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Abstract

Background: High-throughput methodologies such as microarrays and next-generation sequencing are routinely
used in cancer research, generating complex data at different omics layers. The effective integration of omics data
could provide a broader insight into the mechanisms of cancer biology, helping researchers and clinicians to develop
personalized therapies.

Results: In the context of CAMDA 2017 Neuroblastoma Data Integration challenge, we explore the use of Integrative
Network Fusion (INF), a bioinformatics framework combining a similarity network fusion with machine learning for the
integration of multiple omics data. We apply the INF framework for the prediction of neuroblastoma patient outcome,
integrating RNA-Seq, microarray and array comparative genomic hybridization data. We additionally explore the use
of autoencoders as a method to integrate microarray expression and copy number data.

Conclusions: The INF method is effective for the integration of multiple data sources providing compact feature
signatures for patient classification with performances comparable to other methods. Latent space representation of
the integrated data provided by the autoencoder approach gives promising results, both by improving classification
on survival endpoints and by providing means to discover two groups of patients characterized by distinct overall
survival (OS) curves.
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Background
Neuroblastoma is a rare disease typically manifesting in
early infancy with an estimated 700 new cases diagnosed
in the U.S. each year [1]. It is characterized by a very het-
erogeneous clinical course, with extreme cases presenting
spontaneous regression opposed by patients relapsing and
eventually dying despite prompt therapy [2]. Because of
this heterogeneity, the ability to accurately predict the
most likely disease outcome at the time of diagnosis
is of extreme importance, especially given that accurate
risk estimation allows delivering an appropriate targeted
therapy [3]. Amplification of the oncogene MYCN and
age at diagnosis are currently key clinical characteris-
tics for the patient’s risk assessment [4]. However, these
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indicators only cover a portion of all neuroblastoma cases
(ca. 22% of all neuroblastoma tumors present MYCN
amplification [2]).
The introduction of genome wide assays able to probe in

great detail multiple genomics aspects often at affordable
prices brought the promise of novel biomarker identifica-
tion for clinical outcome prediction, notably in combina-
tion with effective data analysis [5, 6]. Machine learning
approaches have been adopted for the predictive classifi-
cation of patient outcome in neuroblastoma, also through
integration of data from multiple assays [5, 7]. For exam-
ple, in a previous effort, the MicroArray/Sequencing
Quality Control (MAQC/SEQC) initiative extensively
explored expression-based predictive models for neu-
roblastoma risk assessment [8]. However, comprehensive
integrative approaches effective across multiple clinical
outcomes are still limited [5].
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In the context of the CAMDA 2017 Neuroblastoma
Data Integration challenge, three types of omics data were
made available for a cohort of 145 neuroblastoma patients:
microarray and RNA-Seq expression profiling and array
comparative genomic hybridization (aCGH) copy number
variant (CNV) profiling. For a larger set of 498 neurob-
lastoma patients, expression profiling by both microarray
and RNA-Seq was provided, but aCGH was not available.
The clinical characteristics of the patients are provided as
supplementary material. In this paper, we evaluate mul-
tiple integration approaches for neuroblastoma endpoint
classification, considering in particular the INF method.
INF is a recent modeling approach for the integration

of multiple data types in a machine learning setting [9],
originally applied to metagenomic data. On the CAMDA
2017 Neuroblastoma dataset, INF improved prediction of
Event-Free Survival (EFS) endpoint on combinedmicroar-
ray and aCGH data with respect to both simple juxtapo-
sition and the use of the distinct datasets independently.
For the remaining endpoints and on the full set of 498
samples, classification results were more heterogeneous,
with performances displaying large variation across end-
points, as previously observed [8]. Globally, INF showed
the capability of extracting top feature sets significantly
more compact than those identified by other methods,
with almost negligible loss of classification performance.
Interestingly, for each endpoint and data subset we iden-
tified subgroups of patients consistently misclassified. We
additionally explored autoencoders as a deep learning
approach to the integration of microarray and aCGH data.
By minimizing the mean squared error objective function,
we identified a latent space representation of the juxta-
posed dataset able to improve classification on ALL-EFS
and ALL-OS endpoints. We additionally used this repre-
sentation to define two groups of patients characterized
by distinct survival curves.

