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Abstract 

Background:  Crop improvement through cross-population genomic prediction and 
genome editing requires identification of causal variants at high resolution, within 
fewer than hundreds of base pairs. Most genetic mapping studies have generally 
lacked such resolution. In contrast, evolutionary approaches can detect genetic effects 
at high resolution, but they are limited by shifting selection, missing data, and low 
depth of multiple-sequence alignments. Here we use genomic annotations to accu-
rately predict nucleotide conservation across angiosperms, as a proxy for fitness effect 
of mutations.

Results:  Using only sequence analysis, we annotate nonsynonymous mutations in 
25,824 maize gene models, with information from bioinformatics and deep learning. 
Our predictions are validated by experimental information: within-species conserva-
tion, chromatin accessibility, and gene expression. According to gene ontology and 
pathway enrichment analyses, predicted nucleotide conservation points to genes in 
central carbon metabolism. Importantly, it improves genomic prediction for fitness-
related traits such as grain yield, in elite maize panels, by stringent prioritization of 
fewer than 1% of single-site variants.

Conclusions:  Our results suggest that predicting nucleotide conservation across 
angiosperms may effectively prioritize sites most likely to impact fitness-related traits 
in crops, without being limited by shifting selection, missing data, and low depth of 
multiple-sequence alignments. Our approach—Prediction of mutation Impact by Cali-
brated Nucleotide Conservation (PICNC)—could be useful to select polymorphisms for 
accurate genomic prediction, and candidate mutations for efficient base editing. The 
trained PICNC models and predicted nucleotide conservation at protein-coding SNPs 
in maize are publicly available in CyVerse (https://​doi.​org/​10.​25739/​hybz-​2957).
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Background
In quantitative genetics, candidate causal mutations are often detected by statistical 
associations between genetic polymorphisms and phenotypic differences within species 
(QTL effects). QTL effects are useful in plant breeding (e.g., in genomic prediction), but 
they may be confounded by the co-segregation of neutral polymorphisms with causal 
mutations (linkage disequilibrium; LD) [1]. In contrast, phylogenetic nucleotide conser-
vation (PNC) detects candidate causal mutations by conservation of DNA bases across 
species. This statistic is an indirect indicator of fitness effect [2], but it is less confounded 
by LD, due to the uncoupling of causal mutations and nearby polymorphisms, over 
large evolutionary timescales. PNC, as quantified by methods like SIFT [3] or gerp++ 
[4], may support plant breeding techniques which require identification of candidate 
causal mutations at high resolution: within hundreds of base pairs for cross-population 
genomic prediction or gene knock-out, and at single-base resolution for CRISPR-based 
editing.

Despite key advantages, PNC has practical disadvantages which limit its usefulness 
in quantitative genetics [5, 6]: (i) it is calculated from a multiple-sequence alignment 
(MSA), which requires cross-species conservation of alignable genomic regions; (ii) it 
may lack discriminatory power, because even variants with moderate effect on fitness 
may be highly conserved [2, 7]; and (iii) it may be biased by functional turnover (shift-
ing selection) and clade-specific conservation. To overcome these limitations, PNC may 
be predicted throughout the genome, based on annotations which capture the genomic 
characteristics of fitness effects (genomic annotations). Previous methods like CADD 
[8, 9] and LINSIGHT [10, 11] have been introduced to predict PNC, using genomic 
annotations like epigenetic marks, amino acid change, or disruption of transcription 
factor motifs [9, 11]. However, they have relied on genomic annotations from large-
scale experiments in human, which may not be available in plants. Moreover, the spatial 
resolution of their inference has been limited by small evolutionary timescales, within 
human and across related species.

In this study, we introduce a machine learning method to predict PNC across angio-
sperms in coding regions in maize (Zea mays L.), using computational annotations that 
are readily available from DNA sequence data and gene-model annotations. Computa-
tional annotations have several advantages: low cost, absence of missing values, and ease 
of portability from one genome to another. They may also provide latent (non-observed) 
representations of genes and can be used to perform in silico mutagenesis to predict the 
impact of point mutations on these representations. To achieve high resolution and high 
accuracy, we use high-resolution genomic annotations to predict PNC in the angiosperm 
clade, spanning > 140 million years of evolution and recombination events [12]. We use 
in silico mutagenesis to estimate the effect of mutations on protein structure, based on 
UniRep, a sequence-based deep learning technique which characterizes protein struc-
ture by latent representations of protein sequences [13]. Our predictions of PNC are val-
idated by functional enrichment. Importantly, our validations include cross-population 
genomic prediction, in which genome-wide single-nucleotide polymorphisms (SNPs) 
are used to predict agronomic traits, and SNPs in coding regions are upweighted accord-
ing to their predicted PNC. Together, our functional analyses show that predicted PNC 
is useful to identify impactful genes and SNPs for fitness-related traits in maize.
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Results
Monomorphic sites in maize are under stronger evolutionary constraint than polymorphic 

sites

In this study, we aimed at capturing the genomic basis for fitness effects in coding 
regions in maize, by predicting PNC at nonsynonymous mutations from genomic anno-
tations. PNC was estimated by conservation of DNA bases, in a MSA of 27 diverse plant 
genomes, from basal angiosperm Amborella trichopoda, to dicots (Trifolium pratense, 
Medicago truncatula, Glycine max, Prunus persica, Populus trichocarpa, Manihot escu-
lenta, Arabidopsis thaliana, Arabidopsis lyrata, Brassica napus, Brassica rapa, Theo-
broma cacao, Vitis vinifera, Solanum tuberosum, Solanum lycopersicum, Chenopodium 
quinoa, Beta vulgaris) and monocots (Sorghum bicolor, Setaria italica, Oryza rufipogon, 
Oryza longistaminata, Leersia perrieri, Triticum Urartu, Aegilops tauschii, Hordeum 
vulgare, Brachypodium distachyon, Musa acuminata) [14]. Consequently, this MSA 
spanned large evolutionary times, equivalent to 16.2 expected substitutions per site 
under a neutral evolutionary model.

The DNA bases (genomic sites) with large fitness effects are subjected to evolutionary 
constraint, so they tend to be conserved across species (high PNC), and monomorphic 
within species (no observed polymorphism at the DNA base). Accordingly, monomor-
phic sites within maize (sites with no observed SNPs in a maize reference panel) tended 
to be more conserved across angiosperms, compared to polymorphic sites: they were 
aligned in MSAs over larger evolutionary timescales (Additional file 1: Fig. S1), and their 
evolutionary rate was lower (Fig. 1).

