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Abstract

Background

Angiosarcomas (AS) are rare in humans, but they are a deadly subtype of soft tissue sar-

coma. Discovery sequencing in AS, especially the visceral form, is hampered by the rarity of

cases. Most diagnostic material exists as archival formalin fixed, paraffin embedded tissue

which serves as a poor source of high quality DNA for genome-wide sequencing. We

approached this problem through comparative genomics. We hypothesized that exome

sequencing a histologically similar tumor, hemangiosarcoma (HSA), that occurs in approxi-

mately 50,000 dogs per year, may lead to the identification of potential oncogenic drivers

and druggable targets that could also occur in angiosarcoma.

Methods

Splenic hemangiosarcomas are common in dogs, which allowed us to collect a cohort of

archived matched tumor and normal tissue samples suitable for whole exome sequencing.

Mapping of the reads to the latest canine reference genome (Canfam3) demonstrated that

>99% of the targeted exomal regions were covered, with >80% at 20X coverage and >90%

at 10X coverage.

Results and conclusions

Sequence analysis of 20 samples identified somatic mutations in PIK3CA, TP53, PTEN,

and PLCG1, all of which correspond to well-known tumor drivers in human cancer, in more

than half of the cases. In one case, we identified a mutation in PLCG1 identical to a mutation

observed previously in this gene in human visceral AS. Activating PIK3CA mutations pres-

ent novel therapeutic targets, and clinical trials of targeted inhibitors are underway in human

cancers. Our results lay a foundation for similar clinical trials in canine HSA, enabling a pre-

cision medicine approach to this disease.
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Introduction

Angiosarcomas (AS) are rare malignant tumors of the endothelium of blood vessels, com-

prising up to 1–2% of sarcomas in humans (Sarcoma Foundation of America, https://www.

curesarcoma.org/patient-resources/sarcoma-subtypes/angiosarcoma/). AS is deadly, with a

5 year survival of less than 30%[1]. Disease pathogenesis is poorly understood and there are

no effective therapies. AS presents in three clinical situations: post irradiation therapy, sun

exposed skin in older individuals, and, less commonly, spontaneous disease in visceral organs.

As a result of its rarity, little is known about potential driver mutations that could serve as ther-

apeutic targets. There is some evidence that post irradiation AS have a different mutational

spectrum than cutaneous AS [2]. Visceral AS have not been well studied at the molecular level.

The rarity of AS has impeded efforts to identify driver mutations that could present therapeu-

tic targets, and the prospects for accruing patients to clinical trials are poor. To address this

problem, some investigators are using "crowdsourcing" to identify patients with this disease

(@ASCaProject, Angiosarcoma Project, https://ascproject.org/home). A search of the Hospital

of the University of Pennsylvania archives spanning several decades revealed only a few

cases, and the quality of the DNA we extracted from archived paraffin blocks was too low to

perform exome sequencing. We turned to comparative genomics, taking advantage of the

observation that a histologically similar malignant tumor, hemangiosarcoma (HSA), is com-

mon in dogs, which would enable discovery (exome) sequencing of paired tumor-normal tis-

sue samples.

Canine hemangiosarcoma (HSA) is a highly aggressive, fatal malignancy characterized by

neoplastic cells of endothelial origin that form vascular structures histologically similar to

human AS. HSA affects approximately 50,000 dogs per year in the United States[3,4]. As in

humans, both visceral and cutaneous forms of the disease are recognized, but in dogs the vis-

ceral form, specifically splenic, is more common. Canine patients with visceral HSA usually

present with hemoabdomen following rupture of the splenic mass. Despite emergency splenec-

tomy and adjuvant chemotherapy, most dogs die within 6 months from pulmonary metastatic

disease.

Based on the clinical and histopathological similarities to human visceral AS (S1 Fig), we

hypothesized that dogs with HSA might serve as a tractable, spontaneous model system to

identify potential therapeutic targets and to carry out clinical trials. If successful, this approach

could provide key information applicable to human AS, and would also provide new tools to

address this common, deadly disease in dogs. Our hypothesis that AS and HSA might share

pathogenic features is supported by previous studies that have identified mutations and dele-

tions in the same genes that are shared between HSA and AS, such as TP53 and PTEN [5–7].