Methods
The datasets used in this study include RNA-Seq and
Agilent microarray gene expression profiles of 498 neu-
roblastoma patients [8], as well as matched aCGH data for
a subset of 145 patients [10–13]. The clinical characteris-
tics of the 498 samples were described previously [8] and
are included in Additional file 1: Table S1. The following
prognostic endpoints were considered for the classifica-
tion tasks: the occurrence of an event (progression, relapse
or death) (ALL-EFS); the occurrence of death from dis-
ease (ALL-OS); an extreme disease outcome (CLASS); the
occurrence of an event (HR-EFS) and death from disease
(HR-OS) in the subset of high-risk (HR) patients. The HR
status was defined according to the NB2004 risk strati-
fication criteria. Samples were split into train (TR) and
test (TS) sets according to previous partitioning [8]. Out-
come stratification statistics are summarized in Table 1.

Table 1 Sample stratification (number of subjects)

Endpoint
498 cohort 145 cohort

TR TS TR TS

ALL-EFS
249 249 71 74

ALL-OS

CLASS 136 136 42 45

HR-EFS
86 90 NA NA

HR-OS

TR training set, TS test set, NA not applicable (number of samples too low
for accurate classification)

The clinical characteristics of the patients are provided as
Additional file 1.

Data processing
The RNA-Seq data was downloaded from CAMDA2017
website (http://camda2017.bioinf.jku.at/doku.php). The
data provided was already preprocessed, normalized and
log2 transformed using the Magic-AceView (“MAV”)
pipeline, described in detail in [8]. In particular, we used
the data aggregated at the gene level (“MAV-G”). Agilent
microarray raw data was background-corrected (“norm-
exp” method) and quantile-normalized with the limma
R/Bioconductor package [14] to obtain log2 expressions
for probes, further summarized over genes (“AG1-G”)
using the microarray annotation file. The aCGH raw
data was downloaded from GEO (accession numbers
GSE45480, GSE56109, GSE25771 and GSE35953) and the
file provided in Additional file 2: Table S2 was used to
select and match the samples for which also microar-
ray and RNA-Seq data was available. The selected aCGH
microarray raw data files were preprocessed indepen-
dently using the rCGH R/Bioconductor package [15] with
default parameters, and segmentation tables were then
summarized over genes (“CNV-G”). Features with unde-
fined values (NA) were removed from all datasets before
proceeding with downstream analyses. In addition, all
data tables were filtered removing features with zero or
near-zero variance using the nearZeroVar function in the
caret R package with default parameters. To avoid infor-
mation leakage, feature filtering was performed on the TR
data set and applied on both TR and TS data sets. For
the integrative analysis, juxtaposed (juxt) datasets AG1-
G/CNV-G, AG1-G/MAV-G and CNV-G/MAV-G were
created concatenating AG1-G and CNV-G, AG1-G and
MAV-G, and CNV-G and MAV-G respectively.

Predictive classification
To ensure reproducibility and control overfitting, we
adopted a Data Analysis Protocol (DAP) following the
guidelines proposed by the U.S. FDA-led MAQC/SEQC
initiatives [16, 17] for reproducibility in the analy-
sis of high-throughput data. Briefly, given a dataset
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split in TR and TS portions, the former undergoes a
10 × 5−fold stratified Cross-Validation (CV) resulting
in a ranked feature list and an average classification
performance measure, here the Matthews Correlation
Coefficient (MCC) [18, 19]. As classifiers, we used
Linear Support Vector Machines (LSVM) and Ran-
dom Forest (RF). At each CV iteration, features were
ranked by support vector machine (SVM) weights or
RF Gini index and the classifier was trained on an
increasing number of ranked features (in this case,
[5, 10, 25, 50, 75, 100, 500, 1000, 5000, 10000,NF], with NF
indicating the total number of features in the dataset). Fea-
tures were also ranked using ANOVA F-Score (“KBest”
in the following) as an alternative method independent of
the classifier. The ranked CV lists were then aggregated
into a single ranked feature list using the Borda method
[20, 21]. The best model was later retrained on the whole
TR set restricted to the features yielding the maximum
MCC in CV, and selected for validation on the TS set. As
a sanity check to avoid unwanted selection bias effects,
the DAP was repeated stochastically scrambling the TR
labels (“random label” scheme). We use MCCval to indi-
cate MCC in validation, while MCCinternal or MCCCV are
used interchangeably to indicate performance in CV.