Our approach—Prediction of mutation Impact by Calibrated Nucleotide Conserva-
tion (PICNC)—used conserved sites as positive examples for large fitness effects, and 
sites in non-aligned regions as negative examples for neutral effects. PICNC did not rely 
on within-species variability (e.g., SNP allele frequency), so we could train our model 
on nonsynonymous mutations at any site, even when they were not observed in maize 
populations (i.e., even when they were monomorphic within maize). Therefore, we 
could include data about the genomic sites where polymorphisms are not tolerated by 

Fig. 1  Distribution of rejected substitution (RS) scores by category of DNA bases. RS scores, which integrate 
information about conservation (1 − Substitution rate) and MSA depth (Tree size), were calculated by 
gerp++ [4] as previously described [14]. Monomorphic sites: sites with no observed polymorphism within 
maize. SNPs: observed polymorphisms in Hapmap 3.2.1, a representative panel of inbred lines in maize [15]. 
SNPs in hybrid panels: subset of SNPs which are observed in two panels of hybrid crosses between inbred 
lines and testers [16]
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evolution (e.g., the sites where mutations are lethal). This helped us avoid survivorship 
bias at SNP sites and provided many more instances of PNC to learn about the genomic 
characteristics of fitness effects: 20,136,310 monomorphic sites, instead of 483,448 non-
synonymous SNPs across diverse maize lines [15] or 103,905 nonsynonymous SNPs in 
elite maize panels [16] (Fig. 1, Additional file 1: Fig. S1).

Evolutionary constraint is accurately predicted by genomic annotations from sequence 

analysis

At each nonsynonymous mutation, PNC was characterized by a deep MSA (tree size > 
5 expected nucleotide substitutions under a neutral model) and a high nucleotide con-
servation (substitution rate < 0.05 in the MSA at the site of the mutation). Observed 
PNC was used to train a probability random forest with genomic annotations about 
genomic structure (transposon insertion, GC content, average k-mer frequency) and 
protein structure (SIFT score, mutation type, protein features, and in silico mutagen-
esis scores from UniRep). While mutation type simply characterizes the codon change 
caused by a nonsynonymous mutation (missense, STOP gain, or STOP loss), SIFT score 
quantifies the impact of the nonsynonymous mutation by calculating the probability of 
its codon change (the lower the SIFT score, the more damaging the mutation) [3, 17]. 
In contrast, UniRep variables characterize the ontology and structure of a protein by a 
quantitative representation of its sequence [13]; in silico mutagenesis scores then quan-
tify the effect of a mutation on this representation. Therefore, mutation type, SIFT score, 
and in silico mutagenesis scores all measured how damaging a codon change was, but in 
different ways. Our prediction approach (PICNC) benefited from three key advantages 
(Fig. 2): (i) monomorphic sites provided more information about PNC; (ii) annotations 

Fig. 2  Prediction of mutation Impact by Calibrated Nucleotide Conservation (PICNC). Methodology for 
prediction of phylogenetic nucleotide conservation (PNC) by probability random forests. PNC was defined 
by high conservation (substitution rate < 0.05) over deep MSA (tree size > 5 expected neutral substitutions). 
Genomic annotations were produced only by sequence analysis. They described genomic structure and 
protein structure at nonsynonymous point mutations in maize coding regions. Monomorphic sites (no 
observed polymorphism within maize) were used for training, and observed SNPs were used for prediction. 
In leave-one-chromosome-out prediction, a probability random forest is trained ten times, once for each 
left-out chromosome
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like SIFT scores and in silico mutagenesis scores from UniRep enabled predictions at 
single-site resolution; and (iii) leave-one-chromosome-out prediction avoided overfit-
ting to observed PNC (see “Methods”). For each of the ten chromosomes in maize, we 
predicted PNC using a model trained in all other chromosomes. Therefore, the accuracy 
of our approach could not be inflated by spurious associations between genomic annota-
tions and PNC along chromosomes. For each left-out chromosome, the PICNC random 
forest model was tuned for optimal hyperparameters (number of trees per forest, and 
number of sampled features per tree; see “Methods”). Our model showed little sensi-
tivity to hyperparameters, as exemplified by the low range of classification accuracy in 
chromosome 8 (0.6%) across hyperparameters (Additional file 1: Fig. S2).

Compared to a baseline model including SIFT score and mutation type (missense, 
STOP gain, STOP loss), annotations about genomic structure (especially GC content) 
contributed to an improved prediction accuracy for PNC, from 72 to 76% (Fig. 3A). Pro-
tein features (UniRep variables) and their in silico mutagenesis scores resulted in a fur-
ther increase to > 80% (Fig.  3A). This additional gain in accuracy suggests that novel 
annotations about protein structure and the impact of nonsynonymous mutations, 
based on machine learning techniques (protein embedding) rather than evolutionary 
or bioinformatic approaches, may improve our ability to detect deleterious mutations 
in protein-coding regions. Predicted PNC was correlated to SIFT scores, such that sites 
with a minimum SIFT score (0) tended to have a large predicted PNC (Fig. 3B). How-
ever, this concordance was not perfect, and predicted PNC pointed to potential false 
positives: sites under low evolutionary constraint among those with a minimum SIFT 
score. As expected, SIFT score was the most useful genomic annotation for predicting 
PNC, but its importance was on par with those of UniRep variables and their in silico 
mutagenesis scores (Fig. 3C). The importance of these annotations suggests that infor-
mation about protein structure may have enabled finer prioritizations, compared to a 
baseline model which only included mutation type and SIFT score.

To investigate the usefulness of UniRep variables within maize, we fitted random for-
ests models which regressed gene properties on UniRep variables: expression levels 
(RNA and protein abundance) and selective constraint (negatively associated with the 
nonsynonymous-to-synonymous SNP ratio, Pn/Ps, and the proportion of nonsynony-
mous SNPs, Pn/(Pn+Ps), within each gene). UniRep variables captured gene variability 
within maize, for these gene properties: prediction accuracy (Pearson correlation) > 
0.35 (Additional file 1: Fig. S3). Therefore, the UniRep variables, which were designed to 
capture protein structural variability across viruses, prokaryotes, and eukaryotes, were 
useful, both across angiosperms (on PNC) and within maize (on gene properties). Inter-
estingly, a subset of 10 variables stood out as capturing more information about PNC 
(Fig.  3D) and was also important for predicting selective constraint within species, as 
reflected by the nonsynonymous-to-synonymous SNP ratio and the proportion of non-
synonymous SNPs within genes (Additional file 1: Fig. S4) [19]. Therefore, few UniRep 
variables may capture the fitness effects of maize genes and could serve as succinct func-
tional representations of genes for effects on fitness-related traits.

UniRep variables improved classification accuracy for PNC in protein-coding regions. 
However, such an improvement was not observed for mutations in non-coding regions 
of genes (introns and UTRs) or intergenic regions, when using UniRep variables to 
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describe protein features of the nearest gene (Additional file 1: Fig. S5). Therefore, while 
UniRep variables may be useful to predict the effects of mutations on protein structure, 
they may not provide useful information for effects on other biological processes (e.g., 
regulation of gene expression).