More recently, genome-wide expression profiling identified three distinct tumor subtypes

associated with angiogenesis (group 1), inflammation (group 2), and adipogenesis (group 3).

These data suggest that a common HSA progenitor may differentiate into the three different

tumor subtypes and raise the intriguing question of the dynamic tumor evolution in HSA[8].

Genome-wide array-based comparative genomic hybridization (aCGH) revealed a relatively

low rate of copy number abnormalities with small amplitude in HSA[9]. These data suggest

that, in contrast to some of the other sarcomas, the driving force behind HSA might not

involve global, high-grade alterations at the chromosomal level. Rather, small insertions/dele-

tions and single nucleotide variants may drive tumorigenesis. Genome-wide association stud-

ies of HSA identified two predisposing loci on chromosome 5 but failed to find coding

changes[10]. Thus, neither the somatic driver mutations nor the nature of the pathways lead-

ing to oncogenesis in this common and deadly disease are known.

Actionable mutations in canine hemangiosarcoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0188667 November 30, 2017 2 / 17

supported by the Abramson Family Cancer Center

Paul Calabresi Career Development Award for

Clinical Oncology (K12; PAR-13-201). Illumina

provided salary support for MW. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript. The specific roles of these authors are

articulated in the ’author contributions’ section.

Competing interests: MW received support in the

form of salary from Illumina. There are no patents,

products in development or marketed products to

declare. This does not alter our adherence to all the

PLOS ONE policies on sharing data and materials.

https://www.curesarcoma.org/patient-resources/sarcoma-subtypes/angiosarcoma/
https://www.curesarcoma.org/patient-resources/sarcoma-subtypes/angiosarcoma/
https://twitter.com/ASCaProject
https://ascproject.org/home
https://doi.org/10.1371/journal.pone.0188667


Results

Case collection and exome sequencing

We collected archived paired tumor and normal tissue samples from patients representing a

variety of breeds, with a slight over-representation of Golden Retrievers, German Shepherd

dogs and Labradors (S1 Table). We chose twenty-one cases for exome sequencing. DNA was

extracted from microdissected tumor and matched normal formalin fixed, paraffin embedded

(FFPE) tissue samples for whole exome sequencing (WES). We analyzed WES data following a

bioinformatics workflow we customized for canine genomics, including mapping, mutation

calling, and annotation (Fig 1; Materials and Methods). Mapping of the reads to the latest

canine reference genome (Canfam3) demonstrated that >99% of the targeted exomal regions

were covered, with>80% at 20X coverage and>90% at 10X coverage. Sequencing runs were

designed to cover tumor at 2X the coverage of normal control DNA, as reflected by our data

showing mean coverage of normal and tumor samples was 37X and 74X, respectively (S2 Fig).

Sequencing data were filtered as described in Materials and Methods (Fig 2). One case (P2)

was eliminated from the analysis because further review of stained slides from the dissected

tumor revealed heavy contamination of the tumor sample by normal tissue. As expected, we

observed no somatic mutations in that case.

Fig 1. Whole exome sequencing workflow. Case identification and sequencing: Splenectomy samples

(tumor and normal) were obtained from specimens derived from patients undergoing standard clinical care at

our veterinary hospital. Genomic DNA were extracted and DNA quality was assessed via three QC steps.

Exome libraries were prepared according to manufacturer’s protocol and sequenced on a Nextseq 500 at the

Perelman School of Medicine sequencing core. Primary data processing: Reads were aligned to canine

reference genome CanFam3 and PCR duplicates were removed. Variant calling and annotation:

Sequence variants were detected, filtered and annotated by in-house pipeline. Candidate driver mutations

were identified as summarized in Fig 2.

https://doi.org/10.1371/journal.pone.0188667.g001
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From these 20 cases, we identified 171 nonsynonymous somatic mutations: 153 single

nucleotide variants (SNVs) and 18 insertions or deletions (indels). On average, we detected 8.6

missense somatic mutations per case (range, 0–21; Fig 3), and 9 or fewer missense mutations

in more than half of our cases (Fig 3). Totaling the number of both nonsynonymous and syn-

onymous mutations, the calculated HSA mutation burden is estimated to be 0.1–2.1 mutations

per megabase, which falls on the low end of the mutation burden observed in human tumors

(ranging 0.001–400 mutations per megabase), and is comparable to human tumors with low

mutational burdens such as ovarian cancer and sarcomas [11,12].

