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Glucagon-like peptide-1 (GLP-1) is a gut hormone produced in the intestinal epithelial endocrine L cells by differential processing
of the proglucagon gene. Released in response to the nutrient ingestion, GLP-1 plays an important role in maintaining glucose
homeostasis. GLP-1 has been shown to regulate blood glucose levels by stimulating glucose-dependent insulin secretion and
inhibiting glucagon secretion, gastric emptying, and food intake. ese antidiabetic activities highlight GLP-1 as a potential
therapeutic molecule in the clinical management of type 2 diabetes, (a disease characterized by progressive decline of beta-
cell function and mass, increased insulin resistance, and �nal hyperglycemia). �ince chronic hyperglycemia contributed to the
acceleration of the formation of Advanced Glycation End-Products (AGEs, a heterogeneous group of compounds derived from the
nonenzymatic reaction of reducing sugars with free amino groups of proteins implicated in vascular diabetic complications), the
administration of GLP-1 might directly counteract diabetes pathophysiological processes (such as pancreatic 𝛽𝛽-cell dysfunction).
is paper outlines evidence on the protective role of GLP-1 in preventing the deleterious effects mediated by AGEs in type 2
diabetes.

1. Introduction

Glucagon-like peptide-1 (GLP-1) is an incretin hormone
that participates to glucose homeostasis. In particular, it has
been shown to efficiently lower glucose plasma concentra-
tion, improve insulin secretion and resistance, and preserve
pancreatic beta-cell function [1, 2]. Due to these proprieties,
GLP-1 has been suggested as a promising molecule for the
treatment of type 2 diabetes (characterized by hyperglycemia
and insulin resistance associated to a progressive deteriora-
tion of beta-cell function and mass) [3, 4]. Type 2 diabetes
has been also described as a pathophysiological condition
accelerating the formation and accumulation of advanced
glycation end products (AGEs) that are normally produced
with the aging processes [5, 6]. In fact, both repeated

acute peaks and chronic hyperglycemia favor the nonen-
zymatic glycosylation of proteins, lipids, and nucleic acids
that aer rearrangement, dehydration, and condensation
become irreversibly cross-linked, heterogeneous �uorescent
derivatives called AGEs. e glycation of these molecules
induces alterations in their biological properties as compared
with the nonglycated counterparts. Moreover, the binding
betweenAGEs and their receptor (RAGE) provokes oxidative
stress generation and in�ammatory burst [7].e pathogenic
role of AGEs in microvascular complications of type 2
diabetes is widely investigated and recognized. Recently,
some novel detrimental effects of AGEs in type 2 diabetes
have been also identi�ed (i) interference by AGEs with the
complex molecular pathway of insulin signaling, leading to
insulin resistance; (ii) AGE-mediated modi�cation of the
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insulin molecular structure and function; (iii) AGE-induced
decrease insulin secretion and production. Since molecular
alterations induced by AGEs are “permanent”, these products
have been suggested as key mediators in the “metabolic
memory” hypothesis, explaining how diabetic complications
are evolving even aer glucose control is achieved. In this
paper, we will discuss evidence on the protective role of GLP-
1 in preventing the deleterious effects of AGEs in type 2
diabetes.

2. GLP-1 Production and Secretion

GLP-1 was �rstly identi�ed and characterized following
the cloning of cDNAs and genes for proglucagon in the
early 1980s [8–10]. e major sources of GLP-1 in the
body are the intestinal L cells, open-type intestinal epithelial
endocrine cells located mainly in the distal ileum and colon,
which secrete GLP-1 as a gut hormone [11]. GLP-1 derives
from the transcription product of the proglucagon gene
which is expressed in the pancreas, intestine, and brain.
e proglucagon mRNA is translated into a single-precursor
protein that undergoes tissue-speci�c posttranslational pro-
cessing operated by prohormone convertase (PC) isoforms,
which leads to the synthesis of different proglucagon-derived
peptides in the pancreatic 𝛼𝛼-cells and in the intestinal L-
cells. Indeed expression of PC 2 in 𝛼𝛼 cells leads to syn-
thesis of glucagon, glicentin-related pancreatic peptide, and
the major proglucagon fragment, which contains within its
sequence both GLP-1 and GLP-2; while expression of PC
1/3 in enteroendocrine L cells results in the production of
GLP-1 and GLP-2, as well as glicentin and oxyntomodulin
[11]. e prohormone convertase PC1/3 has been localized
in intestinal L cells and shown to be both necessary and
sufficient for posttranslational processing of proglucagon
in the intestine. Indeed, PC1/3 null mice exhibit impaired
processing of the precursor with accumulation of intestinal
proglucagon coupled to marked decreases in proglucagon
processing to glicentin, oxyntomodulin, GLP-1, and GLP-2
[12].