Predicted evolutionary constraint identifies deleterious variants

Observed PNC is prone to errors and lacks power to discriminate among different 
sizes of fitness effects [6]. On the other hand, predicted PNC is estimated by func-
tions of genomic annotations learned across many sites and provides a quantita-
tive value for the probability of PNC, ranging from 0 to 1. Therefore, we tested the 
hypothesis that predicted PNC could estimate fitness effects more accurately than 

Fig. 3  Contribution of genomic annotations to prediction accuracy in probability random forests. A 
Classification accuracy of probability random forests for predicted phylogenetic nucleotide conservation 
(PNC). Accuracy: percentage of correct calls, i.e., the percentage of sites in chromosome 8 for which 
predicted PNC (rounded) equaled observed PNC, over three replicates. Accuracy was weighted to account 
for imbalance with respect to PNC (see “Methods”). Sets of genomic annotations were sequentially added 
to the set of predictors in probability random forests. Mutation type & SIFT score: Mutation type (missense, 
STOP gain or STOP loss), SIFT score (with missing values set to 1), and SIFT class (“constrained” if SIFT score 
≤ 0.05, “tolerated” otherwise). Genomic structure: GC content, k-mer frequency and transposon insertion. 
Mutagenesis scores: in silico mutagenesis scores for UniRep variables. Protein features: UniRep variables, 
generated by the 256-unit UniRep model. B Relationship between SIFT scores and predicted PNC at maize 
SNPs (observed polymorphisms in Hapmap 3.2.1, a representative panel of inbred lines in maize [15]). 
Predicted PNC is computed by the full PICNC model, including all genomic annotations. Darker colors 
indicate higher density of SNPs. ρ: Spearman correlation coefficient. C Variable importance of genomic 
annotations. Variable importance: corrected impurity measure in probability random forests [18]. D Variable 
importance of protein features (UniRep variables), ordered in decreasing order. A subset of 10 UniRep 
variables stood out as contributing most to the prediction accuracy for PNC
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observed PNC. Variability at SNPs, as reflected by minor allele frequency in a maize 
reference panel (MAF), provided information about selective constraint at DNA sites 
within species. The relationship between PNC and fitness effects was corroborated 
by its negative association with MAF, as was previously reported [20]. Notably, SNPs 
prioritized by predicted PNC tended to have lower MAF as prioritizations grew 
more stringent, and these SNPs were eventually much rarer than those prioritized 
by observed PNC (Figs. 4A and 5B). The functional relevance of predicted PNC was 
also supported by its positive association with chromatin accessibility (Fig. 4B), which 
is correlated with phenotypic effects in maize [16, 21]. A positive association with 
expression QTL (eQTL) effect was also observed, but only for observed PNC (P = 
0.003 and P = 0.034 in shoot and root tissues respectively, compared to P = 0.120 
and P = 0.485 for predicted PNC; Fig. 4C), possibly because the genomic annotations 

Fig. 4  Relationship between phylogenetic nucleotide conservation (PNC) and experimental annotations 
at SNPs. A Decrease in observed and predicted PNC over within-species variability, quantified by MAF in 
reference panel Hapmap 3.2.1 [15]. B Increase in predicted PNC in accessible chromatin regions, defined 
by MNase hypersensitivity in shoot or root tissues [21]. C Positive association between observed PNC and 
expression QTL effect (in absolute values) in shoot or root tissues, estimated in a diverse maize panel [22]
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Fig. 5  Prioritization of SNPs by SIFT score or phylogenetic nucleotide conservation (PNC). A Euler diagram 
of SNP sets prioritized by SIFT score = 0, observed PNC = 1, or predicted PNC > 90%, 99%, 99.9% percentile, 
in maize (observed polymorphisms in Hapmap 3.2.1). Concentric dashed circles refer to smaller subsets of 
SNPs prioritized by increasingly stringent thresholds on predicted PNC. B Decrease in minor allele frequency 
(MAF) of prioritized SNPs, in maize and sorghum. Difference in MAF between prioritized SNPs and all SNPs. 
Maize SNPs: observed polymorphisms in the Hapmap 3.2.1 reference panel [15]; Sorghum SNPs: observed 
polymorphisms in the reference panel of Lozano et al. [23]. SNPs were prioritized if their SIFT conservation 
(1 − SIFT score) or predicted PNC was above the 50%, 90%, 99%, or 99.9% percentile, or if their observed PNC 
was equal to 1 (tree size > 5, substitution rate < 0.05). Error bars and dotted lines represent 95% confidence 
intervals in two-sample t-tests, for SIFT score or predicted PNC, and observed PNC, respectively
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used to predict PNC lack relevant information about gene expression, or because the 
sites in eQTL are not under strong negative selection across angiosperms.

SIFT score (the more conserved the site, the lower) and predicted PNC (the more con-
served, the higher) are both proxies for evolutionary constraint. However, SIFT scores 
pointed to relatively large sets of SNPs in the maize reference panel; even the smallest 
SIFT score value pointed to as many as 64,611 out of 483,448 nonsynonymous SNPs 
in a maize reference panel (Fig.  5A). Predicted PNC above its 90% percentile (0.73) 
pointed to 48,345 SNPs, most of which were also prioritized by SIFT score or observed 
PNC. However, more stringent thresholds on predicted PNC pointed to smaller subset 
of SNPs, within the SNP set prioritized by minimum SIFT score (Fig.  5A). Under the 
hypothesis that predicted PNC identifies signatures of negative selection, we expected a 
decrease in average MAF as SNP prioritizations grew more stringent, even for the rela-
tively small subsets selected by predicted PNC above the 99% and 99.9% percentiles. As 
expected, predicted PNC achieved a decrease in average MAF in a maize reference panel 
[15], which was larger as SNP prioritizations were more stringent, and was significantly 
larger than the decrease achieved by either observed PNC or SIFT score (Fig. 5B). We 
also estimated the average minor allele frequency in a sorghum reference panel [23], 
and we predicted PNC in the sorghum reference genome, using a PICNC model trained 
on all maize chromosomes (using all genomic annotations except transposon insertion; 
see “Methods”). As expected, SNP prioritizations by predicted PNC also resulted in a 
decrease in minor allele frequency in sorghum, which was significantly larger compared 
to prioritizations by SIFT score (Fig. 5B).