Mutations corresponding to drivers of human cancer occur commonly in

HSA

The relatively low mutation burden simplified our search for candidate driver mutations. We

examined somatic mutations in depth using three approaches: pathway analysis as described

in Materials and Methods (Fig 2), comparative genomics (comparing to well-curated human

data), and a candidate gene analysis in which we compared mutations with an in-house

curated cancer gene list including COSMIC consensus cancer genes, genes with previously

described mutations in human AS and canine HSA, as well as genes residing in pathways that

are affected in vascular cancers[2,13,14].

Fig 2. Decision tree for filtering and curation of variants. Single nucleotide variants (SNVs) and small insertion-deletion

variants (indels) were filtered as shown, on the left and right sides of the Fig, respectively. The final filtered SNVs (167) and indels

(32) were subjected to various annotation steps, such as pathway analysis, comparative genomics analysis and candidate gene

comparison, as schematized at the bottom of the Figure.

https://doi.org/10.1371/journal.pone.0188667.g002
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Most informative was the cross-species comparative genomics approach, which allowed us

to annotate canine mutations using human cancer-associated phenotypic data such as COS-

MIC, ClinVar, and HGMD (after converting to human amino acid coordinates as described in

Materials and Methods). In over half of the cases (12/20), we identified somatic mutations pre-

dicted to have significant functional consequences in 4 genes previously established as human

cancer drivers. We found PIK3CA mutations in 9 cases (45%), TP53 mutations in 7 cases

(35%), PTEN mutations in 2 cases (10%), and a PLCG1 mutation in one case (5%), Fig 4A.

We next took a complementary approach to identify candidate driver mutations, which was

to identify all recurrently mutated genes in our cohort, based on the hypothesis that some recur-

rently mutated genes might play a role in pathogenesis (Fig 4A and 4B). This analysis re-identi-

fied our strong driver candidates (PIK3CA mutations in 9 cases; TP53 mutations in 7 cases;

PTEN mutations in 2 cases). We also identified additional recurrently mutated genes: two muta-

tions in two uncharacterized genes We also identified additional recurrently mutated genes: two

mutations in two uncharacterized genes (ENSCAFG00000023562 and ENSCAFG00000031493),

Fig 3. Number of mutations in each tumor. Nonsynonymous somatic mutation loads in canine HSA exomes: the numbers of somatic nonsynonymous

mutations is displayed for each case of 20 HSA cases, ranked from left to right by the total number of mutations. Sequence coverage is listed under each

case. Note that the number of mutations per case is not correlated with sequence coverage.

https://doi.org/10.1371/journal.pone.0188667.g003
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two mutations in TTN (likely passenger mutations [15], and two mutations in DSCAM.

DSCAM, a large protein (1776 aa), is a negative regulator of cell adhesion and plays a role in neu-

ronal self-avoidance, acting in central and peripheral nervous system development. Germline

Fig 4. Candidate driver mutations and recurrent mutations. Each row represents a mutated gene and each column represents an individual tumor.

Shown in green blocks are non-synonymous, non truncating variants which could represent gain-of-function mutations. Shown in black are predicted

inactivating mutations, including truncating mutations, essential splice-site variants, and nonsense mutations. A: Candidate driver mutations, B:

additional recurrent mutations.

https://doi.org/10.1371/journal.pone.0188667.g004
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mutations in DSCAM have been reported in Down’s syndrome and in congenital cardiac mal-

formations [16,17]. We identified a DSCAM mutation not previously reported in cancer

(Gly1679Ser; human: Gly1915Ser) and an Arg1562� mutation, whose human homologue,

Arg1798�, has been identified in esophageal cancer [18]. Further investigation will be required

to determine whether these mutations contribute to pathogenesis.

