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Unveiling the atlas of associations between 1,400 plasma 
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Background: Association between plasma metabolites and pan-cancer remains controversial. Herein, 
we performed a two-sample Mendelian randomization (MR) analysis to verify whether there is a causal 
relationship between the two and to point the way for cancer metabolism research. 
Methods: In our research, we downloaded 1,400 plasma metabolites from a large genome-wide association 
study (GWAS). We also obtained GWAS summary statistics for 24 types of cancers from the publicly 
available GWAS database, totaling 5,003,410 European individuals. We mainly used the fixed/random-effects 
inverse variance-weighted (IVW) method for two-sample MR analysis. 
Results: In a combined sample of 291,202 cancer cases and 4,712,208 controls, a total of 55 plasma 
metabolites were identified as causally associated with nine types of cancer as a result of our MR analysis 
[P<0.05, false discovery rate (FDR) <0.2], including methionine sulfone, gamma-glutamylcitrulline, 
alliin, tetradecanedioate, hexadecanedioate, glutarate, ceramide, linolenoylcarnitine, hydroxypalmitoyl 
sphingomyelin, 1-palmitoyl-2-linoleoyl-glycerylphosphorylcholine (1-palmitoyl-2-linoleoyl-GPC), 
3-acetylphenol sulfate, retinol (vitamin a) to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) ratio, etc. Reverse 
MR analysis revealed a causal relationship between lung cancer and the only plasma metabolite, 1-palmitoyl-
2-linoleoyl-GPC (P<0.05, FDR <0.2). 
Conclusions: Our study provides a comprehensive atlas of cancer-related plasma metabolites, offering 
possible targets for cancer detection, as well as a reference for future research on tumorigenesis mechanisms 
and therapeutic targets.
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Introduction

Cancer has been a threat to human health since its  
discovery (1). In 2023, it was expected to have 1,958,310 
new cancer cases and 609,820 cancer deaths in the United 
States (2), and malignant tumors are the major cause of 
death among people aged 45 to 64 years (3). In the current 
times, although malignant tumors have gone through several 
iterations of treatment modalities, they remain one of the 
major risk factors for patient mortality (1-3). As humans 
continue to fight against tumors, our understanding of the 
complex pathogenesis of tumors has improved and plasma 
tumor detection has become possible (4,5). Plasma tumor 
testing is used to find tumor-associated plasma substances in 
a patient’s blood to provide a basis for tumor diagnosis (4).  
However, plasma cancer detection also faces a number 
of problems, including how to differentiate between the 
genetic mutations and metabolic changes that result from 
normal physical aging and those that result from tumors  
(6-9). This requires specific markers that are causally related 
to the onset of malignant tumors. Specific markers of 
malignant tumors can be divided into tissue and serological 
sources, depending on how they are detected (10).  
It is worth highlighting that liquid phase markers (serologic 
markers/plasma markers) have the advantage of being more 
sensitive, safer, and less damaging to patients compared to 
histologic markers (11).

Some of the existing cancer plasma markers are 
malignant cell metabolites, such as neuron-specific enolase 
(NSE) (12), which marks small cell lung cancer (SCLC), 
polyamine (13) and alpha-fetoprotein (AFP) (14,15), which 

are associated with hepatocellular carcinoma (HCC), 
suggesting that we can look for new plasma markers from 
tumor metabolism. Classically, aberrant phospholipid 
metabolism is one of the features of tumor metabolism 
(16,17), and even an important hallmark of tumors (18). 
Phospholipid metabolism regulates the composition of cell 
membranes, modulates tumor cell energy accumulation, 
influences cell signaling, governs tumor immunity, and plays 
an important role in the growth, metastasis, and resistance 
of tumor cells to drugs (19). Next, disorders of glucose 
metabolism occur in various types of malignant tumors (20).  
Inadequate blood supply within the tumor leads to a 
hypoxic environment that induces hypoxia-inducible factors 
1 and 2 (expression of HIF-1 and HIF-2), which in turn 
leads to the expression of glucose transporter proteins, 
GLUT1 and GLUT3, which promotes glucose uptake 
and allows glucose to enter into the glycolytic pathway. 
This enhanced glycolysis promotes tumor cell migration, 
induces angiogenesis, and mediates chemoresistance (21,22). 
With the reprogramming of glycolysis, in the absence 
of glucose, amino acids can be involved in metabolism, 
such as elevated levels of glutamine metabolism (23,24). 
Precursors of glutamine and its metabolites can regulate 
signaling pathways, proliferation, and metastasis of tumor 
cells by modulating the tricarboxylic acid cycle (TCA 
cycle) in tumor cells (25,26). In addition, the role of 
altered lipid metabolism in tumor growth has attracted  
attention (27). Unlike other metabolites that are directly 
involved in energy metabolism, l ipid metabolism 
mainly provides biomolecules for metabolites (28,29). 
In conclusion, with the development of metabolomics, 
more and more new metabolites have been defined, and 
it is practical and effective to explore the causality of 
tumorigenesis through a metabolic perspective (30-32).