Predicted evolutionary constraint prioritizes highly expressed genes in primary metabolic 

pathways

Under the hypothesis that predicted PNC identifies impactful genes, the set of genes 
prioritized by predicted PNC should be enriched for important functional attrib-
utes like high gene expression. Prioritization by SIFT score (17,101 or more genes 
selected) resulted in a small increase in protein expression, while observed PNC 
resulted in significant enrichment for highly expressed genes (higher RNA and pro-
tein abundance, in more tissues), among 14,646 prioritized genes out of the 24,549 
genes containing nonsynonymous SNPs (Fig.  6A). However, such enrichment was 
more evident with predicted PNC, and increased consistently as fewer genes were 
selected (Fig.  6A). As expected, the nonsynonymous-to-synonymous SNP ratio and 

Fig. 6  Functional enrichment of genes prioritized by SIFT score or phylogenetic nucleotide conservation 
(PNC), in maize. Genes were prioritized by selecting SNPs with SIFT conservation (1 − SIFT score) or predicted 
PNC above the 50%, 90%, 99%, or 99.9% percentile, or observed PNC equal to 1 (tree size > 5, substitution 
rate < 0.05). A Difference in average expression between prioritized genes and all genes. Gene expression is 
quantified by RNA abundance (FPKM over 23 tissues) and protein abundance (dNSAF over 32 tissues) based 
on the gene expression atlas of [29]: median expression, and number of tissues with non-zero expression 
level. Error bars and dotted lines represent 95% confidence intervals in two-sample t-tests, for predicted 
and observed PNC, respectively. B Enrichment of prioritized genes for gene ontology (GO) classes. Ratio of 
number of prioritized genes over expected number under the null hypothesis (random gene prioritization). 
GO classes belong to the plant GO slim subset [30]. Ontology: BP, biological process; MF: molecular function. 
For each threshold and ontology, false discovery rates (FDR) were calculated over GO classes, based on 
P-values from Fisher’s exact tests. Full circles and full lines indicate FDR < 0.05, for SIFT conservation or 
predicted PNC, and observed PNC, respectively

(See figure on next page.)
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the proportion of nonsynonymous SNPs within genes also decreased as prioritization 
of genes grew more stringent, in maize as well as in sorghum (Additional file 1: Fig. 
S6). These results suggest that predicted PNC pointed to impactful genes. Alterna-
tively, PNC at these prioritized genes may be a direct consequence of “expression-rate 

Fig. 6  (See legend on previous page.)
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anticorrelation,” i.e., selection against cytotoxic byproducts of highly expressed genes 
(e.g., due to mRNA misfolding or protein misinteraction), rather than direct selection 
for their functional importance [24–28].

To analyze the function of genes prioritized by predicted PNC, we estimated their 
enrichment for GO classes. Significant enrichment was detected for genes involved in 
catalytic activity and nucleotide binding (e.g., ATP binding for energy transfer). Based 
on these functional enrichments, predicted PNC prioritized genes involved in primary 
metabolism (Fig. 6B, Additional file 1: Fig. S7). In contrast, genes involved in gene regu-
lation and plant development were depleted by these prioritizations. Prioritization by 
observed PNC also resulted in significant depletion for these GO classes, so PNC across 
angiosperms may have de-emphasized developmental genes, possibly because of func-
tional turnover over large evolutionary timescales [5, 6]. Even though we included PNC 
over moderate evolutionary timescales (tree size between 5 and its maximum, 16.2), 
clade-specific constraint (e.g., at the genus level) could not be detected in the sample of 
genomes used in this study [14]. In addition, the depletion by predicted PNC may have 
been exacerbated by the prediction model itself; the absence of genomic annotations 
about gene regulation (e.g., RNA-protein binding) may have downplayed the importance 
of developmental genes for fitness. Finally, these depletions might actually reflect relaxed 
selection on low gene expression (expression-rate anticorrelation) [28]. However, even 
after accounting for RNA and protein expression, we still observed significant depletions 
for these GO classes (Additional file 1: Fig. S7), so we could not rule out genes’ func-
tional importance as a direct determinant of PNC.

For a more detailed description of prioritized genes, we identified the pathways that 
were significantly enriched among the genes prioritized by predicted PNC, observed 
PNC, or SIFT score. According to the CornCyc database [31], gene prioritization by 
SIFT score or observed PNC did not result in significant pathway enrichment, while pre-
dicted PNC pointed to genes involved in carbon metabolism (Table 1). The most repre-
sented pathways among genes prioritized by predicted PNC (> 99.9% percentile) were 
in “C4 photosynthetic carbon assimilation cycle” (Additional file 2: Tables S1 and S2), 
while significant enrichment was detected for pathways involved in glycolysis, fatty acid 
catabolism, and amino acid biosynthesis (Table 1). Therefore, pathway enrichments con-
firmed GO enrichments and pointed to carbon-metabolic pathways likely shared across 
angiosperms.

Predicted evolutionary constraint improves genomic prediction for fitness‑related traits 

in hybrid maize lines

To assess the functional relevance and practical utility of predicted PNC, we used pre-
dicted PNC to weight nonsynonymous SNPs in genomic prediction for agronomic traits: 
days to silking (DTS), plant height (PH), or grain yield (GY). We tested the hypothe-
sis that predicted PNC was larger at causal variants for fitness-related traits in hybrid 
panels. Under this hypothesis, we expected that (i) weighting SNPs with predicted PNC 
increased the accuracy of genomic prediction; and (ii) prioritizing SNPs with larger pre-
dicted PNC resulted in further gains in accuracy. Expectation (i) was not met for any of 
the agronomic traits (Additional file 1: Fig. S8), probably because of the large LD extent 
in the hybrid panels (average squared correlation above 0.1 within 100-kb distance), 
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such that causal variants were adequately tagged even by randomly weighted SNPs [16]. 
Expectation (ii) was met for GY, our trait most related to fitness; a gradual increase in 
prediction accuracy was observed as prioritization of SNPs was more stringent (Fig. 7), 
with a trend similar to that for lower MAF (Fig. 5B). Moreover, a significant increase in 
prediction accuracy was obtained by prioritizing the top 1040 (1%) and 104 (0.1%) SNPs 
(P < 0.05 based on random permutations of SNP weights), while prioritization by the 
lowest SIFT score (9576 SNPs) did not result in a significant increase in prediction accu-
racy (Table 2, Fig. 7). The gains in prediction accuracy achieved by predicted PNC were 
greater than those achieved by observed PNC (Table 2), despite ~80 times fewer prior-
itized SNPs (Fig. 7A, Additional file 2: Table S3). Assuming the minor allele to be delete-
rious, prioritization of the top 0.1% SNPs by predicted PNC would select 15 mutations 
per inbred line on average (average MAF of 0.144 among prioritized SNPs; Additional 
file 2: Table S3). Therefore, stringent prioritization of SNPs by predicted PNC could ena-
ble the selection of manageable numbers of candidate variants, for subsequent purging 

Table 1  Enrichment of prioritized genes for CornCyc pathway annotations

PNC: Measure of phylogenetic nucleotide conservation (PNC) used to select SNPs in the maize reference panel (Hapmap 
3.2.1) and prioritize the genes containing the selected SNPs; SNPs were selected if their observed PNC was 1 or if their 
predicted PNC was above the 50%, 90%, 99%, or 99.9% percentile; Pathway: name and ID of pathway, retrieved from 
CornCyc, release 2021/03/25 [31]; Enrichment: ratio of observed over expected counts; P-value, from Fisher’s exact test; FDR, 
false discovery rate [32] to correct for multiple testing over pathways. Prioritization of genes by SIFT scores did not result in 
any statistically significant enrichment or depletion for pathway annotations

PNC Minimum 
percentile

Pathway Enrichment P-value (FDR)