Mutations in the PIK3CA pathway are likely drivers of HSA

The most frequent potential driver mutations affected the PIK3CA gene (9 cases; 45%). The

human and canine PIK3CA genes share 99.8% sequence identity, and in 8 of our 9 PIK3CA

mutant cases, the missense mutation affected amino acid 1047, the same position most com-

monly mutated in human cancers [19,20]. Indeed, six cases bear an H1047R substitution, a well-

established driver mutation in human cancers (Fig 5). Two other cases have another nonconser-

vative substitution at the same position (H1047L). In humans, H1047R is found in at least 4% of

all cancers (COSMIC, http://cancer.sanger.ac.uk/cosmic), and accounts for almost 40% of all

PIK3CA coding mutations (COSMIC, http://cancer.sanger.ac.uk/cosmic). The mutant protein

shows increased enzymatic activity and activates downstream signaling, resulting in oncogenic

transformation in vitro and tumorigenesis in vivo [19–22]. H1047L is also observed in human

cancers, and both H1047R and H1047L are associated with a poor prognosis in adenocarcinoma

of the lung [23]. Furthermore, clinical trials show that these pulmonary adenocarcinomas

respond to PIK3CA inhibitors [24]. These data strongly suggest that the most prevalent muta-

tions in PIK3CA we observed, H1047R and H1047I, function as cancer drivers in HSA.

In one case, we identified a PIK3CA D350G mutation, which has been identified in human

breast, endometrial, pancreatic, and colorectal carcinomas [25,26]. Structural modeling of the

human protein predicts that D350G disrupts interactions with PI3K signaling pathway inhibi-

tors, and is therefore a gain-of-function mutation [27], suggesting that this mutation could

drive canine HSA. Another indicator that the PIK3CA mutations we identified drive the devel-

opment of HSA is that 7 of the 9 cases bearing PIK3CA mutations have fewer than 10 addi-

tional mutations (apart from those found in PIK3CA and TP53), and these are not obvious

cancer drivers. Indeed, in one case (P16) bearing a presumed PIK3CA activating mutation

(H1047R), only two additional mutations were identified, both in uncharacterized genes.

Our hypothesis that activation of the PIK3CA drives the development of HSA is further sup-

ported by the presence of other mutations affecting the PI3K signaling pathway in our cohort.

PTEN, a negative regulator of the PIK3CA pathway, is mutated in two cases that conspicuously

lack PIK3CA mutations. One PTEN mutation, shown in black in Fig 4A, is a frameshift muta-

tion that encodes a truncated protein (Thr56fs). This heterozygous loss-of-function mutation

is likely to have functional consequences, given that haploinsufficiency of the PTEN tumor

suppressor gene promotes prostate cancer progression [28]. The second case, shown in green

in Fig 4A, bears a missense mutation (Ile79Thr), affecting amino acid 79, which corresponds

to amino acid 101 in the human protein. Although functional data are lacking, Ile101Thr is

predicted to be highly pathogenic by FATHMM. In humans, Ile101 is mutated in several

human tumors, primarily gliomas [29], suggesting that the canine PTEN Ile79Thr mutation

may play a role in the pathogenesis of HSA.

In another case, we observed a truncating mutation in FoxO3 (Glu93fs), which appears to

be a loss of function (P8; Fig 6). This case lacks PIK3CA and PTEN mutations. Previous work

has shown, however, that activating PI3K signaling could negatively regulate Foxo3, leading to

its cytoplasmic sequestration and degradation [30]. Thus, a loss of function mutation in FoxO3
could activate downstream PI3K signaling, and may function in the same way as activation of

PIK3CA or inactivation of PTEN.
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TP53 is frequently mutated in HSA

We identified TP53 mutations in 7 cases (35%), making TP53 the second most frequently

mutated gene in our cohort (8 mutations in 7 tumors). All TP53 mutations are predicted to

have functional consequences, with truncating (1), missense (5), and essential splice site (2)

mutations, all of which affect the protein’s DNA binding domain (Fig 7). This is reminiscent

of human cancer, in which more than 80% of TP53 mutations localize to the DNA binding

domain. Indeed, all of the canine TP53 mutations we identified have been observed in human

cancers, and some of them have been studied extensively. For clarity, we refer to amino acid

positions in the human protein in the following discussion. In addition to the classic loss-of-