Integrative network fusion – INF
We consider INF, a bioinformatics framework for the
identification of integrated multi-omics biomarkers based
on predictive profiling and a novel approach to their

integration [9] (Fig. 1). In summary, first a RF (resp.
LSVM) classifier is trained on the dataset obtained by
juxtaposition of two omics data types (juxt), obtaining
a feature list ranked by either mean decrease in Gini
impurity (resp. SVM weights), or ANOVA F-Score. Sec-
ondly, the two omics data sets are integrated by Similarity
Network Fusion [22] and features are ranked by a novel
ranking scheme (rSNF) based on SNF-fused network clus-
tering; a RF (resp. LSVM) model is then developed on the
juxtaposed dataset with rSNF as feature ranking. From
both approaches, a subset of top discriminant features is
identified, according to the predictive performance of the
classifiers. Finally, a RF (resp. LSVM) classifier is trained
on the juxtaposed dataset restricted to the intersection
of juxt and rSNF feature lists (INF). Predictive mod-
els are developed inside the DAP described above. The
code implementing INF is available as a GitHub reposi-
tory https://github.com/AleZandona/INF (manuscript in
preparation).

Integration evaluation
�MCC Given that classification performance across
endpoints varies greatly, to evaluate multiple integration
approaches we introduce the concept of �MCC, i.e. the
difference between the maximumMCC on the integrated
dataset and the maximum MCC on the single (non inte-
grated) datasets. For each classifier, endpoint, and subset,
given two omics layers O1 and O2 we define MCC on
single and integrated datasets respectively as:

Fig. 1 INF workflow. Graphical representation of the INF workflow for two generic omics datasets (adapted from [9]). A first RF classifier is trained on
the juxtaposed data and the feature list obtained is ranked by mean decrease in Gini impurity (ML-juxt). The two data sets are then integrated by
Similarity Network Fusion, the features are ranked by rSNF and a RF model is developed on the juxtaposed dataset with the feature ranking so
defined (ML-rSNF). Finally, a RF classifier is trained on the juxtaposed dataset restricted to the intersection of juxt and rSNF top discriminant feature
lists. All the predictive models are developed within the DAP described in the methods

https://github.com/AleZandona/INF


Francescatto et al. Biology Direct  (2018) 13:5 Page 4 of 12

MCCsingle =max(MCC (O1) ,MCC (O2))

MCCintegration =max
(
MCCjuxt(O1,O2),MCCrSNF(O1,O2) ,

MCCINF (O1,O2))

whereMCC(Oi) indicates theMCC on the singleOi omics
layer, and MCCapproach(Oi,Oj) the MCC on the two omics
layers Oi,Oj integrated by approach = {juxt, rSNF, INF}.
To evaluate the general impact of integration on classifica-
tion performance, independently on the method used, we
define �MCC as:

�MCC = MCCintegration − MCCsingle

We note that the same definition was used forMCC in CV
and validation.

Mixedness We introduce the concept of feature “mixed-
ness” to quantify the contribution of each omics layer to
the integrated feature set. We define the mixedness as
Prop50= percentage (%) of the layer contributing less fea-
tures to the integration. With this definition, percentages
closer to 50 indicate that the top feature sets are equili-
brated, i.e. they acquire information from both layers. Per-
centages close to 0 indicate that most of the information
is acquired from one of the two layers being integrated.

Performance similarity between integration
approaches In this manuscript we compare INF perfor-
mance with respect to either juxt or rSNF integration
approaches. We distinguish two scenarios (we indicate
with “Nfeat” the number of top features identified):

1 MCCinternal (or MCCval or Nfeat) is equal between
INF and juxt or rSNF;

2 MCCINF− MCCjuxt < 0.1 or
MCCINF − MCCrSNF < 0.1

This convention was used as color code for Additional
file 3: Tables S3 and S4, with green background indicating
scenario 1, and yellow scenario 2.

Integration by deep learning
As alternative multi-omics integration approach, we
explored the use of a deep learning autoencoder archi-
tecture inspired by the work of Chaudhary and col-
leagues [23]. We focused on the juxt AG1-G/CNV-G
dataset, preprocessed as described above. We tested dif-
ferent autoencoder layouts, with either one, two or three
fully connected layers and bottleneck sizes of 391 (one-
and two-layer autoencoders) or 64 (three-layer autoen-
coder). For each, we experimented multiple combinations
of activation functions (working with tanh, softsign and
relu), two data scaling variants (minmax in either (0,1) or
(-1,1)) and the introduction of L1 activation regulariza-
tion terms with a range of penalties (C = 10e-6, 10e-5,
10e-4, 10e-3, 10e-2, 10e-1). For all the architectures we

used the ADADELTA [24] optimizer, the mean squared
error objective function and a batch size of 71. All models
were trained for 2500 epochs on the TR AG1-G/CNV-G
juxt dataset. The goodness of reconstruction was eval-
uated on the juxtaposed TS dataset by computing the
cosine distance between reconstructed and original data
(0 indicating perfect reconstruction).