Observed NA Triacylglycerol degradation (LIPAS-PWY) 0.76 2.9 × 10−5 (0.0093)

Aerobic respiration III (alternative oxidase pathway) 
(PWY-4302)

0.70 3.7 × 10−5 (0.0093)

Predicted 90% Glycolysis IV (plant cytosol) (PWY-1042) 1.41 7.8 × 10−7 (0.00038)

Rubisco shunt (PWY-5723) 1.40 2.1 × 10−4 (0.015)

Glycolysis I (from glucose 6-phosphate) (GLYCO-
LYSIS)

1.36 1.0 × 10−5 (0.0025)

Gluconeogenesis I (GLUCONEO-PWY) 1.36 8.4 × 10−5 (0.0083)

Glycolysis II (from fructose 6-phosphate) (PWY-
5484)

1.36 2.4 × 10−5 (0.0029)

Triacylglycerol degradation (LIPAS-PWY) 0.65 1.7 × 10−5 (0.0027)

Very long-chain fatty acid biosynthesis I (PWY-
5080)

0.59 3.1 × 10−4 (0.019)

Trans-zeatin biosynthesis (PWY-2681) 0.29 1.6 × 10−4 (0.013)

99% L-leucine biosynthesis (LEUSYN-PWY) 3.66 9.5 × 10−4 (0.043)

Fatty acid β-oxidation II (peroxisome) (PWY-5136) 3.59 4.8 × 10−4 (0.033)

Glyoxylate cycle (GLYOXYLATE-BYPASS) 2.99 6.3 × 10−4 (0.033)

TCA cycle II (PWY-5690) 2.51 5.0 × 10−4 (0.033)

Gluconeogenesis I (GLUCONEO-PWY) 2.24 2.6 × 10−4 (0.032)

Glycolysis IV (plant cytosol) (PWY-1042) 2.16 2.0 × 10−4 (0.032)

Glycolysis II (from fructose 6-phosphate) (PWY-
5484)

2.16 2.0 × 10−4 (0.032)

Glycolysis I (from glucose 6-phosphate) (GLYCO-
LYSIS)

2.09 4.4 × 10-4 (0.033)

Aerobic respiration I (cytochrome c) (PWY-3781) 0.31 4.3 × 10−6 (0.0021)

Triacylglycerol degradation (LIPAS-PWY) 0.23 6.5 × 10−4 (0.033)

Very long-chain fatty acid biosynthesis I (PWY-
5080)

0 6.6 × 10−4 (0.033)
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of mutational load by breeding or CRISPR-based editing. Such few selected variants 
would represent a small fraction of the total mutational load, since even most stringent 
prioritizations by SIFT scores would select as many as 1638 deleterious mutations per 
inbred line on average (average MAF of 0.171 among prioritized SNPs; Additional file 2: 
Table S3). However, they would represent the fraction of most impactful SNPs in each 
haploid genome.

Significant increase in prediction accuracy for GY was observed in a large panel of 
half-sibs (NAM-H), but not in a diverse panel representative of genetic variability in 
maize (Ames-H). Importantly, SNPs that are rare in maize are not necessarily rare in 

Fig. 7  Prioritization of nonsynonymous SNPs in genomic prediction for grain yield, in hybrid maize lines. 
A Number of SNPs prioritized by SIFT conservation (1 − SIFT score), predicted phylogenetic nucleotide 
conservation (PNC), or observed PNC. B Genomic prediction accuracy within panel, in leave-one-family-out 
prediction in the Nested Association Mapping hybrid panel (NAM-H) [16]. C Genomic prediction accuracy 
across panels, from a diverse hybrid panel (Ames-H) to NAM-H, and vice versa [16]. Genomic prediction 
models included effects of population structure variables (top three principal components in the Hapmap 
3.2.1 reference panel in maize), effects of genome-wide SNPs, and effects of nonsynonymous SNPs. 
Diamonds: nonsynonymous SNPs were weighted by SIFT conservation or predicted PNC, and prioritized 
by truncating weights to zero if they were under the 0%, 50%, 90%, 99%, or 99.9% percentile. Open circles: 
nonsynonymous SNPs were weighted and prioritized by 20 random permutations of SIFT conservation or 
predicted PNC, to determine whether the prediction accuracy by SNP weights was significantly different from 
the accuracy by random SNP weights
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NAM-H, because of the half-sib family structure, in which 24 different donor parents 
are crossed to the same recurrent parent [16]. Therefore, effects of deleterious muta-
tions from the recurrent parent in NAM-H were estimated accurately, even though they 
may be rare in maize. The gain in prediction accuracy achieved by predicted PNC was 
significant but modest (0.25 by prioritizing the top 0.1% vs. 0.24 by weighting all nonsyn-
onymous SNPs equally), probably because the donor parents were unrelated and shared 
few deleterious mutations with one another (Table 2, Fig. 7B). However, when we used 
NAM-H to predict GY in Ames-H, we achieved a large and significant increase in pre-
diction accuracy (0.33 by prioritizing the top 0.1% vs. 0.24 with equal weights; Table 2, 
Fig.  7C). In Ames-H, variation at SNPs—and the information available to learn their 
effect—is positively correlated with MAF [16]. Therefore, prioritization of variants with 
lower MAF (Figs. 4A and 5B) resulted in larger estimation errors in Ames-H and may 
explain why genomic prediction models trained in this panel benefited less from prior-
itizations by predicted PNC (Fig.  7C, Additional file  1: Fig. S8). Accordingly, genomic 
effects at rare SNPs (MAF < 0.01) were significantly larger in NAM-H (> 16-fold enrich-
ment) but not in Ames-H, based on a previous study [16]. Therefore, NAM-H was a use-
ful training set to test enrichments of prioritized SNPs for genomic effects, but Ames-H 
did not allow us to detect such enrichment due to the relatively low variability at rare 
SNPs in this panel.

Genomic prediction for other agronomic traits (PH and DTS) was not improved by 
PNC. This lack of improvement may be due to a weak relationship between these traits 
and evolutionary constraint, as proxied by PNC across angiosperms. Consistently, in 
maize, hybrid vigor and inbreeding depression are substantially larger for traits related 
to seed weight and grain yield, compared to traits related to plant morphology and flow-
ering time [33–35]. Interestingly, prioritizations by predicted PNC resulted in a grad-
ual decrease and a significant loss of accuracy for DTS, in a genomic prediction model 
trained in Ames-H, which suggests that predicted PNC may actually fail to detect vari-
ants that are causal for adaptive traits like flowering time (Table 2, Additional file 1: Fig. 
S8). Moreover, enrichment of rare SNPs (MAF < 0.01) for effects on PH and DTS was 
not detected in either Ames-H or NAM-H [16], which suggests that the SNPs impact-
ing these traits are under weaker negative selection, compared to those impacting GY. 
Together, our results on PNC, and previous results on MAF, indicate that prioritiza-
tion of SNPs by PNC may improve genomic prediction if some of their causal SNPs are 
under negative selection, and carry enough statistical information in the training set 
(e.g., causal SNPs for a yield trait like GY in a collection of biparental populations like 
NAM-H).

