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Abstract. Ginsenoside re (G‑re) is a panaxatriol saponin and 
one of the pharmacologically active natural constituents of 
ginseng (Panax ginseng c.a. Meyer). G‑re has antioxidant, 
anti‑inflammatory and antidiabetic effects. The present study 
aimed to investigate the effects of G‑Re on neuroinflammatory 
responses in lipopolysaccharide (lPS)‑stimulated microglia 
and its protective effects on hippocampal neurons. cytokine 
levels were measured using eliSa and reactive oxygen species 
(ROS) levels were assessed using flow cytometry and fluores‑
cence microscopy. Protein levels of inflammatory molecules 
and kinase activity were assessed by western blotting. Cell 
viability was assessed by MTT assay; apoptosis was estimated 
by Annexin V apoptosis assay. The results revealed that G‑Re 
significantly inhibited the production of IL‑6, TNF‑α, nitric 
oxide (NO) and ROS in BV2 microglial cells, and that of NO 
in mouse primary microglia, without affecting cell viability. 
G‑Re also inhibited the nuclear translocation of NF‑κB, and 
phosphorylation and degradation of iκB‑α. in addition, G‑re 
dose‑dependently suppressed lPS‑mediated phosphorylation 
of ca2+/calmodulin‑dependent protein kinase (caMK)2, 
caMK4, extracellular signal‑regulated kinase (erK) and 
c‑Jun n‑terminal kinases (JnK). Moreover, the conditioned 
medium from lPS‑stimulated microglial cells induced HT22 
hippocampal neuronal cell death, whereas that from microglial 
cells incubated with both LPS and G‑Re ameliorated HT22 
cell death in a dose‑dependent manner. These results suggested 
that G‑re suppressed the production of pro‑inflammatory 
mediators by blocking CAMK/erK/JnK/NF‑κB signaling in 
microglial cells and protected hippocampal cells by reducing 

these inflammatory and neurotoxic factors released from 
microglial cells. The present findings indicated that G‑re 
may be a potential treatment option for neuroinflammatory 
disorders and could have therapeutic potential for various 
neurodegenerative diseases.

Introduction

Microglia are glial cells that are located throughout the 
brain and spinal cord. Microglia act as resident macrophages 
and serve a major role in immune defense and homeostasis 
of the central nerve system (cnS) (1). Microglia scavenge 
the cnS, and activated microglia phagocytose pathogens, 
plaques, and damaged or unnecessary neurons (2). However, 
over‑activation of microglia can result in excessive production 
of proinflammatory molecules, including nitric oxide (NO) 
radical, reactive oxygen species (roS), cytokines and 
chemokines, which may cause neuronal cell death and brain 
injury (3,4). Previous studies have demonstrated that microglial 
activation contributes to neuronal damage and the progression 
of neurodegenerative diseases, such as alzheimer's disease, 
Parkinson's disease, multiple sclerosis and amyotrophic lateral 
sclerosis (alS) (5,6).

lipopolysaccharide (lPS) is a highly conserved outer 
membrane component of Gram‑negative bacteria, which promotes 
the activation of macrophages and microglial cells. in response 
to LPS, microglia produce a variety of inflammatory modulators, 
such as il‑1β, TNF‑α, il‑6, no, roS and prostaglandins (2). 
A previous demonstrated that LPS binds to target cells through 
cd14 and Toll‑like receptors 4 (Tlr4) (7). ligation of Tlr4 
induces recruitment of adaptor proteins and activates subsequent 
downstream signaling, including mitogen‑activated protein 
kinases (MaPKs), ca2+/calmodulin‑dependent protein kinases 
(CAMKs) and NF‑κB. In unstimulated cells, NF‑κB is present in 
the cytosol bound to IκB; however, when stimulated by factors, 
such as lPS, iκB is phosphorylated by IκB kinases. Subsequently, 
phosphorylated (p)‑iκB is rapidly ubiquitinated and degraded by 
the 26S proteasome complex, and the free NF‑κB translocates 
to the nucleus leading to the expression of proinflammatory 
molecules (7). Moreover, MAPKs and CAMKs have been 
reported to be associated with inflammation in the brain and 
glial cells (8‑11).
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Panax ginseng C.A. Meyer has been used as a traditional 
and herbal medicine in Asia and Western countries. 
Ginsenosides are pharmacologically active natural constituents 
of ginseng (12). Ginsenoside re (G‑re) is a panaxatriol saponin 
and is one of the most extensively studied ginsenosides. 
G‑Re exhibits diverse effects, including antioxidant (13‑16), 
anti‑inflammatory (17‑19) and angiogenic activities (20). 
Furthermore, G‑Re has been reported to improve cardiac 
function (21,22) and exert antidiabetic effects (23‑26). 
However, to the best of our knowledge, the effects of G‑Re 
on neuroinflammation‑associated neurotoxicity have not been 
fully investigated. The present study investigated the effects of 
G‑Re on the neuroinflammatory response in LPS‑stimulated 
microglia and its protective activities on hippocampal neurons.