Observational studies are one of the commonly used 
methods when exploring causal relationships in research 
subjects (33), but often vary from the results of randomized 
controlled trials (RCTs) when confronted with real-world 
issues due to confounding factors and reverse causation (33). 
However, RCTs require long-term follow-up with a large 
clinical cohort and can be expensive (34-37). Mendelian 
randomization (MR) analysis is an emerging analytical 
method that further assesses the reliability of causality by 
adding genetic variation as instrumental variables (IVs) 
between exposure and outcome to overcome the limitations 
of RCTs and observational studies (38). Although some 
MR analyses suggest a causal relationship between 
metabolites and cancer, to our knowledge there have been 
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Pleiotropy analyses, sensitivity 
analyses, heterogeneity analyses, etc.

Reverse MR analyses

Forward MR analyses

Eligible IVs

GWAS of plasma 
metabolites

GWAS of 24 
tumors

• 5,003,410 European individuals 
(291,202 cases & 4,712,208 controls)

• 20 solid tumors and 4 non-solid tumors

• 8,299 unrelated European individuals
• 1,091 blood metabolites & 309 

metabolite ratios

Inclusion criteria for IVs:
• P<1e−5
• LD r2 <0.001
• Clumping distance =10,000 kb
• IVs with F-statistics <10 were 

excluded
• IVs that definitely correlated 

with outcome were eliminated

Figure 1 The study design. Flowchart of the study. GWAS, genome-wide association study; IVs, instrumental variables; MR, Mendelian 
randomization; LD, linkage disequilibrium.

no comprehensive MR analyses exploring the causality 
between plasma metabolites and pan-cancers (39). In this 
study, we used the most current and comprehensive human 
plasma metabolomics data to explore causal relationships 
with 24 common human tumors, with the aim of obtaining 
plasma metabolites that could be used for cancer detection 
and providing a reference for research on tumorigenesis 
mechanisms and therapeutic targets. We present this 
article in accordance with the STROBE-MR reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-24-359/rc).

Methods

Study design 

In this study, a two-sample MR analysis was used to identify 
causal relationships between 1,400 plasma metabolites 
(including 1,091 blood metabolites and 309 metabolite 
ratios) and 24 types of cancers (including 20 solid tumors: 
bladder cancer, brain cancer, breast cancer, cervical cancer, 
colorectal cancer, corpus uteri cancer, endometrial cancer, 
esophageal adenocarcinoma, gastric cancer, liver cancer, 
lung cancer, malignant melanoma, malignant neoplasm 
of head and neck, oral cavity cancer, oropharynx cancer, 
ovarian cancer, pancreatic cancer, prostate cancer, renal cell 
carcinoma, thyroid cancer; and 4 non-solid tumors: chronic 
lymphocytic leukemia, diffuse large B-cell lymphoma, 

Hodgkin lymphoma, multiple myeloma). From substantial 
genome-wide association studies (GWASs), 5,003,410 
European individuals, including 291,202 cancer cases and 
4,712,208 controls across 24 types of cancer were included. 
Considering the fact that the study used open-access 
summary data, no further participant consent or ethical 
approval was required. In order to minimize the potential 
bias in results, IVs must satisfy three core assumptions: (I) 
IVs exhibit a significant association with the exposure; (II) 
genetic IVs are independent of potential confounders; and 
(III) IVs influence outcome only through exposure. The 
directionality of the causal linkage was further determined 
with a bidirectional MR design, which ruled out a potential 
reverse causal linkage. A comprehensive study design 
was presented in Figure 1. This study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Plasma metabolites data