Coxregressionandclassification The encoded represen-
tations of TR and TS data for the autoencoder optimizing
the loss function were used for LSVM classification of
ALL-EFS and ALL-OS endpoints. In addition, the meta-
features of the encoded representation of the input TR
data were used to fit a univariate Cox Proportional-
Hazards (Cox-PH) regression model for patients’ OS. An
encoded representation of the TS data was obtained from
the bottleneck layer of the autoencoder fitted on the TR
data. K-means clustering was applied independently to the
TR and TS set meta-features significantly associated with
OS to separate the TR and TS samples into two groups
(the optimal number of clusters was identified using the
Silhouette index (fpc R package) applied independently on
TR and TS meta-features). Using the new sample labels
so identified as target variable, an LSVM classifier was
trained on the juxtaposed AG1-G/CNV-G dataset.

Computational details
The DAP is written in Python/Scikit-Learn [25]. The
autoencoder network is implemented in Keras (v. 2.1.3)
[26]. Cox regression and survival analyses were performed
in the R statistical environment (v. 3.3.3) [27] using the
survival and survminer libraries. Plots were produced
using the ggplot2 R package. The DAP and INF were run
on a 32-core Intel Xeon Linux workstation. DL compu-
tations were run on a Microsoft Azure platform with 2x
NVIDIA Tesla K80 GPUs.

Results
Classification on the single datasets
We first applied RF and LSVM classifiers, with both native
and KBest feature ranking (see Methods), to the 498
and 145 datasets independently. As labels the endpoints
originally proposed in [8] and summarized in Table 1
were used. In general, both classifiers achieved simi-
lar performances, independently of the ranking scheme.
Consistently with previously published results [8], both
classifiers achieved poor MCC performance on HR end-
points (Fig. 2, panels a and b). The best results were
obtained for the CLASS label, identifying patients with
extremely positive or negative disease outcomes (Fig. 2).
Analogous results were obtained for the subset of 145
patients for which also aCGH data was available, with
CLASS being the best performing endpoint (Fig. 2, panels
c and d). Classification in this subset of the data had
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a b

c d

e f

Fig. 2 Classification performance on all endpoints considered in the study: by classifier for the 498 (panels a and b) and the 145 (panels c and d)
sample subsets, as well as by platform (panels e and f) for both sample subsets

generally lower performance, likely due to the reduced
number of samples available. We note that for this subset
of the data we did not consider the HR-OS and HR-EFS
endpoints, as the number of samples is too low to allow
accurate prediction. Predictions based on CNV data alone
were generally poor while AG1 and MAV performed bet-
ter and comparably between them (Fig. 2, panels e and f).

Integration of multiple data sources marginally improves
endpoint prediction
To evaluate the overall effect of data integration with
respect to classification using the single datasets indepen-
dently, we introduced the concept of �MCC (see Methods).
�MCC measures the difference between MCC for
classification in single datasets as opposed to integrated

datasets, without considering the specific method used
for the integration. As shown in Fig. 3 (panels a and b)
the behavior is not homogeneous: in some cases MCC
improved with integration (�MCC > 0) but it decreased
in others. The choice of classifier does not seem to affect
this behavior. Ascertained this, we present further results
separated by endpoint, since we previously observed
marked differences in classification performance for dif-
ferent endpoints. We also expected that the data types
being integrated should differently affect the performance
and thus we consider separately different integration set-
tings. Since AG1-G and MAV-G essentially represent
two types of measurement for the same quantity (both
assays measure expression and, in this application, both
of them are summarized at the gene level), we were not
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Fig. 3 Integration evaluation. Distribution of �MCC values in cross-validation (panels a, c, e, g) and in validation (panels b, d, f, h) stratified by
classifier (a, b) and endpoint (c–h). Panels c, d: AG1-G/MAV-G on the 498 data subset. Panels e, f: AG1-G/CNV-G. Panels g, h: MAV-G/CNV-G

surprised in finding �MCC � 0 for their integration
(Fig. 3, panels c and d). The most interesting integration
cases are those mixing expression with CNVs, as they
represent distinct omics layers. Integrating AG1-G and
CNV-G data clearly improved the classification perfor-
mance for ALL-EFS endpoint but did not impact ALL-OS
and CLASS. Remarkably, performances in CNV-G/MAV-

G integration did not show the same trend (Fig. 3 panels
e to h).