Materials and methods

Materials. G‑Re (purity, >98%) was purchased from Ambo 
institute. lPS (phenol extracted from Salmonella enteritidis), 
MTT, and poly‑l‑lysine (Pll) were purchased from 
MilliporeSigma. KN93 (CAMK inhibitor) and KN92 (inac‑
tive analog of Kn93) were purchased from cayman chemical 
Company. PD98059 (ERK inhibitor) and SP600125 (JNK 
inhibitor) were purchased from AG Scientific, Inc. Antibodies 
against inducible NO synthase (iNOS; cat. no. sc‑651), 
cyclooxygenase 2 (COX‑2; cat. no. sc‑19999), NF‑κB p65 
(cat. no. sc‑372), iκB‑α (cat. no. sc‑371), extracellular signal‑ 
regulated kinase (ERK; cat. no. sc‑94), c‑Jun N‑terminal kinase 
(JNK; cat. no. sc‑571), CAMK2 (cat. no. sc‑9035), p‑CAMK2 
(cat. no. sc‑12886‑r) and β‑actin (cat. no. sc‑47778) were 
purchased from Santa Cruz Biotechnology, Inc. Antibodies 
against p‑erK (cat. no. 4377S), p‑JnK (cat. no. 9251S), 
p‑iκB‑α (cat. no. 2859S) and caMK4 (cat. no. 4032S) were 
purchased from Cell Signaling Technology, Inc. The antibody 
against p‑caMK4 (cat. no. a0831) was purchased from Bioss 
Antibodies, Inc. The antibody against TATA‑binding protein 
(TBP; cat. no. PAB703Mu01) was purchased from Cloud‑Clone 
corp. Horseradish peroxidase (HrP)‑conjugated goat 
anti‑rabbit (cat. no. ADI‑SAB‑300‑J) and anti‑mouse antibody 
(cat. no. adi‑SaB‑100‑J) were purchased from enzo life 
Sciences. Anti‑CD11b‑APC antibody (cat. no. 17‑0112‑81), 
cM‑H2DCFDA, DMEM and fetal bovine serum (FBS) were 
purchased from Thermo Fisher Scientific, Inc. FITC Annexin V 
apoptosis detection kit i was purchased from Bd Pharmingen 
(BD Biosciences). Mouse TNF‑α (cat. no. SMTa00B) and 
il‑6 eliSa kits (cat. no. S6050) were purchased from r&d 
Systems, inc.

Isolation of mouse primary microglia and cell culture. icr 
mice (8 weeks; weight, 30‑35 g) were purchased from DBL 
co., ltd. experimental mice were housed in plastic cages 
and maintained at a constant temperature (25±2˚C) and 
humidity (50±10%) under a 12/12‑h light/dark cycle. Mice 
were provided with free access to food and water. one male 
and one female mouse were mated to obtain neonates. The 
animal experiments in the present study were approved by 
the Pusan national university institutional animal care and 
Use Committee (approval no. PNU‑2020‑2651; Busan, South 
Korea) and were conducted in accordance with the principles 
in the Pusan national university institutional animal care and 