GWAS summary statistics for plasma metabolites were 
obtained from the GWAS Catalog (https://www.ebi.
ac.uk/gwas/, accession numbers from GCST90199621 to 
GCST90201020; table available at https://cdn.amegroups.
cn/static/public/tcr-24-359-1.xlsx) (40). A cohort of 
8,299 unrelated European individuals participating in the 
metabolomics study underwent genome-wide genotyping 

https://tcr.amegroups.com/article/view/10.21037/tcr-24-359/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-359/rc
https://www.ebi.ac.uk/gwas/
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https://cdn.amegroups.cn/static/public/tcr-24-359-1.xlsx
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Table 1 Information of cancer-specific GWAS datasets

Cancer type Resource Population 
Sample size (n=5,003,410)

Cases (n=291,202) Controls (n=4,712,208)

Bladder cancer FINNGEN R9 European 2,053 287,137

Brain cancer FINNGEN R9 European 764 287,137

Breast cancer IEU OpenGWAS project: ieu-a-1126 European 122,977 105,974

Cervical cancer IEU OpenGWAS project: ukb-b-8777 European 1,889 461,044

Chronic lymphocytic leukemia FINNGEN R9 European 624 287,133

Colorectal cancer IEU OpenGWAS project: ebi-a-GCST90018808 European 6,581 463,421

Corpus uteri cancer FINNGEN R9 European 1,967 167,189

Diffuse large B-cell lymphoma FINNGEN R9 European 1,010 287,137

Endometrial cancer IEU OpenGWAS project: ebi-a-GCST006464 European 12,906 108,979

Esophageal adenocarcinoma IEU OpenGWAS project: ebi-a-GCST003739 European 4,112 17,159

Gastric cancer FINNGEN R9 European 1,307 287,137

Hodgkin lymphoma FINNGEN R9 European 780 299,952

Liver cancer IEU OpenGWAS project: ebi-a-GCST90092003 European 775 1,332

Lung cancer IEU OpenGWAS project: ieu-a-966 European 11,348 15,861

Malignant melanoma FINNGEN R9 European 3,960 286,874

Malignant neoplasm of head 
and neck

FINNGEN R9 European 2,131 287,137

Multiple myeloma IEU OpenGWAS project: ieu-b-4957 European 601 372,016

Oral cavity cancer IEU OpenGWAS project: ieu-b-94 European 1,223 2,928

Oropharynx cancer IEU OpenGWAS project: ebi-a-GCST012242 European 1,119 2,329

Ovarian cancer IEU OpenGWAS project: ieu-a-1120 European 25,509 40,941

Pancreatic cancer FINNGEN R9 European 1,416 287,137

Prostate cancer IEU OpenGWAS project: ebi-a-GCST006085 European 79,148 61,106

Renal cell carcinoma (female) GWAS Catalog: GCST008225 European 1,992 3,095

Renal cell carcinoma (male) GWAS Catalog: GCST008226 European 3,227 4,916

Thyroid cancer FINNGEN R9 European 1,783 287,137

GWAS, genome-wide association study.

and had their circulating plasma metabolites measured in 
the Canadian Longitudinal Study of Aging (CLSA). Batch-
normalized metabolites levels were used in the study, and 
metabolites with missing measurements were detected 
in less than 50% of samples (n=1,091). According to the 
Human Metabolome Database (HMDB), 309 metabolite 
pairs share enzymes or transporters. By dividing one 
metabolite’s batch-normalized measurement value by the 
other metabolite’s measurement in the same individual, the 

metabolite ratio was calculated for each pair of metabolites.

Resource of 24 types of cancers

Data from publicly available databases were used to 
generate summary statistics on GWAS for cancer outcomes. 
The cancer outcomes included a total of 5,003,410 
European individuals (291,202 cancer cases and 4,712,208 
controls, Table 1). FinnGen studies, R9 release (https://