INF performs similarly to juxt and rSNF, but produces
compact feature sets
We compared the INF classification performance and fea-
ture sets identified with respect to simple juxtaposition
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(juxt) and rSNF across all subsets, endpoints and classi-
fiers (Additional file 4). As shown in Fig. 4, the feature
sets identified by INF were generally more compact than
those extracted by either juxt or rSNF (p-values = 2.453e-
08 and 3.803e-09 respectively, Wilcoxon rank sum test).
The specific results for all classifiers, methods and sub-
sets are available in Additional file 4. We note that 15 INF
runs failed, either because the intersection of top features
was empty or too small to be considered for classification
(< 5). This leaves a total of 41 runs that can be used to
compare performance (as MCC either in CV or in valida-
tion). In CV, INF performed better than juxt (resp. rSNF)
in 33 (resp. 35) cases, i.e. in 81% (85%) of the comparisons,
while it performed similarly in 7 (resp 5) cases. On exter-
nal validation, INF performed better than juxt (rSNF) in
14 (16) cases out of 41, corresponding to 34% (resp. 39%)

of the comparisons. Therefore, as previously found for a
meta-omics application in [9], the major advantage of INF
over simple juxtaposition and rSNF is a more compact
feature signature at similar MCC scores.

Mixedness
In order to evaluate how much each layer contributes to
the feature signatures identified, we introduced the con-
cept of “mixedness” (see Methods). As shown in Fig. 4 b
and c, considering the 145 subset of the data, Prop50 has
high variability and quasi-equal contribution from both
layers is rare (Prop50 ≥ 40 in 10% of the 145 top fea-
ture sets). This behavior is independent of endpoint (not
shown). The top feature sets are more equilibrated for the
498 subset (excluding RF, Fig. 4 d) but quasi-equal con-
tribution from both layers is still rare (Prop50 ≥ 40 in

a

b c

d e

Fig. 4 Integrated feature set sizes and mixedness. a. Feature set sizes by integration approach for all models. The feature sets identified by INF are
more compact than those identified by juxt and rSNF (p-values = 2.453e-08 and 3.803e-09 respectively, Wilcoxon rank sum test). b. and c. Mixedness
for the 145 data subset. d. and e. Mixedness for the 498 data subset
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6% of the 498 top feature sets). Regardless of the classifier
type, we observe tighter mixedness distribution for rSNF
(Fig. 4 e), although with larger feature lists. In general,
for AG1-G/MAV-G integrations the major contributor
was always MAV-G, independently of classifier or data
subset (145 or 498). For the 145 subset, in which the
CNV data was available besides expression, we observed
higher variation: for AG1-G/CNV-G andCNV-G/MAV-G
integrations, respectively in 15 and in 9 out of 33 exper-
iments CNV was the major contributor. We note that
the integration method seems to have an impact on
which data type contributes more, since the majority of
top feature sets in which CNV contributes greatly (>
50%) are derived with rSNF method (20 out of 24 top
feature sets).

Cases in which INF has superior accuracy
Considering together the two similarity scenarios intro-
duced in Methods (i.e. both yellow and green cells in
Additional file 3: Tables S3 and S4), INF performed simi-
larly or better than both juxt and rSNF in 7 cases for RF,
in 10 cases for RF KBest, 5 cases for LSVM and 7 cases
for LSVM KBest (black font in Additional file 4). Con-
sidering only similarity scenario 1 (i.e. only green cells in
Additional file 3: Tables S3 and S4), INF performed better
than both juxt and rSNF in:

• one case for RF (498 ALL-OS AG1-G/MAV-G)
• 3 cases for RF KBest (145 ALL-OS CNV-G/MAV-G,

498 ALL-EFS AG1-G/MAV-G, 498 ALL-OS
AG1-G/MAV-G)

• one case for LSVM (145 ALL-OS AG1-G/MAV-G)
• 2 cases for LSVM KBest (145 ALL-OS

AG1-G/CNV-G, 145 ALL-OS CNV-G/MAV-G).

These cases are highlighted with the bold font in
Additional file 4. For AG1-G/CNV-G integration on the
ALL-OS endpoint, we observe that INF, coupled with
LSVM and KBest, achievesMCCval = 0.67 for 20 features.

This improves the MCCval = 0.61 obtained by LSVM
with 200 MAV-G features, the best-performing model on
ALL-OS developed within the SEQC initiative [8].

Misclassified patients
We notice that for each endpoint a subset of patients is
consistently classified by all classifiers, independently on
data type or integration used. Based on this observation,
we extracted samples that are consistently correctly or
incorrectly classified (Table 2).