Discussion
Our results about the characteristics of prioritized SNPs and genes suggest that predicted 
PNC is more useful than observed PNC to identify causal variants for fitness-related 
traits, since it can select fewer variants and produce stronger functional enrichments. 
Our approach (PICNC) addressed two important caveats of observed PNC, which limit 
its usefulness for quantitative genetics and breeding applications: missing information 
outside MSAs, and sensitivity of conservation to fitness effects [6]. Our predictions of 
PNC addressed the first caveat by using, as predictors, genomic annotations that are 
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readily available from DNA sequence data and gene-model annotations. These genomic 
annotations were produced by bioinformatic and machine learning procedures which 
are designed for broad sets of species, with the exception of transposon insertion which 
was detected by maize-specific transposon motifs [36] but was not important in our pre-
dictions (Fig.  3C). The second caveat is due to low discriminatory power of observed 
PNC, such that PNC tends to its maximum as soon as evolutionary constraint is moder-
ate, especially in MSA across few taxa [2, 7]. Our predictions addressed this caveat by 
estimating a probability for PNC, which could be used to select arbitrarily small sets of 
sites in prioritizations (Figs. 5A and 7A), whereas observed PNC might select too many 
sites for breeding applications like biological design (e.g., 55,789 and 8311 nonsynony-
mous SNPs with observed PNC in reference and hybrid panels, respectively).

Based on GO and pathway enrichment analyses, predicted PNC pointed to genes in 
primary metabolism: biosynthesis and energetic catabolism (Fig. 6B, Table 1). However, 
genes involved in secondary (specialized) metabolism were not preferentially selected, 
despite their importance in adaption (e.g., resistance to biotic or abiotic stress). The pri-
oritization of impactful variants in such genes will require a proxy for fitness effects that 
is specific to environmental conditions: cultivated or wild environment, and clade-spe-
cific selection pressures [37]. The detection of fitness effects acting through secondary 
metabolism will certainly require to predict PNC over smaller evolutionary timescales 
(e.g., within the Andropogoneae clade) [38], by genomic annotations that are specific to 
tissues and/or environments [39]. The emphasis of predicted PNC on primary metabo-
lism illustrates a fundamental trade-off in our approach (and other similar approaches 
like SIFT): on the one hand, evolutionary depth allows us to detect effects of mutations 
at high spatial resolution; on the other hand, inferences are biased towards certain cat-
egories of genes, because fitness effects can only be detected if they are consistent over 
large evolutionary timescales [37]. To detect effects of single-site mutations on second-
ary metabolism, other genetic approaches than PICNC may be preferable: analysis of 
evolutionary divergence or balancing selection, association studies, and/or targeted 
mutagenesis [39, 40]. Despite this representation bias, predicted PNC will be useful to 
detect effects of deleterious alleles, segregating in natural populations (e.g., variants for 
carbon-metabolic genes in maize [41]) or fixed by genetic bottlenecks and/or transi-
tions to selfing (e.g., during crop domestication) [37, 42]. Therefore, our approach could 
guide rapid cycling genomic selection and targeted mutagenesis for purging mutational 
load [43], especially in central carbon metabolism. Specifically, PICNC could target few 
candidate causal variants, for subsequent CRISPR-based base editing (e.g., C-to-T and 
A-to-G transitions) [44]. Compared to SIFT scores or other proxies for evolutionary 
constraint, predicted PNC would be especially useful in such applications, by targeting 
only a handful of sites to be edited simultaneously, for maximal effect on mutational load 
(Fig. 5) [45, 46].

Our approach was validated by cross-population genomic prediction (training 
in one set of populations, validation in a distinct set of populations). Compared to 
within-population genomic prediction, cross-population genomic prediction accura-
cies are typically much lower—and sometimes close to zero [47–53], because of dif-
ferences in LD patterns and allele frequencies between training set and validation set 
[54–57]. Significant improvements in cross-population genomic prediction for GY 
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suggest that prioritization of SNPs by predicted PNC could be useful for breeding 
applications (e.g., genomic pre-breeding [58, 59], or genomic selection in understud-
ied populations [60–62]). They also suggest that predicted PNC could point to use-
ful candidate causal variants, because accurate cross-population prediction requires 
very close tagging of causal variants by genomic markers [55]. Our improvements in 
prediction accuracy for GY (+5% and +38%) are on par with those achieved from 
genome-wide prioritization of genomic variants with many experimental annotations 
in large human samples (trans-ancestry predictions in cohorts of size > 150,000) [53]. 
However, they suggest that prioritization by PNC is only useful for fitness-related 
traits, for which causal variants are likely to be under evolutionary constraint. In this 
study, prioritization by PNC was tested in elite maize populations, in which deleteri-
ous mutations have been purged through sustained crop improvement [63]. It could 
be even more useful in other maize populations [64] or in other crop species, in which 
deleterious mutations are widespread, like sorghum [23, 65] or cassava [66].

Our approach exemplifies important benefits of this coming generation of pro-
tein structural machine learning annotations for predicting PNC without resorting 
to experimental data. These annotations may be produced by protein representa-
tion learning, using techniques like UniRep [13] or more recent models [67, 68]; they 
may also be produced by 3D structure prediction, using state-of-the-art models like 
AlphaFold 2 [69]. Our results will encourage future research, which will apply similar 
approaches to non-coding regulatory variants. Recent studies have introduced prom-
ising methods to predict gene regulation and infer high-resolution scores about the 
effect of mutations, e.g., for TF binding [70], RNA expression [71], and RNA-protein 
binding [72]. Such genomic annotations may be particularly useful to predict PNC in 
non-coding regions, because they can describe the impact of mutations on biologi-
cal processes that are not directly related to the gene’s coding sequence. In contrast, 
the genomic annotations produced by UniRep described protein structural variation, 
using only protein sequence information [13]. As expected, these annotations were 
useful to describe fitness effects of nonsynonymous mutations, but they were not use-
ful to predict the impact of mutations in UTRs, introns, or intergenic regions (Addi-
tional file 1: Fig. S5). Importantly, UniRep features actually decreased the accuracy of 
predicted PNC for mutations in these regions. Therefore, different sets of computa-
tional annotations should probably be selected to predict PNC at different categories 
of DNA sites.

Our results demonstrate the usefulness of our methodology. They also open pos-
sibilities for improved detection of fitness effects, by including broader sets of vari-
ants (e.g., non-coding variants), novel genomic annotations (e.g., regulatory effects 
of genes and mutations), and different evolutionary timescales (e.g., clade-specific 
fitness effects). Moreover, further improvements of SNP prioritization could be 
achieved by combining our approach with complementary techniques. Recent stud-
ies in human genetics have inferred relationships between genomic annotations 
and functional impact of mutations. These include methods based on evolutionary 
data, like CADD [8, 9] and LINSIGHT [11, 73], as well as methods based on sum-
mary statistics from genome-wide association studies (GWAS) [53, 74, 75]. GWAS-
based methods are subject to biases from SNP survivorship and LD, but they describe 
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the effect of mutations on explicitly defined traits. Therefore, these methods could 
be useful in combination with our proposed method, which does not suffer from the 
same caveats.