use committee guidelines. Mouse primary microglia were 
isolated as previously described (27). After 10‑14 neonates 
(postnatal day 2‑5) of icr mice housed in the aforementioned 
conditions were euthanized by decapitation, primary mixed 
glial cell cultures from the whole brains were prepared in 
PLL‑coated culture flasks (3.75x105 cells/ml) and maintained 
in DMEM containing 10% FBS, 1 mM sodium pyruvate, 2 mM 
l‑glutamine and 50 mg/ml penicillin/streptomycin at 37˚C in 
5% co2. After 2 weeks, the culture flasks were placed on an 
orbital shaker at 200 rpm and 37˚C for 5 h. The cells in medium 
were seeded in new PLL‑coated plates and incubated at 37˚C 
in 5% co2. after 2 h, unattached cells were removed and the 
remaining microglia were used for further studies. To monitor 
purity, cells (1.25x105 cells/0.5 ml) were immunostained with 
CD11b‑APC antibody (0.06 µg/0.5 ml) for 30 min on ice in 
the dark and washed with cold PBS 3 times. Then, cells were 
resuspended in 0.5 ml PBS and analyzed by flow cytometry 
(BD Accuri C6 flow cytometer; BD Biosciences). >90% of 
cells were stained positively (data not shown). BV2 mouse 
microglial cells and HT22 mouse hippocampal cells were 
kindly provided by Professor Youn‑Chul Kim (Wonkwang 
university, iksan, South Korea). cells were grown in 
dMeM supplemented with 5% heat‑inactivated FBS and 
0.1% penicillin/streptomycin (Thermo Fisher Scientific, Inc.) 
at 37˚C in a humidified atmosphere of 5% CO2 and 95% air. 

Neurotoxicity of microglial‑conditioned medium. Mouse 
primary microglia (2.5x105 cells/ml) and BV2 microglial 
cells (2.5x105 cells/ml) were treated with 2.5, 5.5 or 7.5 µg/ml 
G‑Re for 1 h at 37˚C and then incubated with LPS (1 µg/ml) 
for 24 h at 37˚C. After incubation, cells were centrifuged 
at 400 x g at 4˚C for 20 min to obtain the cell‑free 
supernatant (conditioned medium). HT22 hippocampal 
cells (4x104 cells/ml) were serum‑starved for 4 h and then 
treated with 50% BV2 cell‑conditioned medium or primary 
microglia‑conditioned medium and 50% fresh DMEM at 37˚C 
for 24 h. For controls, HT22 cells (4x104 cells/ml) were treated 
with 2.5, 5.5 or 7.5 µg/ml G‑Re for 1 h at 37˚C and then 
incubated with LPS (1 µg/ml) for 24 h at 37˚C. The viability 
of HT22 hippocampal cells was assessed by MTT assay or 
Annexin V assay after incubation. 

Cell viability assay. Cell viability was assessed using the 
MTT‑based colorimetric assay. BV2 (2.5x105 cells/ml) or 
HT22 cells (4x104 cells/ml) were treated with MTT (50 µg/ml) 
for 3 h at 37˚C in 5% CO2. After incubation, cell culture 
supernatant was removed and the formazan crystals produced 
in viable cells were solubilized with dimethyl sulfoxide. The 
absorbance of each well was then measured at 570 nm using a 
microplate reader (Bio‑Rad Laboratories, Inc.). 

Cell apoptosis assay. The Annexin V apoptosis assay was 
conducted using flow cytometry according to the manu‑
facturer's instructions. Briefly, following incubation with 
the conditioned medium or G‑re and/or lPS, HT22 cells 
(4x104 cells/ml) were washed with PBS and resuspended 
in binding buffer at a density of 1x106 cells/ml. cells were 
stained with Annexin V FITC (2.5 µl) at 4˚C for 15 min and 
propidium iodide (2.5 µl) at 4˚C for 5 min in the dark, and then 
analyzed by flow cytometry (BD Accuri C6 flow cytometer; 
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Bd Biosciences) within 1 h. data were analyzed using Bd 
accuri c6 software (Bd Biosciences).

Measurement of nitrite concentration. To measure nitrite 
(an indicator of NO levels), 100 µl aliquots were removed 
from culture supernatant of BV2 cells (2.5x105 cells/ml) or 
primary microglia (2.5x105 cells/ml) and incubated with 
an equal volume of Griess reagent [1% sulfanilamide/0.1% 
n‑(1‑naphthyl)‑ethylenediamine dihydrochloride/2.5% 
H3Po4] at room temperature for 10 min. nitrite concentration 
was determined by measuring the absorbance at 540 nm with 
a microplate spectrophotometer (Bio‑Rad Laboratories, Inc.). 
Sodium nitrite was used as a standard. 