A deep learning approach to omics integration
Among the architectures tested (see Methods) the best
results were obtained for the two-layer autoencoder
with scaling minMax(0,1), without regularization and
with activation functions softsing, softsign, softsign, relu
(Fig. 5 a). Autoencoding of the TS set reproduced reliably
the input data, as supported by cosine distance equal to
0.13. Notably, a LSVM classifier for ALL-EFS and ALL-
OS endpoints trained and tested on the encoding of the
juxtaposed AG1-G/CNV-G data gave better classifica-
tion performance with respect to using the full dataset
(Table 3). Cox-PH regression analysis on the 391 units of
the bottleneck layer found 87 deep features significantly
associated with OS (FDR-adjusted log-rank p < 0.05).
Out of these, 83.8% were also significantly associated with
OS in the encoded representation of the TS data obtained
from the bottleneck layer of the autoencoder fitted on
the TR data. K-means clustering, applied independently
on the TR and TS set meta-features significantly associ-
ated with OS, identified 2 optimal clusters, representing
two groups of patients G1 (76 patients: 39 TR, 37 TS)
and G2 (69 patients: 32 TR, 37 TS). The patient assign-
ment to the two groups is provided in Additional file 5.
As shown in Fig. 5 (b and c) the two distinct groups are
characterized by significantly different survival curves. A
LSVMclassifier trained on the juxtaposed AG1-G/CNV-G
dataset using the labels G1 and G2 defined by the

Table 2 Number of misclassified or correctly classified patients for each data subset, endpoint and classifier

RF RF Kbest LSVM LSVM Kbest

CC MC CC MC CC MC CC MC

145 ALL-EFS 26 12 27 14 20 16 14 14

ALL-OS 41 12 46 12 33 8 37 8

CLASS 30 0 30 0 26 2 26 1

498 ALL-EFS 175 67 178 61 144 105 136 79

ALL-OS 196 47 191 47 173 76 178 61

CLASS 119 12 121 13 123 12 122 12

HR-EFS 27 63 41 49 33 37 28 38

HR-OS 34 48 37 46 38 52 31 48

CC correctly classified,MC misclassified
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a b c

Fig. 5 Autoencoder schematic and survival analysis. a Scheme of the autoencoder architecture giving the best results. b Kaplan-Meier survival
curves for the two groups of patients identified clustering TR set autoencoder meta-features significantly associated with survival. c Kaplan-Meier
survival curves for the two groups of patients identified clustering TS set autoencoder meta-features significantly associated with survival. The
significant p-values suggest that the groups identify two distinct patient populations. Curves for TR/TS patients were calculated separately to
highlight that the selection of survival-associated meta-feature in the TR set effectively stratifies also TS set patients

clustering as target achieved MCCval = 0.716 (MCCCV =
0.817(0.781 − 0.856), Nfeat = 1000).

Discussion
We introduced the INF framework for multi-omics cancer
data integration, with a first application to the neuroblas-
toma data made available for the CAMDA 2017 challenge.
We aimed at improving technical aspects, performance
and biological insights on this dataset. In general integra-
tion seems to improve inconsistently the prediction per-
formance. We tried to integrate three data types, two of
which are redundant (bothMAV andAG1 provide expres-
sionmeasures). Although CNVs perform poorly alone as a
classifier, their integration with microarray data improves
classification in some cases. Interestingly, for each end-
point and data subset we identified a set of patients
that are consistently misclassified, independently from
integration strategy, assay, clinico-genetic subgroups and
INSS staging. This opens the intriguing possibility that
these patients could represent a subgroup characterized
by distinctive biomarkers. The deep learning approach
for prototype omics-integration framework identifies a
new label, that distinguishes two groups of patients with
distinct survival curves.

Conclusions
As novel method for the integration of multiple omics
data, the INF method is applied to the three datasets

proposed for the CAMDA 2017 Neuroblastoma Data
Integration challenge. We compared INF classification
performance with simple juxtaposition and rSNF, prov-
ing that it performs comparably or better than either in
most cases, with the advantage of very compact feature
sets (on average 75% reduction with similar accuracy). We
additionally tested an omics-integration framework based
on deep learning to identify a novel set of “meta-features”
able to distinguish patient groups with markedly different
survival curves. The relationship between meta-features
derived from the deep learning autoencoder and the INF
features is currently under development.