e biologically active forms of GLP-1 released in the
blood stream are GLP-1(7–36) and GLP-1(7–37), which
result from the selective cleavage of the proglucagonmolecule
[13] and appear equipotent in all biological paradigms
studied [14]. In humans, the majority of GLP-1 in the
circulation is GLP-1(7–36)NH2. e enzyme peptidylglycine
𝛼𝛼-amidating monooxygenase operates the addition of an
amide group to GLP-1(1–36) and GLP-1(7–36) to enhance
the survival of GLP-1 in plasma [13, 15]. Indeed, the half-life
of bioactive GLP-1 in the circulation is less than 2 minutes
due to a rapid inactivation by the ubiquitous proteolytic
enzyme dipeptidyl peptidase-4 (DPP-4), that cleaves GLP-1
at the N-terminal (GLP-1 9–36) [16, 17].

Accordingly to the position of the L cells (which directly
contact the luminal nutrients through their apical surface),
GLP-1 secretion is stimulated by a variety of nutrients [18,
19]. Furthermore, the basolateral surface of L cells is located
in close proximity to both neurons and the microvasculature
of the intestine, which allows the L cell to be affected by both

neural and hormonal signals. e mean levels of bioactive
GLP-1 in fasting plasma range between 5 and 10 pmol/L in
humans and increase approximately 2- to 3-fold aer a meal,
with the absolute peak values being dependent on both the
size and nutrient composition of the meal. Food intake is
the primary physiological stimulus to GLP-1 secretion by L
cells and results in a biphasic pattern: an initial rapid rise
in circulating GLP-1 levels within 15–30min aer a meal,
followed by a late minor peak up to 90–120min [20].

3. Intra- and Extrapancreatic
Activities of GLP-1

GLP-1 plays multiple roles in metabolic homeostasis follow-
ing nutrient absorption. �ne of the �rst actions identi�ed
for GLP-1 was the glucose-dependent stimulation of insulin
secretion from islets in rodents, humans, or from islet
cell lines [21–24]. GLP-1 induces additional actions in the
gastrointestinal tract and central nervous system [25, 26],
such as the promotion of insulin biosynthesis, reduction
of gluconeogenesis rate, inhibition of glucagon secretion
and gastric emptying, and reduction of food intake. e
biological effects of GLP-1 are mediated by the binding to its
speci�c receptor (GLP-1R, a speci�c seven-transmembrane
receptor guanine nucleotide-binding protein [G-protein]
coupled receptor [GPCR]). GLP-1R was �rstly cloned from
a rat pancreatic islet library by orens in 1992 [27]. e
receptor is widely distributed in the pancreatic islets, brain,
heart, kidney, and the gastrointestinal tract and mediates the
biological actions of GLP-1 in a variety of tissues.

e bioactivities of GLP-1 were investigatedmainly in the
pancreatic islets. In the pancreas, GLP-1 potentiates glucose-
induced insulin secretion improves the function of pancreatic
𝛽𝛽-cells by promoting the genesis and proliferation and by
inhibiting apoptotic signals and glucagon secretion from
pancreatic 𝛼𝛼-cells, thus resulting in the regulation of glucose
homeostasis [28]. GLP-1 synergistically acts with glucose
to promote insulin gene transcription, mRNA stability, and
biosynthesis, increasing the expression of the transcription
factor Pancreas duodenum homeobox 1 (Pdx-1) and the
binding of Pdx-1 to the insulin promoter. Furthermore, GLP-
1 has been shown to improve glucose sensitivity to glucose-
resistant 𝛽𝛽 cells [29–31].