Measurement of TNF‑α and IL‑6 concentration. Mouse 
primary microglia (2.5x105 cells/ml) or BV2 cells 
(2.5x105 cells/ml) were first incubated with 2.5, 5.5 or 7.5 µg/ml 
G‑Re for 1 h at 37˚C and then treated with LPS (1 µg/ml) for 
24 h at 37˚C under 5% CO2. Subsequently, TNF‑α and il‑6 
levels in the culture medium were quantified using ELISA kits 
according to the manufacturer's instructions. 

Measurement of ROS. To evaluate the levels of intracellular 
ROS, BV2 cells (2.5x105 cells/ml) were treated with 1 µM 
cM‑H2DCFDA (general oxidative stress indicator) at 37˚C 
under 5% co2 for 30 min. The cells were then harvested and 
washed three times with PBS, after which the fluorescence 
intensity was measured by fluorescence microscopy using 
an Axioplan 2 microscope (Zeiss GmbH) or flow cytometry 
(BD Accuri C6 flow cytometer; BD Biosciences). Data were 
analyzed using Bd accuri c6 software (Bd Biosciences). 
dMSo (0.04%) was used as vehicle. 

Western blot analysis. cytosolic extracts were harvested in 
ice‑cold lysis buffer (1% Triton X‑100 and 1% deoxycholate 
in PBS). Nuclear extracts were prepared as described 
previously (28). Briefly, BV2 cells were washed 3 times with 
cold PBS and the cell pellets were suspended in hypotonic 
buffer (10.0 mM HEPES‑KOH; pH 7.9; 1.5 mM MgCl2; 
10.0 mM KCl; 0.5 mM dithiothreitol; 0.2 mM PMSF) and 
incubated for 15 min on ice. NP‑40 (0.1%) was added to 
the cell extract, incubated on ice for 1 min and centrifuged 
at 1,700 x g for 1 min at 4˚C. Following collection of cytosolic 
proteins from the supernatant, nuclear proteins were extracted 
using buffer B (20.0 mM HEPES‑KOH; pH 7.9; 25% 
glycerol; 420.0 mM NaCl; 1.5 mM MgCl2; 0.2 mM EDTA; 
0.5 mM dithiothreitol; 0.2 mM PMSF) for 30 min at 4˚C with 
occasional vortexing. Following centrifugation at 1,700 x g 
for 5 min at 4˚C, supernatant was collected and stored at 
‑70˚C. Protein content in these extracts was determined using 
Bradford reagent (Bio‑Rad Laboratories, Inc.). The proteins 
(20 µg) in each sample were resolved by SDS‑polyacrylamide 
gel electrophoresis on 10% gels and transferred to a 
polyvinylidene difluoride membrane. The blotted membrane 
was incubated with 5% skimmed milk in PBS for 1 h at 
room temperature and incubated with the appropriate 
antibodies (1:1,000) at 4˚C overnight. Subsequently, the 
membrane was incubated with HRP‑conjugated anti‑rabbit 
or anti‑mouse secondary antibodies (both 1:5,000) for 1 h at 
room temperature and the proteins were visualized using an 

enhanced chemiluminescence detection system (Amersham; 
cytiva). anti‑β‑actin was used as the loading control for 
cytosolic proteins and anti‑TBP was used as the loading 
control for nuclear proteins. Quantitative image analysis was 
performed using imageJ 1.38x (national institutes of Health) 
and data are presented as fold of control.

Statistical analysis. all results are expressed as the 
mean ± SeM. each experiment was conducted in duplicate 
and repeated over three times. Statistical analysis was 
performed using GraphPad Prism software (version 7; 
GraphPad Software, inc.). all data were statistically analyzed 
using one‑way analysis of variance followed by Tukey's 
multiple comparisons test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

G‑Re suppresses LPS‑induced inflammatory molecules in 
microglia. To determine the dose of G‑re, the effect of G‑re 
on cell viability was examined using the MTT assay. While 
LPS induced a little toxicity in BV2 microglial cells, G‑Re 
at concentrations up to 10 µg/ml exhibited no cytotoxicity 
in the presence or absence of LPS (Fig. 1A). Therefore, cells 
were treated with G‑Re at concentrations <10 µg/ml in all 
subsequent experiments. 