Reviewers’ comments
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Table 3 Comparison of classification performance on ALL-EFS and ALL-OS endpoints using the juxt AG1-G/CNV-G dataset or its
embedding obtained using the autoencoder approach

AG1-G/CNV-G AG1-G/CNV-G encoding

Endpoint MCCCV MCCval Nfeat MCCCV MCCval Nfeat

ALL-EFS 0.207 (0.141-0.278) 0.197 1000 0.438 (0.374-0.503) 0.360 100

ALL-OS 0.523 (0.443-0.591) 0.359 500 0.545 (0.466- 0.618) 0.538 100
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very clear and understandable way and is methodically
well prepared.
Author’s response: We thank the reviewer for critically

evaluating our work and for the positive feedback.
Reviewer comment: The data preprocessing and RNA-

Seq datamight have been improved by variance stabilizing
normalization, but overall there is nothing wrong with the
pipeline used.
Author’s response: We note that the RNA-seq data

was provided by CAMDA2017 organizers, already prepro-
cessed, normalized and log2 transformed. The approach
used, originally described in Zhang et al. 2015, follows
theMagic-AceView pipeline, which includes quantification
and normalization of the RNA-seq data. We agree that
this was not clearly explained, thus we have accordingly
updated the “Data processing”Methods subsection in order
to include additional information.
Reviewer comment: Furthermore, the filter for low-

variance features was only used on the training set and
therefore no selection bias was introduced on the test
set. Unfortunately, the section on the integration of Deep
Learning is too brief and has to be described inmore detail
in terms of reproducibility.
Author’s response: We thank the reviewer for pointing

that the Deep Learning section was not clearly presented.
We have added missing details that we understand are
necessary for reproducibility. Building on the reviewer com-
ments, we revisited the autoencoder architecture and per-
formed additional experiments to systematically test and
review alternative architectures and parameters. To vali-
date in a reproducible way the choice of network architec-
ture, we alternatively considered three autoencoder layouts
more simple than the one proposed in the original ver-
sion of the article: a single fully-connected neural layer as
encoder and as decoder (AE1) and a two- (AE2) and three-
layer (AE3) fully-connected autoencoders. We also experi-
mented with the size of the bottleneck layer, as its original
size (64 nodes) was possibly too small to properly capture
the dataset characteristics. In particular we settled for a
bottleneck of 391 nodes (1% of the number of features in
input) for autoencoders AE1 and AE2, while maintaining
a 64-nodes bottleneck layer for AE3. Within these architec-
tures, we tested multiple combinations of activation func-
tions (working with tanh, softsign and relu activations), an
alternative data scaling (minMax(-1,1) in addition to the
minMax(0,1) originally used) and the introduction of an
L1 activity regularization term with a range of penalties
(C = 10e − 6, 10e − 5, 10e − 4, 10e − 3, 10e − 2, 10e − 1).
In all the experiments, we used the mean squared error as
objective function and the models were trained for 2500
epochs. For each parameter combination we calculated the
cosine distance between the input and its reconstruction
to evaluate the goodness of the reconstruction. In terms of
loss and cosine distance, the best results were obtained for

autoencoder AE2 with scaling minMax(0,1), without regu-
larization and with activation functions softsign, softsign,
softsign, relu.
Reviewer comment:Which learning rate scheduler was

used?
Author’s response: We used the ADADELTA optimizer,

which is an adaptive learning rate method that doesn’t
require manual tuning of learning rates. We updated the
“Integration by Deep Learning” Methods subsection in
order to include this information.
Reviewer comment:Howwas the network regularized-

was input-noise taken into consideration?
Author’s response: Building on the comments by the

reviewer, we tested the introduction in our architecture
of L1 network regularization terms for penalties C = 0,
10e− 6, 10e− 5, 10e− 4, 10e− 3, 10e− 2 and 10e− 1. We
note that introducing regularization penalties >= 10e− 6
generally destabilized the model. Input noise was not taken
into account in these experiments.
Reviewer comment: Which activation functions and

batch size were used?
Author’s response:We expanded theMethods subsection

“Integration by Deep Learning” in order to include fur-
ther details about the architectures, including information
about activation functions and batch size. We also added a
schematic diagram describing the best performing architec-
ture selected after testing multiple combinations (Fig. 5a).
As shown, we used softsign activation in all layers except
the last, in which we used relu instead. Since the hardware
used to run the experiments allowed us to do so, we used a
batch size of 71, which allowed us to process all samples in
a single batch.
Reviewer comment: Furthermore, it is not clear how

and at which layer the different data sources flow into
the network and neither how were missing values handled
during training?
Author’s response: The two distinct data sources

(microarray and aCGH data) used in the autoencoder
experiments were juxtaposed and used as input layer. This
information has been added to the Methods subsection
“Integration by Deep Learning”. Missing values for all the
datasets used in this study were removed during data pre-
processing. This information, originally missing, has been
added to the “Data Processing” subsection of methods.
Reviewer comment:Why was the learned 64-dim rep-

resentation not examined in depth? Here, the authors
could have propagated the maximum for each unit back
into the input layer and, for example to generate biolog-
ically insights, could have carried out a gene set enrich-
ment analysis.
Author’s response: This could be done, but the (bio-

logical) meaningfulness of the results would still be ques-
tionable, since the backtracking of the resulting metagenes
would lead to a weighted linear combination of all genes;
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then, any method adopted to select the top-genes would
rely on the resulting weights, which can hardly be reliably
linked to a score of biological importance.