In the gastrointestinal system, GLP-1 has been shown to
enhance satiety and the feeling of “fullness” delaying gastric
emptying, and to inhibit food intake [32–34]. In isolated
primary rat hepatocytes and skeletal muscle cells, GLP-1
increases glucose incorporation into glycogen and enhances
insulin-stimulated glucose metabolism in adipocytes [35–
37]. GLP-1 also inhibits hepatic glucose production and
stimulates glucose uptake in fat and muscle and increases
glycogen synthase activity and glucosemetabolism in skeletal
muscle. GLP-1 has been also suggested to induce bene�cial
effects in the cardiovascular systems, such as some improve-
ments in blood pressure, vascular tone, and myocardial
function [38]. ere is also increasing evidence from animal
models to support a potential role for GLP-1 in neuroprotec-
tion, and the increased risk of developing neurodegenerative
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conditions such as Alzheimer’s disease and Parkinson’s dis-
ease in patients with T2DM suggests that theremay be shared
underlying mechanisms in these conditions [39].

Impaired GLP-1 physiology is one of several known
metabolic de�ciencies involved in T2DM. Although contro-
versial data have been reported [40], some studies showed
that postprandial levels of intact, biologically active GLP-1
are reduced in obese and type 2 diabetic individuals [41–
43]. Despite the reduction of GLP-1 secretion, the glucose-
lowering action ofGLP-1 are preserved in patients with type 2
diabetes [44, 45], as well as the actions of GLP-1 on inhibition
of gastric emptying [46]. On the basis of these �ndings the
augmenting GLP-1 signaling became a useful strategy for
treatment of diabetic patients.

e key limitation to the therapeutic use of GLP-1 is
represented by its rapid inactivation. To avoid this prob-
lem, DPP-4 inhibitors (such as sitagliptin, vidagliptin, or
saxagliptin, which stabilize endogenous GLP-1), and more
stable exogenous molecules which act as GLP1R agonists
(such as the GLP-1 mimetic exenatide, or the human GLP-
1 analogue liraglutide) have been used [47–50]. DPP-4 inhi-
bition produces approximately a doubling of the circulating
GLP-1 levels, while synthetic agonists mimicking GLP-1
action results in striking elevations of GLP-1 signaling [3, 51–
56].

4. Formation of AGEs

AGEs are a heterogeneous group of structures formed as both
cross- and noncross-linking adducts on proteins, lipids, and
nucleic acids [6].

In the last century, a nonenzymatic reaction (glycation,
underlying AGE formation) was �rstly described byMaillard
[57]. e Maillard reaction is characterized by the interac-
tion of carbonyl group (aldehyde or ketone) of a reducing
sugar with free amino groups of proteins, amino acids,
phospholipids, and nucleic acids. e reaction starts with
the reversible formation of a Schiff base between a reducing
sugar and the amino group of a protein. Under hyperglycemic
and/or oxidative stress conditions the relatively unstable
Schiff base rearranges to form a more stable Amadori prod-
uct. Depending on the protein turnover rate and on the
glucose concentration, Amadori products undergo further
irreversible reactions to form AGEs [58, 59]. e rate and
direction of the Maillard reaction may be affected by many
others factors, such as the initial pH of the products, the
buffer capacity of the system, the temperature and heating
time, the moisture content, the nature of the reactants (low
molecular weight compounds tend to be more reactive than
high molecular weight compounds due to greater steric
encumbrance), and the nature of the amino compound (e.g.,
lysine ismore reactive than other amino acids due to the pres-
ence of the 𝜀𝜀-amino group). Besides endogenous formation
through the Maillard reaction, AGEs can be also generated
fromexogenous substances, such as smoke and food. Reactive
and toxic glycation products released by combustion of
tobacco enter the blood stream and accumulate in the tissues
through the lung capillary network [60]. High levels of AGEs

are also generated by heating during food preparation and
are then absorbed by the intestinal epithelium [61]. Dietary
AGEs have a low bioavailability (average 10%), however
more than 70% of them were found linked to proteins or
incorporated in tissues with consequently injurious impact
to vascular and kidney tissues [62].