in our preliminary study, lPS dose‑dependently induced 
an inflammatory response in BV2 cells (data not shown) and 
1 µg/ml LPS induced a sufficient inflammatory response, 
which is consistent with other reports (29‑31). To investigate 
whether G‑re could ameliorate the lPS‑mediated neuroin‑
flammatory response, the effects of G‑Re on cytokine and NO 
production were investigated in BV2 cells. G‑Re pretreatment 
markedly inhibited the LPS‑induced secretion of IL‑6, TNF‑α 
and NO in a dose‑dependent manner (Fig. 1B‑D). Consistent 
with these results, G‑re dose‑dependently reduced the protein 
expression levels of iNOS and COX‑2 in LPS‑stimulated BV2 
cells (Fig. 1E and F). Moreover, G‑Re inhibited NO produc‑
tion, and iNOS and COX‑2 expression in LPS‑stimulated BV2 
cells in a time‑dependent manner. Because preincubation of 
cells with G‑Re for 1 and 2 h exhibited similar effects (Fig. S1), 
the present study pretreated cells with G‑re for 1 h in all 
experiments. In addition, G‑Re inhibited NO production, and 
the expression levels of inoS and coX‑2 in lPS‑stimulated 
mouse primary microglia in a dose‑dependent manner 
(Fig. 1G‑I). These results suggested that G‑Re may inhibit 
LPS‑induced expression of neuroinflammatory molecules in 
microglia without damaging the cells. 

G‑Re suppresses ROS production in BV2 microglial cells. To 
investigate the effect of G‑re on roS production, the levels 
of ROS in BV2 cells were detected using CM‑H2DCFDA. 
Pre‑incubation with G‑Re significantly diminished the levels of 
ROS in LPS‑stimulated cells, as determined by flow cytometry 
(Fig. 2A and B) and fluorescence microscopy (Fig. 2C), whereas 
G‑Re did not affect basal ROS levels. These results indicated that 
G‑Re may inhibit LPS‑induced production of ROS in microglia. 

G‑Re inhibits LPS‑induced activation of NF‑κB. Since NF‑κB 
is a major transcription factor mediating the expression of 
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numerous proinflammatory genes, including IL‑6, TNF‑α, 
inoS and coX‑2, the present study investigated the effects 
of G‑Re on NF‑κB activation. As shown in Fig. 3A and B, 
LPS markedly increased the nuclear levels of NF‑κB p65 
whereas it markedly reduced the cytosolic levels of p65, 
indicating the nuclear translocation of p65. However, upon 
G‑re pretreatment, the nuclear level of p65 was decreased 
and cytosolic level of p65 was simultaneously increased in 
a dose‑dependent manner. consistent with this result, G‑re 
suppressed lPS‑induced phosphorylation and degradation of 
iκB‑α in a dose‑dependent manner (Fig. 3A, C and D). These 
results suggested that G‑Re inhibited LPS‑induced nuclear 
translocation of NF‑κB by preventing phosphorylation and 
degradation of iκB‑α.

G‑Re inhibits CAMKs and MAPKs involved in inflammatory 
mediator expression. To identify the molecular target of 
G‑re in the upstream signaling pathway, the effects of 
pharmaceutical protein kinase inhibitors of CAMK (KN93), 
erK (Pd98059) and JnK (SP600125) were examined. no 
production, and the expression levels of inoS and coX‑2 
were significantly inhibited by these inhibitors, whereas 
KN92, an inactive analog of KN93, exhibited no significant 
effects compared with those in LPS‑treated cells (Fig. 4A‑C). 

Furthermore, co‑treatment with kinase inhibitors and G‑Re 
exhibited a slightly greater inhibition of iNOS and COX‑2 
expression compared with treatment with either G‑re alone or 
kinase inhibitors alone, but there was no significant difference 
in NO production (Fig. S2). Moreover, G‑Re suppressed 
lPS‑induced phosphorylation of caMK2, caMK4, erK 
and JNK in a dose‑dependent manner (Fig. 4D‑H). Because 
these kinases are activated when they are phosphorylated (32), 
these results indicated that G‑Re inhibited activation of these 
kinases. Therefore, G‑re may suppress the synthesis of 
proinflammatory mediators by decreasing CAMK2, CAMK4, 
erK and JnK activities. 