Fig 5. Distribution of alterations in the PIK3CA gene. (A) The table shows the distribution of PIK3CA mutations in our cohort of canine HSA cases, the

corresponding human amino acid change, and the functional impacts of the mutants based on previous human studies. "GOF" denotes gain-of-function. (B)

Schematic diagram of homologous mutations in human PIK3CA. The x axis represents amino acid positions and domain structure of human PIK3CA, and the

y axis represents the number of times each mutation observed in our cohort.

https://doi.org/10.1371/journal.pone.0188667.g005
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function mutants (Leu111 nonsense mutation, Y126N), we also observed a dominant negative

mutation (V274L) and identified several gain-of-function mutants. H179Y produces a growth

advantage by upregulating Cyclin A1 and Cdk4 [31]. S241F acts as both a dominant negative

and a gain-of-function mutant, inhibiting p21 expression and modifying chromatin remodel-

ing patterns [32], and R248W induces genomic instability by inactivating ATM and also alters

the epigenetic landscape [33,34]. Determining the mechanisms underlying the effects of these

mutants requires further investigation.

A predicted activating mutation in PLCG1 is homologous to a recurrent mutation in

human AS. We observed a missense mutation in PLCG1 (S273F) in one tumor. S273 is in the

kinase domain of PLCG1 and is highly conserved among species. The corresponding human

Fig 6. Summary of somatic mutations in HSA cases lacking strong driver mutation candidates. Green blocks denote missense

mutations. Shown in black are predicted loss-of-function mutations (essential splice-site variants, nonsense mutations, and frameshift indels).

https://doi.org/10.1371/journal.pone.0188667.g006
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mutant, S345F, exhibits enzyme activation and increased downstream signaling, such as T cell

receptor signaling and NF-kB signaling [35]. S345F drives tumorigenesis in human nodal

peripheral T-cell lymphomas and cutaneous T-cell lymphomas [35,36], and this mutation was

recently identified in human visceral AS [37]. These data suggest that canine PLCG1 S273F

contributes to the pathogenesis of HSA, and we speculate that this case might represent a sub-

group of HSA with molecular similarity to human AS, especially the visceral form.

In conclusion, we identified mutations in 12 cases of canine HSA that, supported by abun-

dant data from human cancers, likely play a role in oncogenesis in canine HSA. Apart from

Fig 7. Distribution of alterations in the TP53 gene. (A) Table shows the distribution of TP53 mutations in our cohort, the mutation types, the corresponding

human amino acid change, and the predicted functional impact of each mutation based on previous studies. (B) Schematic diagram of homologue mutations

in human TP53. The x axis represents amino acid positions and domain structure of human TP53, and the y axis represents the number of times each

mutation was identified in our cohort.

https://doi.org/10.1371/journal.pone.0188667.g007
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these strong driver candidate mutations, we identified a few mutations in genes potentially

involved in cell growth, differentiation, or apoptosis (S2 and S3 Tables). However, none of the

other mutations are found in human cancer databases or predicted to be involved in tumori-

genesis. At this point, the data do not warrant implicating these mutations in HSA

pathogenesis.

HSA cases lacking obvious driver mutations

Eight cases lacked obvious candidate driver mutations. As noted above, analysis of recurrently

mutated genes or comparative genomics failed to identify additional candidate driver muta-

tions. All 36 mutated genes identified in these cases are schematized in Fig 6 and S2 Table. Our

analysis failed to reveal candidates with sufficient evidence in the literature to support a clear

role in pathogenesis of HSA. Clarification of the pathogenic drivers in these cases, which could

involve structural variants or epigenetic changes not identified by exome sequence analysis,

must await further investigation.

Discussion

The recent development of canine exome capture reagents has opened the door for detailed

profiling of canine cancer genomes. Our study represents the first use of this technology, as far

as we are aware, to examine somatic genomic alterations in canine HSA. Sequencing a cohort

of 20 HSA cases, we identified recurrent mutations in more than half of the cases whose

human homologues are well-established cancer drivers, strongly suggesting that these candi-

dates indeed drive canine HSA. Only one of our cases contained an apparent driver mutation

(in PLCG1) which corresponds to mutations identified in human AS by targeted sequencing.