Conclusions
To detect candidate causal variants at high resolution, we used nucleotide conservation 
and machine learning to predict the impact of mutations at single DNA sites. Our meth-
odology benefited from genomic annotations which described protein structure by deep 
neural networks and estimated the structural impact of mutations by in silico mutagen-
esis. In maize, nucleotide conservation predicted by our approach performs better than 
observed nucleotide conservation. It results in significant functional enrichments and 
improves genomic prediction for grain yield across elite populations. Therefore, our 
approach (PICNC) could enable breeding applications which require the identification 
of candidate causal variants at high resolution, like cross-population genomic prediction 
and genome editing.

Methods
Training data

Genomic data

The B73 maize reference genome and its gene-model annotations under version 3 were 
downloaded from Ensembl Plants [76, 77]. Nuclear gene models with 3′UTR and 5′UTR 
annotations (hereafter, genes) were retained for further analyses (25,824 genes). The rep-
resentative transcript for each gene model was the transcript with the most matches (bit-
score > 50 in global alignment) with any other transcripts in the genomes of B73, Mo17, 
BTx623 (Sorghum bicolor), and Yugu1 (Setaria italica), or, by default, the longest tran-
script. Mutations in the coding region of representative transcripts were characterized at 
two types of DNA bases: monomorphic sites and SNP sites. Mutations at monomorphic 
sites were 20,136,310 random nonsynonymous substitutions in the maize genome at the 
selected genes, while those at SNP sites were the 483,448 observed nonsynonymous sub-
stitutions in a reference panel representative of inbred lines in maize [15, 78].

Evolutionary constraint

Publicly available data from a multiple-sequence alignment (MSA) across angiosperms 
was previously published in maize [14, 79]: neutral scores (depth of MSA at each site) 
and conservation scores (rejected substitutions) from gerp++ [4]. For each site j, phy-
logenetic nucleotide conservation (PNC) wj was binary: wj = 1 if the neutral score (tree 
size) was > 5 and the ratio of conservation score to neutral score was > 0.95 (i.e., substi-
tution rate < 0.05), wj = 0 otherwise.

Genomic annotations

Each mutation in coding regions was characterized by genomic structure (GC content, 
k-mer frequency and transposon insertion) and protein structure (mutation type, SIFT 
score, UniRep variables, and in silico mutagenesis scores).

GC content was the number of G or C bases from −49 to +50 bases from the site 
of the mutation. k-mer frequency was the average frequency of all 13-mers comprising 
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the mutation’s site, calculated by jellyfish [80]. Predictions of transposon insertion at the 
mutation’s site (helitron, TIR, LINE, or LTR) were downloaded from GitHub [36, 81].

Mutation type (missense, STOP gain, or STOP loss), SIFT score, and SIFT class (“con-
strained” if SIFT score ≤ 0.05, “tolerated” otherwise) were predicted using SIFT 4G [3, 
82, 83]. UniRep variables were the 256 values generated for each protein sequence by the 
“256-unit UniRep model” available from GitHub [13, 84]. In silico mutagenesis scores 
measured the impact of each mutation on proteins, as quantified by the UniRep vari-
ables: 256 deviations + 1 Euclidean distance between the reference representation and 
the mutated representation.

PICNC: prediction of evolutionary constraint by genomic annotations

Model fitting

The relationship between genomic annotations and observed PNC (wj = 0 or 1) was esti-
mated by probability random forests [85, 86] implemented in the R package ranger [87]. 
To maximize power to differentiate negative (wj = 0) and positive examples (wj = 1) of 
evolutionary constraint, wj was set to missing in intermediate cases where substitution 
rate > 0.05 or tree size < 5 (i.e., wj = 0 only in least conserved regions where the MSA is 
missing). The probability P(wj = 1) was estimated by 1000 trees per forest, 50,000 sites 
per tree (sampled with replacement), and at least 100 sites at each terminal node. Muta-
tion effect, SIFT score, and SIFT class were always included as baseline predictors, while 
a third of remaining genomic annotations (GC content, k-mer frequency, transposon 
insertion, UniRep variables and in silico mutagenesis scores) were randomly sampled as 
predictors for each tree, based on recommendations for regression random forests [88]. 
To account for imbalance with respect to PNC and chromosome, each observation (site) 
was weighted by the inverse of the count of its respective class, as determined by its 
observed PNC and its chromosome.

Leave‑one‑chromosome‑out prediction

For each chromosome k = 1, …, 10, PNC at each SNP site in chromosome k was pre-
dicted by a probability random forest ( ̂wj = P̂ wj = 1  ), trained on monomorphic sites 
in all chromosomes except k (Fig.  2). Importance of genomic annotations in random 
forests was estimated by the corrected impurity measure [18]. Classification accuracy 
was estimated by the percentage of sites for which ŵj(rounded) equaled wj, weighted by 
the sample weights (as described above). When estimating the importance of genomic 
annotations and assessing the effect of random forest parameters on classification accu-
racy (sets of genomic annotations used in prediction, proportions of genomic annota-
tions sampled per tree, number of trees per forest), random forests were validated at 
monomorphic sites in chromosome 8 and trained (at monomorphic sites) in remaining 
chromosomes (Fig. 2).

In leave-one-chromosome-out prediction, alternate numbers of trees per for-
est (ntrees=100, 250, 500, 1000) and alternate proportions of genomic annotations 
sampled per tree (pvariables= 1

12 , 
1
6 , 

1
3 , 

2
3 ) were tested by hyperparameter tuning: for each 

left-out chromosome k, optimal hyperparameters ntrees and pvariables were chosen to 
maximize weighted classification accuracy, by training in half of the chromosomes (all 
odd chromosomes when k was even, and vice versa) and validation in the remaining 
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chromosomes (excluding k). For each left-out chromosome k, the optimal hyperparam-
eters were ntrees=1000 (as many trees as allowed) and pvariables=1

3 (recommended value in 
regression random forest [88]).

Validation in sorghum genome

Validation in the sorghum genome consisted of fitting the PICNC model in the whole 
maize genome, as described above (see “Model fitting”), and predicting PNC at sorghum 
SNPs based on genomic annotations in the BTx623 sorghum reference genome.

Sorghum SNPs were the polymorphisms previously identified in a diverse panel of 499 
lines, described by Lozano et al. [23, 89]. The BTx623 sorghum reference genome and its 
gene-model annotations were downloaded from Phytozome under version 3.1, release 
313 [90, 91]. Genomic annotations in sorghum were the same as in maize, but did not 
include annotations about transposon insertion (helitron, TIR, LINE, LTR), because 
these were not available in sorghum and not important in maize (Fig.  3C). Mutation 
type, SIFT score and SIFT class were predicted using the SIFT database from Lozano 
et  al. [23, 89]. GC content, k-mer frequency, Unirep variables, and in silico mutagen-
esis scores were computed in version 3.1 of the sorghum reference genome, as described 
above (“Genomic annotations”).