Protective effects of G‑Re against microglia‑mediated 
neuronal cell death. Growing evidence has indicated 
that inflammatory mediators produced by microglia can 
induce neuronal cell death (3‑6). Since the present results 
indicated that G‑Re inhibited the expression of inflammatory 
mediators in lPS‑induced microglia, the effects of G‑re on 
indirect toxicity to HT22 hippocampal neuronal cells were 
investigated. To accomplish this, HT22 cells were treated with 
BV2‑conditioned medium and an MTT assay was performed 
to assess cell viability and an Annexin V assay was conducted 
to detect apoptosis. When HT22 cells were incubated with 

Figure 1. G‑Re inhibits the production of inflammatory mediators in LPS‑stimulated microglial cells. BV2 cells were treated with different concentrations of 
G‑Re for 1 h and then incubated with or without LPS (1 µg/ml) for 24 h. (A) Cell viability was determined by MTT assay. Levels of (B) IL‑6 and (C) TNF‑α 
were measured by ELISA. (D) NO content was measured using the Griess reaction. (E) Protein expression levels of iNOS and COX‑2 were detected by 
western blotting. (F) Relative intensity of each band (normalized to β‑actin) was indicated as a ratio to the control. Mouse primary microglia were also treated 
as aforementioned. (G) NO content was measured using the Griess reaction. (H) Protein expression levels of iNOS and COX‑2 were detected by western 
blotting. (I) Relative intensity of each band (normalized to β‑actin) was indicated as a ratio to control. *P<0.05 vs. the group treated with lPS alone. coX‑2, 
cyclooxygenase 2; G‑Re, ginsenoside Re; iNOS, inducible NO synthase; LPS, lipopolysaccharide; NO, nitric oxide.
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Figure 2. Effects of G‑Re on LPS‑induced ROS production in BV2 microglial cells. BV2 cells were treated with G‑Re for 1 h and then incubated with LPS 
(1 µg/ml) for 30 min. DMSO (0.04%) was used as vehicle. After incubation, the cells were treated with CM‑H2DCFDA for an additional 30 min. The intracel‑
lular levels of ROS were then determined by (A and B) flow cytometry and (C) fluorescence microscopy. (A) A representative histogram of flow cytometry 
is presented. Scale bar, 50 µm. *P<0.05 vs. the group treated with LPS alone. G‑Re, ginsenoside Re; LPS, lipopolysaccharide; ROS, reactive oxygen species.

Figure 3. Inhibitory effects of G‑Re on NF‑κB signaling. BV2 cells were treated with various concentrations of G‑Re for 1 h followed by LPS (1 µg/ml) 
treatment for 30 min. (A) Protein expression levels of NF‑κB p65 in the nuclear and cytosolic fractions, and of iκB‑α and p‑iκB‑α in cytosolic extracts were 
analyzed by western blotting. (B) Relative intensity of p65 in the nucleus to total p65 [(nuc p65/TBP)/(nuc p65/TBP)+(cyt p65/actin)] was indicated as a ratio 
to control. relative intensity of (c) p‑iκB‑α and (d) iκB‑α (normalized to β‑actin) was indicated as a ratio to control. *P<0.05 vs. the group treated with lPS 
alone. G‑Re, ginsenoside Re; LPS, lipopolysaccharide; p, phosphorylated; TBP, TATA‑binding protein.
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the conditioned medium from LPS‑stimulated BV2 cells, cell 
viability was markedly decreased. However, treatment of HT22 
cells with the conditioned medium from BV2 cells incubated 
with both LPS and G‑Re enhanced HT22 cell viability in 
a dose‑dependent manner; treatment of the cells with the 
conditioned medium from only G‑Re‑treated BV2 cells 
exhibited no effect (Fig. 5A). Consistent with the MTT assay 
results, conditioned medium from LPS‑treated BV2 cells led 
to marked apoptotic cell death [both early (Annexin V‑positive 
and PI‑negative fraction) and late (Annexin V‑positive and 
Pi‑positive fraction) apoptosis], whereas application of the 
conditioned medium from LPS + G‑Re‑treated BV2 microglial 
cells decreased Annexin V‑positive cells (Fig. 5C and D). 
Notably, direct stimulation of HT22 neuronal cells with either 
LPS alone or both LPS and G‑Re had no significant effect on 
cell viability (Fig. 5B) and apoptotic cell death (Fig. 5C and D). 
Furthermore, similar results were obtained from the MTT assay 
following treatment of cells with the conditioned medium from 
mouse primary microglial cells (Fig. 5E). Overall, these results 
suggested that factors released from lPS‑treated microglial 
cells may induce neuronal toxicity and that G‑re could protect 
HT22 hippocampal cells by reducing these factors released 
from microglial cells.

