditions. The three major advantages that the MISAEL model employs: using
unlabeled data for pre-training, MI-SAE with relevant representations for soft-sensing only,
and LSTM for supervised fine-tuning. Furthermore, a k-fold cross-validation ensemble
strategy is exploited by eMISAEL to boost MISAEL prediction performance.
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Table 4. Prediction performance of SRU soft-sensor models.

Model RMSE ± SD R2

PLS 0.0692 ± 0.00874 0.0978
SVR 0.0422 ± 0.00598 0.6650
MLP 0.0378 ± 0.00612 0.7311
SAE 0.0305 ± 0.00561 0.8253

SIAE [30] 0.0279 ± NOT PROVIDED 0.7720
MISAEL 0.0169 ± 0.00499 0.9462
eMISAEL 0.0133 ± 0.00323 0.9668

The prediction results using the testing dataset are illustrated in Figure 12 by the use
of parity plots. As predictable, eMISAEL and MISAEL show higher efficiency than the
other studied soft sensors. The relative prediction errors are plotted in Figure 13 with six
boxplots representing eMISAL, MISAEL, SAE, MLP, SVR, and PLS in ascending order,
respectively. As in the first study case, the central red mark represents the median value,
and the edges indicate the 25th and 75th percentiles. The “whiskers” represent maximum
and minimum no outlier values. The wider the width of the box, the more dispersed
prediction errors are. As the best models, eMISAEL and MISAEL are the models with the
narrowest box ranges mainly because MISAEL extracts non-linear features from massive
unlabeled data, retains only the relevant representations, and addresses process dynamicity.
A few outliers are individually represented by red points in Figure 13, considering inherent
industrial uncertainties [63]. High relative prediction errors result from inappropriate soft
sensors due to both adverse initial parameters and outliers. Through, a satisfactory soft-
sensor gives stationary relative prediction errors on the same data. Therefore, stationery
predictions can reflect the robustness of the model [64]. MISAEL extracts non-linear
features from massive unlabeled data, retains only the relevant representations for soft-
sensor development, and addresses process dynamicity. Equal to the first study-case,
MISAEL and eMISAEL implement a soft-sensor with improved performance, enhanced
reliability, and stronger robustness.
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Figure 12. Real values of SO2 and the prediction using eMISAEL, MISAEL, SAE, MLP, SVR, and PLS
soft sensors.

Figure 13. Relative prediction error of testing results for SRU process using eMISAEL, MISAEL, SAE,
MLP, SVR, and PLS models, respectively.

5. Conclusions

A novel dynamic soft-sensing technique based on deep representative learning has
been proposed and tested to predict industrial quality-related process variables. The
proposed method MISAEL combines high-level feature extraction, relevant representations
mining in the layers of the SAE, and dynamic features learning through LSTM models.
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In the MISAEL model, a deep high-level feature extractor SAE exploited the massive
amount of unlabeled data, which is not used for traditional methods, to improve soft-sensor
representation capabilities in the unsupervised stage. To simulate a real scenario, 90% of
the total data was considered unlabeled for training the SAE. Unsupervised SAE modeling
does not guarantee relevant representations learning for soft-sensing purposes. A layer-
by-layer MI-based approach analyzes the relationship between learned representations
and the targeted-output values to highlight the most significant features. The procedure
retains the relevant features and removes the irrelevant ones. Even with only highlighted
information left, SAE may not address industrial process dynamicity. The LSTM model
couples to the tail of the SAE in the supervised fine-tuning. A deep SAE-LSTM structure
copes with the inherent dynamic behavior of the system.

Obtained results from two study cases prove that MISAEL presents improved predic-
tion performance compared to traditional models, SAE-based soft sensors, and above-cited
state-of-art data-driven models, which do not handle process dynamicity. According to
the results, MISAEL is reliable, robust, and has improved performance compared to PLS,
SVR, MLP, SAE and three state-of-art methods validated in the same case studies under
same conditions. Furthermore, the proposed method has the proficiency to be applied for
semi-supervised learning applications.

Despite the presented contributions, there are still improvements for future works.
Targeted-output regularizers on the loss function would extract even better features, im-
proving the proposed work. Another future intervention would be to apply techniques
that highlight dynamic-related features on the unsupervised pre-training. Also, industrial
study cases were used to implement the proposed method, but a soft-sensor proposal for a
real industrial scenario may be a difficult task. It is worth mentioning that non-linearities,
anomalies, and highly complex environments must be considered. However, the industrial
study cases have been satisfactory and widely used to implement and evaluate models,
and they are the base plants for very contributions in this field of research.
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