Validation of predicted evolutionary constraint

Experimental SNP annotations

Predicted PNC in maize was validated by measures of functional importance of SNPs: 
within-species conservation, cis eQTL effect, and chromatin accessibility. Within-spe-
cies conservation was quantified by minor allele frequency (MAF), estimated in a filtered 
set of SNPs (bi-allelic, minor allele count ≥ 3, missingness ≤ 50%) in the Hapmap 3.2.1 
reference panel [15], imputed by BEAGLE 5.0 [92]. Cis eQTL effects were the statisti-
cal associations (in absolute value) between SNPs and 3′ RNA-seq expression of genes, 
in a diverse panel of 299 inbred lines [22, 93]. Cis eQTL effects in germinating shoot 
or germinating root were estimated for the SNPs with minor allele frequency ≥ 0.05 in 
this panel, in a linear regression model including the PEER factors from [22] as covari-
ates, using GEMMA 0.98.1 [94]. Chromatin accessibility was characterized by hotspots 
of MNase hypersensitivity in germinating shoot or germinating root [21, 95].

In maize, PNC was validated by experimental SNP annotations in a generalized addi-
tive model fitted in the R package mgcv [96]. PNC was regressed on MAF and cis eQTL 
effects (by cubic regression splines), and chromatin accessibility (as factors), while 
accounting for chromosome (as factor) and whether the site was included in the MSA 
(as factor, to control for bias of the MSA towards gene-dense regions).

In sorghum, predicted PNC was validated by MAF, calculated in the diverse panel of 
Lozano et al. [23, 89].

Experimental gene annotations

Predicted PNC in maize was validated by gene properties: gene expression, gene 
ontology, pathway annotation, and number of segregating SNPs. Gene expression 
was quantified by RNA abundance across 23 tissues, and protein abundance across 32 
tissues [29]. In all analyses, gene expression was log-transformed: log(x + 1) where x 
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is RNA abundance in fragments per kilobase of transcript per million mapped reads 
(FPKM) or protein abundance in distributed normalized spectral abundance fac-
tor (dNSAF). Experimentally validated gene ontology (GO) annotations [97] were 
retrieved by mapping protein sequences to the eggNOG database, using DIAMOND 
[98]. In enrichment analyses, GO annotations were trimmed to the broader (and 
less redundant) GO slim terms in the “plant GO slim” subset [30], and GO annota-
tions with fewer than 20 positives were discarded (87 selected GO terms). Pathway 
annotations were retrieved from CornCyc, release 2021/03/25 [31] (Additional file 2: 
Table  S1). The numbers of segregating nonsynonymous SNPs (Pn) and segregating 
synonymous SNPs (Ps) were based on a maize reference panel (MAF ≥ 0.01 in Hap-
map 3.2.1). The ratio Pn/Ps and proportion Pn/(Pn+Ps) were calculated for each gene 
with enough observed segregating synonymous SNPs (Ps ≥ 5).

In sorghum, predicted PNC was validated by the number of segregating SNPs: ratio 
Pn/Ps and proportion Pn/(Pn+Ps) calculated in the diverse panel of Lozano et al. [23, 89].

In validations by experimental gene annotations, genes containing sites with ŵj 
above a threshold value were selected. Threshold values were the 50%, 90%, 99%, and 
99.9% percentiles of ŵj’s. Using these successive selections, we assessed the func-
tional enrichment of prioritized genes as fewer sites were included due to more strin-
gent thresholds. The significance of the enrichment for gene expression (difference 
in mean expression between selected genes and all genes) and GO slim terms (over-
representation of term among selected genes) were tested by two-sample t-test and 
Fisher’s exact test, respectively.

Field traits in hybrid maize

Two panels of hybrid maize lines were analyzed to assess the usefulness of predicted 
PNC for genomic prediction: a diversity panel (Ames-H; n=1106) and a collection of 
biparental crosses having B73 as their common parent (NAM-H; n=1640) [16, 99]. 
These panels were phenotyped for three agronomic traits: days to silking (DTS), plant 
height (PH), and grain yield adjusted for DTS (GY). They were genotyped for 12,659,487 
genome-wide SNPs, including m=103,905 nonsynonymous SNPs in the coding regions 
of the 25,824 genes selected in this study.

Predicted PNC ( ŵj ) was used to weight each nonsynonymous SNP j in genomic pre-
diction models, fitted in hybrid maize panels:

where y is the n-vector of mean phenotypic values; Q is a n × 4 matrix depicting popu-
lation structure by a column of ones (for the intercept) and the three principal compo-
nents from the Hapmap 3.2.1 panel, with respective effects α; e is the vector of errors; 
G is the n × n genome-wide relationship matrix such that the n-vector u consists of 
genome-wide breeding values:

y = Qα + u + uCDS + e

u ∼ N
(

0,Gσ 2
u

)

uCDS ∼ N
(

0,GCDSσ
2
CDS

)

e ∼ N
(

0, Iσ 2
e

)

,
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where xil is the genotype of hybrid i at genome-wide SNP l, pl is the estimated frequency 
of SNP l in hybrid panels.
GCDS is the n × n relationship matrix from nonsynonymous SNPs weighted by pre-

dicted PNC, such that the n-vector uCDS consists of breeding values due to weighted 
nonsynonymous SNPs:

where XCDS is the n × m matrix of genotypes at nonsynonymous SNPs.
Genomic prediction models were fitted by REML, using the R package qgg [100]. 

Genomic prediction accuracy was estimated by the Pearson correlation between pre-
dicted and observed phenotypic values:

In validations of predicted PNC by genomic prediction, ŵj ’s below a threshold value 
were set to zero. Threshold values were the 0%, 50%, 90%, 99%, and 99.9% percentiles of 
ŵj’s, among the m SNPs observed in hybrid panels. Using these successive truncations, 
we assessed the enrichment of prioritized SNPs for genomic effects, as fewer of them 
were included due to more stringent thresholding on their weights.

The significance of ŵj ’s as useful weights in genomic prediction was tested by comparing 
genomic prediction accuracy with the accuracies achieved by 20 random permutations of 
ŵj’s, hence testing the null hypothesis that ŵj ’s are as useful as expected by chance. For each 
permutation b, ŵj ’s were randomly shuffled, and the vector of permuted weights ŵ(b)

j  was 
used to weight and prioritize SNPs, then calculate genomic prediction accuracy cor

(

ŷ(b), y
)

 
as described above. The improvement of genomic prediction accuracy from actual weights 
ŵj ’s was deemed significant (P < 0.05) if cor

(

ŷ, y
)

> cor
(

ŷ(b), y
)

 for all b = 1, …, 20.
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