Discussion

The present study investigated the anti‑inflammatory effects of 
G‑re on lPS‑stimulated microglial cells. The results revealed 
that G‑Re pretreatment significantly inhibited the LPS‑mediated 
production of IL‑6, TNF‑α, no and roS, and the expression 
levels of iNOS and COX‑2. IL‑6 and TNF‑α are proinflammatory 
cytokines, which are known to be involved in the pathogenesis 
of various inflammation‑related diseases. il‑6 administration 
has been shown to cause mechanical allodynia and thermal 
hyperalgesia (33). in addition, il‑6 may impair oligodendrocyte 
regeneration and induce demyelination (34). Moreover, chronic 
microglial activation in GFAP‑IL6 mice contributed to the 
age‑dependent loss of cerebellar volume and impairment in motor 
function (35). IL‑6 levels have been reported to be increased in the 
cerebrospinal fluid of patients with viral meningitis, encephalitis, 
systemic lupus erythematosus and stroke (36‑39). il‑6 may also 
enhance neuronal damage induced by β‑amyloid peptide in cultured 
rat cortical neurons (40). Furthermore, the TNF‑α protein synthesis 
inhibitor has been shown to restore neuronal function and reverse 
cognitive deficits induced by chronic neuroinflammation (41), and 
it has been demonstrated that inhibition of TNF‑α can lead to 
favorable outcomes in Alzheimer's disease (42). 

Figure 4. Effects of G‑Re on LPS‑induced activation of CAMKs and mitogen‑activated protein kinases. BV2 cells were incubated with KN93 (5 µM), KN92 
(5 µM), PD98059 (5 µM) or SP600125 (5 µM), followed by LPS (1 µg/ml) treatment for 24 h. (A) Nitric oxide content was measured, and (B) protein 
expression levels of iNOS and COX‑2 were detected by western blotting. (C) Relative intensity of each band (normalized to β‑actin) was indicated as a ratio 
to control. BV2 cells were treated with various concentrations of G‑Re for 1 h, followed by LPS treatment (1 µg/ml) for 30 min. (D) Expression levels of 
unphosphorylated kinases or p‑kinases were analyzed by western blotting. (E‑H) Relative intensity of p‑kinases (normalized to respective unphosphorylated 
kinases) was indicated as a ratio to control. *P<0.05 vs. the group treated with lPS alone. caMK, ca2+/calmodulin‑dependent protein kinase; COX‑2, 
cyclooxygenase 2; ERK, extracellular signal‑regulated kinase; G‑Re, ginsenoside Re; iNOS, inducible nitric oxide synthase; JNK, c‑Jun N‑terminal kinases; 
LPS, lipopolysaccharide; p, phosphorylated.
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ROS in the brain are involved in the development of oxidative 
neuronal damage and progression of neurodegenerative 
diseases (43,44). in addition, high amounts of no produced 
by iNOS in activated microglial cells are considered to cause 
neuronal cell damage and lead to neurodegeneration (45,46), 
because neurons are notably sensitive to NO‑induced cell 
death (47). Furthermore, NO reacts with superoxide to produce 
peroxynitrite, which is a powerful oxidant and a potent inducer 
of cell death (48). Thus, suppression of IL‑6, TNF‑α, no and 
ROS production by G‑Re in microglial cells may contribute 

to reduced neurodegeneration and neuroinflammation. in 
agreement with the present results, previous studies have 
reported that G‑Re exhibits anti‑inflammatory effects (17‑19). 
G‑Re has been shown to inhibit the release of histamine from 
human mast cells, and the expression of il‑1α, il‑8, il‑10 and 
ranTeS in a human alveolar cancer cell line (17). 