AGEs are continuously formed and removed in differ-
ent tissues and body �uids. Formation of AGEs involved
modi�cation of long-lived proteins, such as albumin and
collagen both in healthy and in diabetic subjects. e
mechanism of AGE-mediated cellular damage is a complex
process which can be related to chemical modi�cation and
cross-linking of tissue proteins, lipids and DNA, and/or
mediated by the interaction with speci�c receptors [63].
e formation and accumulation of AGEs may lead to
the modi�cation of intracellular molecules, including most
importantly proteins involved in the regulation of gene
transcription. Furthermore, the adducts formed as DNA-
bound AGEs can affect expression of DNA or even induce
permanent mutation. AGEs can also modify extracellular
matrix molecules changing signaling between the matrix and
the cell, thus causing cellular dysfunction. AGE-modi�ed
circulating proteins can bind to AGE receptors, which may
have a role in both AGE detoxi�cation and suppression
of oxidative stress and in�ammation [64, 65]. erefore,
self-maintaining conditions linked to AGE formation would
be conceivable as contributing to the so-called “metabolic
memory” [66].

5. AGEs Activate Injury Pathways in
Diabetic Pathophysiology

e key role of AGEs in the onset and evolution of diabetic
complications is widely recognized. Several studies reported
that the activation of RAGE by AGEs induces the production
of in�ammatory cytokines and growth factors, which in
turn cause vascular pathology [67, 68]. A causal relationship
between the markers of early and advanced glycation with
diabetic complications has been established in both type 1
and 2 diabetes in basic research and clinical studies [5, 67, 69–
71].

In the last decade, a direct role of AGEs on pancreatic
𝛽𝛽 cell dysfunction in diabetic pathogenesis was also shown
[72–76].e exposure of pancreatic𝛽𝛽 cells toAGEs increased
oxidative stress, and contemporarily decreased the already
low levels of antioxidant activity [73, 77]. Oxidative stress has
been implicated not only in cellular injury, but also in cell
death, and the AGEs impaired pancreatic 𝛽𝛽-cell viability was
reported in different cell lines [73, 74, 78–80]. Furthermore,
AGEs decrease insulin production and release in response
to glucose. is events was associated with a decreased
expression of PDX-1 (one of the main positive regulators
of insulin gene transcription) [72, 81]. Furthermore, we
showed that AGEs altered the subcellular localization of
transcription factors involved in insulin gene expression.
Although the mechanisms of AGE-induced pancreatic 𝛽𝛽-cell
dysfunction have to be further clari�ed, evidence indicates
that AGEs interfere with several steps of the insulin-mediated
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regulation of glucose: AGEs inhibit the production of ATP
needed for insulin secretion and decrease the expression
of proteins involved in exocytosis of the insulin granules.
Moreover, it has been demonstrated that glycation of insulin
occurs during diabetes, and that glycated insulin represents
a signi�cant proportion of total circulating insulin in type 2
diabetes [82, 83]. Animal studies using isolated muscle and
adipose tissue suggest that insulin glycation is associated with
a signi�cant compromise of its biological activity.is aspect
raises the possibility that insulin glycation might contribute
to insulin resistance and glucose intolerance in type 2 diabetes
[84, 85]. Besides insulin glycation AGEs may contribute to
insulin-resistance at least with two additional mechanisms:
(1) evidence that AGE-modi�ed proteins disturb insulin
bioactivities in cultured adipocytes and skeletal muscles; (2)
impairment of insulin receptor substrate signaling.

ese data clearly indicate that the prevention of the
synthesis and tissue accumulation of AGE- or oxidative-
derived end-products might represent amajor advance in the
treatment of diabetic complications. Several compounds with
putative properties against AGE accumulation have been
investigated in both clinical and experimental settings, but
in most cases the results were disappointing or inferior to
bene�ts expected [86–90].