Molecular pathways driving the pathogenesis of canine HSA

Our exome sequencing approach revealed that many cases of canine HSA harbor somatic

point mutations that are likely to upregulate the PI3K pathway, which is well-established in

human carcinogenesis. Our hypothesis that these mutations drive HSA pathogenesis is sub-

stantiated by previous work that demonstrated constitutive activation of the mTORC2/Akt/

4E-BP1 pathway (by Western blot and immunohistochemistry) in newly derived canine HSA

cell lines [38,39]. Indeed, viability of cell lines derived from HSA was significantly reduced by

PI3K/AKT/mTOR inhibitors [40], and a PI3K inhibitor slows growth of primary cells derived

from canine visceral, cutaneous, and cardiac HSA [41].

Pathogenic PIK3CA mutations also underlie human segmental hypertrophy syndromes,

which commonly involve proliferative vascular malformations. For example, somatic, mosaic

PIK3CA activating mutations are present in CLOVES (Congenital Lipomatous Overgrowth

with Vascular, Epidermal, and Skeletal anomalies) Syndrome [42]. Analysis of 6 patients

revealed the following PIK3CA mutations: p.His1047Arg, p.Glu542Lys, and p.Cys420Arg [42].

Activating PIK3CA mutations are also present in syndromes that now fall under the umbrella

of PIK3CA-related overgrowth spectrum (PROS), in which vascular malformations are often a

key feature [43,44]. Inhibiting the PI3K pathway reduces proliferation of primary cells from

these patients in culture, linking PIK3CA activation to pathogenesis [43]. The presence of acti-

vating PIK3CA mutations in these syndromes and in HSA suggests that these disorders may

share mechanistic similarities.

Although the most common candidate driver mutations in canine visceral HSA in our

study affected the PI3K pathway, we also identified one case in which a PLCG1 mutation is a

likely driver candidate. This corresponds to mutations identified in a few cases of human vis-

ceral AS [37]. Additional work is required to determine whether PLCG1 mutations are a
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common feature of canine HSA, and whether this potential subtype has a distinct biological

phenotype. Finally, our analysis failed to identify obvious driver candidates in 40% of the

cases. This may be due to insufficient sequence coverage (failing to detect low allele frequency

events). Alternatively, this situation might reflect technical limitations of exome sequencing

approach, which does not readily detect structural variants (gene fusions, deletions, gene

amplification) that are commonly found in other sarcomas, but which are not suspected to

play a large role in HSA [9]. Although further work is required to identify potential drivers in

these cases, our data raise the intriguing possibility that the clinic-pathologic entity known as

canine HSA may consist of multiple molecular subtypes, which may require different thera-

peutic approaches.

The high frequency mutations affecting the PI3K pathway in our cohort suggests the possi-

bility that clinical trials in canine patients could be useful in determining whether inhibition of

this pathway provides clinical benefit. Such trials are feasible: the disease is common (easy to

fully enroll a multi-armed study), and rapidly fatal (allows expeditious determination of effi-

cacy of experimental therapies).

Is canine HSA a potential model of human visceral AS?

The PLCG1 mutation (canine S273F, corresponding to human S345F) observed in our cohort

was recently reported in human visceral AS [37] in a study of a large cohort of 120 well-char-

acterized human AS from different anatomic sites, including several cases of visceral AS, stud-

ied by targeted hotspot sequencing. Furthermore, another activating PLCG1 mutation,

Arg707Gln, has been observed in human AS, primarily secondary and cutaneous forms

[2,37,45]. We also observed mutations in TP53 with likely functional consequences in canine

HSA, which have also been observed in human visceral AS [46]. These data suggest that sub-

groups of canine HSA might serve as a natural model for human visceral AS.

We did not, however, identify some known genetic alterations found in human AS, such as

MYC and KLT4 amplifications and inactivating PTPRB mutations. Furthermore, we did not

observe the high frequency of genetic events affecting the MAPK pathway suggested to play a

central role in human AS [41]. Likewise, no PIK3CA mutations have been reported in human

AS, either by NGS panel sequencing [37,45] or by PCR screening [47]. These discrepancies

could reflect technical limitations of the various studies, but may also be due to differences in

the biology of the various subtypes of human AS. For example, human AS is most commonly

seen secondary to therapeutic irradiation (e.g., for breast cancer) or chronic sun exposure

(cutaneous AS), both situations in which a higher mutational burden is expected.