NF‑κB is a vital transcription factor for several genes, 
which is involved in regulating immune and inflammatory 
responses, such as the expression of cytokines, inoS and 
COX‑2 (49). Improper regulation of NF‑κB has been shown 

Figure 5. Effects of G‑Re on inflammation‑induced neurotoxicity of HT22 hippocampal cells. (A) BV2 cells were incubated with LPS (1 µg/ml) in the presence 
or absence of G‑Re for 24 h, and then HT22 cells were treated with BV2‑CM. After 24 h, the viability of HT22 cells was estimated by MTT assay. (B) HT22 
cells were incubated with LPS (1 µg/ml) in the presence or absence of G‑Re for 24 h, and cell viability was estimated by MTT assay. (C and D) HT22 cells 
were treated with BV2‑CM as aforementioned, or with LPS (1 µg/ml) in the presence or absence of G‑Re for 24 h, and an apoptosis assay was performed. 
(C) Representative flow cytometry plots and (D) percentage of Annexin V‑positive cells were shown. (E) Mouse primary microglia were incubated with LPS 
(1 µg/ml) in the presence or absence of G‑Re for 24 h, and then the microglia‑CM was added to HT22 cells. After 24 h, the viability of HT22 cells was estimated 
by MTT assay. *P<0.05 vs. the group treated with LPS alone. CM, conditioned medium; G‑Re, ginsenoside Re; LPS, lipopolysaccharide; PI, propidium iodide.



MadHi et al:  ANTI‑INFLAMMATORY AND NEUROPROTECTIVE EFFECTS OF G‑Re8

to be directly involved in a wide range of human disor‑
ders, including neuroinflammatory and neurodegenerative 
diseases (50,51); therefore, the development of drugs that regu‑
late NF‑κB is considered a promising strategy for therapeutic 
manipulation of inflammatory disease (52). The present study 
revealed that G‑Re significantly inhibited the nuclear trans‑
location of NF‑κB and the degradation of iκB‑α. Moreover, 
G‑Re effectively inhibited the phosphorylation, and thus 
the activation, of caMK2, caMK4, erK and JnK. Thus, 
these results suggested that G‑Re may inhibit the expression 
of inflammatory mediators, such as IL‑6, TNF‑α, inoS and 
COX‑2 via blocking CAMK2/CAMK4/ERK/JNK/NF‑κB 
signaling in microglial cells. To the best of our knowledge, the 
present study is the first to demonstrate that G‑Re suppressed 
caMK2/caMK4 activities. 

Bra in inf lammation is  considered to promote 
neurodegenerative diseases and cognitive dysfunction. 
Notably, an increasing number of reports have shown 
that systemic or intracerebroventricular administration 
of lPS can lead to β‑amyloid generation and memory 
deficiency (53‑55). LPS‑induced neuroinflammation may 
also be accompanied by hippocampal neuronal death and 
microglia activation. During neuroinflammation, microglia 
are activated and release proinf lammatory cytokines, 
such as il‑1β, IL‑6, and TNF‑α. The neuroinflammatory 
molecules released by activated microglial cells can induce 
indirect neuronal toxicity, which may also contribute 
to neurodegenerative disorders (56‑59). The results of 
the present study demonstrated that apoptosis of HT22 
hippocampal neuronal cells was induced following treatment 
with the conditioned medium from lPS‑stimulated 
microglia, which is hypothesized to secrete neurotoxic 
molecules. By contrast, G‑Re significantly attenuated HT22 
cell death, and this protective effect of G‑re on indirect 
neuronal toxicity may be due to its ability to reduce the 
secretion of these neurotoxic molecules from microglia. 
Neither LPS nor G‑Re exhibited any direct effects on the 
viability of HT22 cells after treatment for 24 h; therefore, it 
may be hypothesized that it is not the direct effects of G‑Re 
that inhibit HT22 cell death, but the effects of G‑Re on 
the microglia that suppress HT22 cell death. These results 
suggested that G‑re could potentially ameliorate various 
neuroinflammatory and neurodegenerative diseases. This 
hypothesis is supported by a study demonstrating that 
G‑Re attenuated neuroinflammation in a symptomatic ALS 
animal model generated using human‑superoxide dismutase 
1 transgenic mice (60). This previous study demonstrated 
that administration of G‑Re enhanced the number of motor 
neurons and reduced the number of microglia. 

in conclusion, the present study demonst rated 
that G‑re suppressed lPS‑induced overproduction of 
pro‑inflammatory mediators, including IL‑6, TNF‑α, no 
and ROS, in microglial cells. In addition, G‑Re significantly 
inhibited LPS‑induced activation of NF‑κB p65, caMK2, 
CAMK4 and MAPKs, such as ERK and JNK. Furthermore, 
G‑Re attenuated HT22 hippocampal cell death induced by 
neurotoxic molecules released from activated microglia. 
These findings suggested that G‑Re may have therapeutic 
potential for the treatment of neuroinf lammatory and 
neurodegenerative diseases.
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