6. GLP-1 Reduces Expression of RAGE

During the last decade, the promising therapeutic role of
GLP-1 to prevent AGE-induced damage was preliminary
investigated with encouraging results. Several cell types
(such as endothelial cells [91–94], mesangial, neuronal, and
pancreatic beta cells [77, 95, 96]) were used in vitro at this
purpose.

ese studies showed that the interaction between AGEs
and RAGE evoked reactive oxygen specie (ROS) generation,
eliciting vascular in�ammation and thrombosis (conditions
described in the diabetic vascular complications). us,
stopping the vicious cycle triggered by RAGE ligand-RAGE
pathway would be helpful to improve the maladaptive effects
of glucose in diabetes. Evidence thatGLP-1may be efficient in
reducing RAGE expression came out in 2010, when Ishibashi
and coworkers demonstrated that GLP-1 dose-dependently
decreases constitutive RAGE mRNA levels in an endothelial
cell line. In particular, both RAGE mRNA and protein
levels were abrogated to about 70% of control cells [91].
Furthermore, authors showed that GLP-1 suppressed the
downstream signaling evoked by interaction between AGEs
and RAGE and also AGE-induced VCAM-1 expression. One
year later, the same group demonstrated in humanmesangial
cells that GLP-1 decreased RAGE mRNA and protein levels
to about 80% of control cells [96]. GLP-1 was able to
block the downstream signaling pathway of AGEs-RAGE
axis also in these cells, as con�rmed by the inhibition of
AGE-induced MCP-1 expression. In the same year, Matsui
et al. [93] investigated the effects of Vildagliptin, a stable
inhibitor of dipeptidyl peptidase-IV, on attenuation of RAGE
expression in thoracic aorta of an animal model of type 2
diabetes with obesity, the Otsuka Long-Evans Tokushima

Fatty rats (OLETF rats). Quantitative real-time RT-PCR and
immunohistochemical analyses revealed that treatment with
vildagliptin completely abrogated the increased expression
of RAGE mRNA and protein in OLETF rats. Furthermore,
vildagliptin blocked the RAGE-downstream pathways in the
aorta of OLETF rats, thus preventing the upregulation of
two membrane components of NADPH oxidase, gp91phox
and p22phox and, subsequently, reducing 8-OHdG level, a
marker of oxidative stress generation in the thoracic aorta of
OLETF rats. Treatment with Vildagliptin also decreased the
accumulation of AGEs in the thoracic aorta of OLETF rats,
as revealed by immunohistochemical analyses. Ishibashi et
al. demonstrated that Sitagliptin, another stable inhibitor of
dipeptidyl peptidase-IV, in combination with 10 pM GLP-
1 completely blocked the AGE-induced increase in RAGE
mRNA and protein levels in human umbilical vein endothe-
lial cells [92]. Accordingly, in HIT-T15 cells, we demon-
strated that GLP-1 counteracted AGE-induced expression of
RAGE mRNA, thus attenuating the detrimental effects of
AGEs [77]. Interestingly, it has been reported that analogous
of cyclic AMP (cAMP) mimicked the effects of GLP-1 on
RAGE gene expression in both mesangial and endothelial
cells [91, 96]. Since the biological activity of GLP-1 is mainly
mediated by the cAMP pathway, the ability of GLP-1 in
reducing RAGE expression may be related to a cAMP-
dependent pathway activated by GLP-1R.

7. GLP-1 Reduces AGE-InducedOxidative Stress

ere is growing body of evidence that AGE-RAGE interac-
tion might provoke oxidative stress generation and in�am-
mation, thereby causing progressive loss of cell function.e
restoration of the redox status can lead to the attenuation of
the AGE-induced injury and may be achieved through the
inhibition of ROS production and/or through the increased
expression of antioxidant enzymes. It has been reported
that GLP-1 counteracts the AGE-induced ROS generation in
many cell cultures [77, 91, 92]. In this context, glutathione
might play an important role in the cellular defense against
oxidant aggression and in maintaining redox homeostasis.
Considering that an increased ratio between the oxidized
(GSSG) and the reduced form (GSH) are directly associated
with oxidative stress, we found that AGEs increased GSSG
to GSH ratio rising the levels of GSSG and reducing in the
same time the availability of GSH in a pancreatic beta-cell
line [77]. Interestingly, GLP-1 restored the levels of GSH,
without affecting GSSG, suggesting that the protective effect
of GLP-1 on oxidative stress is mainly related to its ability of
increasing antioxidant defense [77]. e same behavior has
been observed in neuronal cells [95].