Taken together, our results advance diagnosis and potential therapy of both canine HSA

and potentially human AS in several ways. First, our analysis provides candidates for targeted

therapy in canine HSA. Second, our results provide a basis for rational construction of "hot-

spot", panel-based NGS sequencing approaches to facilitate classification of HSA cases in clini-

cal trials of targeted therapeutics. Third, our identification of likely driver mutations highly

homologous to those found in humans in a subset of HSA cases could facilitate development

of panel-based sequencing approaches to allow interrogation of human visceral AS cases from

archival FFPE tissue, perhaps ultimately resulting in targeted therapies.

Methods

Canine HSA cases and whole exome sequencing

Forty-two HSA tumor and matched normal formalin fixed paraffin embedded (FFPE) tissue

blocks were collected at PennVet between 2015 and 2016 as part of standard clinical care.

Microscopic slides were reviewed and confirmed by a veterinary pathologist (ACD); tumor
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and normal tissue for dissection were identified. FFPE tissue cores were harvested from tumor

and normal tissue blocks using a 3 mm punch tool. Genomic DNA (gDNA)) was extracted

using GeneRead DNA FFPE Kit (Qiagen) and was quantified using a Qubit 2.0 Fluorometer.

We then accessed the quality of extracted gDNA with a TapeStation 2200 system. We prepared

libraries from 23 HSA cases whose gDNA was of sufficient quality and quantity. Whole exome

libraries were prepared for tumor and matched normal samples using Canine All Exon kit

(Agilent technologies). Paired-end sequencing (2X75) was performed on Illumina NextSeq500

platform in the Next Generation Sequencing Core at the Perelman School of Medicine

(NGSC, ngsc.med.upenn.edu). Sequence data were acquired and processed per NGSC instruc-

tions followed by uploading to Illumina BaseSpace sequence hub for downstream analysis.

Sequence reads were aligned to the latest canine reference genome, CanFam3. Reads with a

mapping quality less than 20 were filtered out, unmapped reads and PCR-derived duplicated

reads were also eliminated using Picard (version:1.139)

Variant detection

Somatic variants, both single nucleotide variants (SNVs) and small insertions/deletions

(indels), were identified using VarScan (version: 2.3.9) with standard settings. We used SnpEff

(version: 4.2) to annotate the variants for primary gene and protein information, as well as to

predict basic functional impacts.

To identify somatic variants that are robust and functionally important, we implemented

the following filters: 1) variants at the intergenic, intragenic, intronic, UTRs regions, as well as

synonymous variants; 2) variants referenced in Dog SNPs (Broad Institute) and DoGSD: the

Dog Genome SNP Database (http://dogsd.big.ac.cn/), applying a minor allele frequency

threshold of 0.05; 3) variants found in any normal cases in this study 4) variants with read

depth fewer than 10X. Finally, resulted variants were subjected to manual read validation and

review using Integrative Genomics Viewer (IGV) to eliminate artifacts from the sequencing

workflow.

Variant annotation

We developed a pipeline to convert the canine mutations to human orthologues. First, we

retrieved sequences of the altered canine proteins as well as human homologous proteins from

ensemble, then we used BLASTp with smith-waterman algorithm to map the homologous pro-

teins, with these parameters applied to identify orthologues: 1) e-value 0.0001 as the threshold

to identify significant matches; 2) Gene symbols match between canFam and hg19; 3) more

than 70% identity rate for sequence similarity. Finally, the mutated positions in the canine

samples were mapped to the corresponding positions in the human gene using a custom script.

We then performed downstream analysis with the human orthologues.

Pathway analysis. We applied pathway analysis to all pass-filter variants in order to find

biological pathways (co-functioning genes/mutations sets) that are over-represented in the

WES data, using major web-based databases, such as KEGG, Panther pathways, DAVID Bioin-

formatics database, ConsensusPathDB, etc. In addition, we also manually curated the mutated

genes by ranking keywords extracted from Gene Ontology (GO) terms and from publications.

In general, we found that the top-ranked enriched pathways are consistent between these two

approaches.
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