Reviewer’s report 2: Tieliu Shi, East China Normal
University, Shanghai, China
Reviewer comment: 1. It seems that the INFmethod pro-
posed by the authors only improved the performance for
ALL-EFS, but has no obvious impact on other clinical
endpoints. please explain it.
Author’s response: We agree with the reviewer that INF

does not obviously improve the classification performance
for all the clinical endpoints included in this study: how-
ever, this is not the message we want to convey by our
manuscript. In fact, classification performance is just one
of two aspects of novelty discussed in this manuscript. The
major impact (and possibly advantage) of INF lies in its
capability of extracting top feature sets that are more com-
pact than those identified by juxt and rSNF, with almost
negligible loss of classification performance. This advan-
tage is indeed critical in studies aimed at identifying small
sets of biomarkers, as is often the case in studies of clinical
relevance
Reviewer comment: 2. In Fig. 4a, the authors concluded

that the feature sets identified by INF were more compact
than those identified by juxt and rSNF, suggest to conduct
statistical tests to further clarify the significance level.
Author’s response: Following the suggestion of the

reviewer, we used Wilcoxon rank sum test to test the signif-
icance of the difference between the number of top features
identified by INF and juxt/rSNF. We added this informa-
tion to the manuscript (all differences are significant).
Reviewer comment: 3. As shown in Fig. 4b-e, the

mixedness is variable and rarely equilibrated, which layer
made the major contribution to the integration approach?
Please clarify.
Author’s response: As the reviewer points out, it is true

that mixedness is rarely equilibrated. Considering which
data type contributes the most to the top features identified
with the different methods, some patterns can be observed
when stratifying the results in terms of data types being
integrated. In particular, we note that for AG1-G/MAV-
G integrations, the major contributor is always MAV-G,
independently on classifier or data subset (145 or 498). For
the 145 subset, in which the CNV data is available besides
expression, we observe more variety: for AG1-G/CNV-G
and CNV-G/MAV-G integrations, respectively in 15 and
in 9 out of 33 experiments CNV is the major contributor.
We note that the integration method seems to have a cru-
cial role here, since the majority of top feature sets in which
CNV contributes importantly are derived with rSNF (20
out of 24 top feature sets). We expanded the “Mixedness”
Results subsection in order to clarify the composition of the
top feature sets.

Additional files

Additional file 1: Table S1. Clinical characteristics of the patients
included in the study. (XLSX 27.9 kb)

Additional file 2: Table S2. Information relative to the match of aCGH
samples and RNA-Seq/microarray samples included in the study.
(XLSX 9.23 kb)

Additional file 3: Tables S3 and S4. INF performances (MCCCV, MCCval,
Nfeat) color coded to highlight cases in which INF performs better than
juxt or rSNF integration approaches (sheet S3 :juxt vs. INF; sheet S4: rSNF vs.
INF). Green cell background: MCCCV (or MCCval or Nfeat) is equal between
INF and juxt or rSNF; yellow cell background: MCCINF − MCCjuxt < 0.1 or
MCCINF − MCCrSNF < 0.1; NP: not performed; NA: not available (see main
text); SF: the topfeatureset is too small for reliable classification. (XLSX 10.5 kb)

Additional file 4: Tables S5–S8. The tables highlight the cases in which
INF performs similarly or better than both juxt and rSNF. Each sheet
represents one classifier (sheet S5: RF; sheet S6: RF KBest; sheet S7: LSVM;
sheet S8: LSVM KBest). The information is coded as follows. Bold: INF
performs better than both juxt and rSNF in terms of MCCCV, MCCval and
Nfeat. Black (not bold): MCCINF−MCCjuxt <0.1 and MCCINF−MCCrSNF < 0.1.
Light gray: failed run or INF performs worse in either CV or validation.
(XLSX 15.7 kb)

Additional file 5: Table S9. The table provides the assignment of the 145
subset patients into the two groups G1 and G2 identified with the deep
learning approach and characterized by distinct survival curves. For clarity
we report also the TR/TS assignment. (XLSX 7.46 kb)
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