8. GLP-1 Prevents AGE-Induced Cell Death

GLP-1 has been shown to prevent AGE-impaired viability in
many cell types [77, 94, 95].is important effect is related to
the reduction of oxidative stress and alteration of Bcl-2- and
caspase-mediated pathways [73, 77, 94]. Recently, we demon-
strated in pancreatic beta cells that GLP-1 was able to prevent



Mediators of In�ammation 5

RAGE

ROS

Mitochondrial
and ER

dysfunction

AGEsGLP-1 

Insulin
secretion

Altered signal
transduction

Target genes

GLP1R

−

−

↑ Rage

↑

↓ Insulin

↓ PDX-1

↓Glucose
concentration

↓ AGEs
formation

↑ Antioxidant
defence

F 1: Bene�cial effects ofGLP-1 in pancreatic beta cells exposed
to AGEs. e activation of the AGEs-RAGE axis in pancreatic
beta cells increases oxidative stress that causes mitochondrial
dysfunction, endoplasmic reticulum stress, and altered signal trans-
duction. ese detrimental effects modify gene expression leading
to increased expression of RAGE and proapoptotic molecules, and
downregulation of proteins involved in insulin gene expression,
such as PDX-1, thus causing decreased insulin production and loss
of glucose-stimulated insulin secretion (GSIS). Activation of GLP-
1 signaling increases antioxidant defense thus counteracting for-
mation of reactive oxygen species (ROS) and expression of RAGE,
blocking the positive feedback loop that links RAGE activation
withRAGE expression. Furthermore, GLP-1maintaining pancreatic
beta-cell function restores GSIS, thus contributing to reduce plasma
glucose concentration and, consequently, formation of new AGEs.

AGE-induced necrosis and apoptosis and that this condition
is related to a decreased caspase-3 activity [77]. Kimura
and coworkers showed that GLP-1 protected neuronal cells
against methylglyoxal-induced apoptosis, and that certain
signaling pathways (such as PI3K/Akt/mTOR/GCLc/redox,
cyclic AMP (cAMP), and MAPK) have a crucial role in
the bene�cial effects mediated by GLP-1 [95]. Zhan and
coworkers showed that GLP-1 attenuated AGE-mediated
proapoptotic activities in endothelial cells by the release
of cytochrome c, increased expression of the proapoptotic
protein Bax, and caspase activation. Taken together, these
�ndings suggest that cAMP might be actively involved
in the AGE-triggered signaling pathways. In particular, in
human umbilical vein endothelial cells (HUVEC) exposed
to AGEs, RAGE might be a critical molecular target that is
selectively reduced by the protective pathways activated by
GLP1R.
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F 2: Bene�cial effects of GLP-1 in other cells exposed to
AGEs. Detrimental effect of AGEs leads to cell dysfunction and,
eventually, cell death. GLP-1, counteracting AGEs-induced damage
with mechanisms reported in pancreatic beta cells, may contribute
to reducing diabetic complications.

9. Conclusion
Inhibitory treatments targeting the accumulation of AGEs
may have bene�cial effects on the development/progression
of diabetic complications and may protect pancreatic 𝛽𝛽
cells from the deleterious effects of the diabetic milieu.
In this paper, we highlighted evidence that GLP-1 may
counteract AGE-induced damage, preserving the pancreatic
𝛽𝛽-cell function, limiting the disease progression and the
development of its vascular complications. ese bene�cial
effects may be attributable not only to the improvement of
the glycaemic control (leading to a slowing down in the
accumulation of AGEs), but also to the blockage of the AGEs-
RAGE axis, which is a pathogenetic mechanism of diabetes
and its complications. Despite ameliorating hyperglycaemia,
GLP-1 might provide different levels of protection from the
deleterious effects of AGEs: (i) by increasing antioxidant
defence, thereby reducing cellular stress; (ii) by blocking the
positive feedback of AGEs on RAGE expression (Figures 1
and 2).
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