https://www.finngen.fi
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www.finngen.fi), a research project involving European 
descent participants, supplied summary statistics for bladder 
cancer (2,053 cases, 287,137 controls), brain cancer (764 
cases, 287,137 controls), chronic lymphocytic leukemia (624 
cases, 287,133 controls), corpus uteri cancer (1,967 cases, 
167,189 controls), diffuse large B-cell lymphoma (1,010 
cases, 287,137 controls), gastric cancer (1,307 cases, 287,137 
controls), Hodgkin lymphoma (780 cases, 299,952 controls), 
malignant melanoma (3,960 cases, 286,874 controls), 
malignant neoplasm of head and neck (2,131 cases, 287,137 
controls), pancreatic cancer (1,416 cases, 287,137 controls), 
and thyroid cancer (1,783 cases, 287,137 controls). IEU 
Open GWAS project (https://gwas.mrcieu.ac.uk/) provided 
breast cancer (122,977 cases, 105,974 controls), cervical 
cancer (1,889 cases, 461,044 controls), colorectal cancer 
(6,581 cases, 463,421 controls), endometrial cancer (12,906 
cases, 108,979 controls), esophageal adenocarcinoma 
(4,112 cases, 17,159 controls), liver cancer (775 cases, 1,332 
controls), lung cancer (11,348 cases, 15,861 controls), 
multiple myeloma (601 cases, 372,016 controls), oral cavity 
cancer (1,223 cases, 2,928 controls), oropharynx cancer 
(1,119 cases, 2,329 controls), ovarian cancer (25,509 cases, 
40941 controls), and prostate cancer (79,148 cases, 61,106 
controls). The renal cell carcinoma dataset (male: 3,227 
cases, 4,916 controls; female: 1,992 cases, 3,095 controls) 
was downloaded from GWAS Catalog (https://www.ebi.
ac.uk/gwas/). Table 1 provided detailed information.

Selection of IVs

For forward MR analysis, the significance level of IVs 
associated with plasma metabolites was set to 1×10−5. For 
obtaining IVs with independent loci, we set the linkage 
disequilibrium (LD) threshold of r2<0.001 and clumping 
distance =10,000 kb in 1,000 Genomes European data using 
the “TwoSampleMR” package. We calculated F-statistics 
to verify IV strength and mitigate weak instrumental 
bias, F-statistics greater than 10 were considered to be 
sufficiently strong for the correlation between IVs and 
exposure. F-statistics were calculated through the following 
formula: F = R2*(n − k − 1)/k*(1 − R2), where “n” signifies 
the sample size, “k” denotes the number of IVs, and “R2” 
indicates the portion of the exposure variance elucidated by 
the IVs (41). We adopted the following formula to calculate 
R2 for more than 10 single nucleotide polymorphisms 
(SNPs): R2=2*(beta2)*EAF*(1 − EAF)/[2*(beta2)*EAF*(1 − 
EAF) + 2*(SE2)*N*EAF*(1 − EAF)); whereas for less than 
10 SNPs we used: R2=2*(beta2)*EAF*(1 − EAF), where EAF 

identifies the effect allele frequency, beta denotes the effect 
size of SNP on exposure, Ν is the sample size, and SE is the 
standard error of the beta (42). Last but not least, we used 
“PhenoScanner” (http://www.phenoscanner.medschl.cam.
ac.uk/) to eliminate SNPs that definitely correlated with 
cancer risk factors. 

In the reverse MR analysis, we used plasma metabolites 
with positive results in forward MR as the outcome and 
corresponding cancers as the exposure to explore the causality 
of each. We screened for IVs related to cancers at threshold 
(P<5×10−8 for breast cancer, colorectal cancer, endometrial 
cancer, lung cancer, and ovarian cancer; P<1×10−6 for bladder 
cancer and pancreatic cancer; P<1×10−5 for brain cancer, 
cervical cancer, and oropharynx cancer). The remaining steps 
of the IVs screening in reverse MR analysis were similar to 
that described above for forward MR analysis.

Statistical analysis

All statistical analyses were conducted with R software 
(version 4.3.1) using the package “TwoSampleMR” (version 
0.5.7). To evaluate the causal relationship between 1,400 
plasma metabolite and 24 types of cancers, the fixed/
random-effects inverse variance-weighted (IVW) method, 
weighted median method, simple mode, weighted mode, 
and MR-Egger regression were mainly performed. The 
IVW method, which provides the most precise effect 
estimates, was performed as the primary analysis in this 
study and for almost all MR-analysis (43-45). Multiple 
correction of the IVW P value was performed by the false 
discovery rate (FDR) method. The Cochran’s Q test was 
conducted to scrutinize the heterogeneity of the selected 
SNPs. In cases where significant heterogeneity emerged 
(P<0.05), a random-effects IVW method was chosen; if not, 
a fixed-effects IVW method was applied (46). Moreover, 
we implemented the MR-Egger intercept test to detect 
horizontal pleiotropy (statistically significant if P<0.05) (47).  
Leave-one-out analysis was performed to assess whether 
there was a pleiotropic effect on the results after the 
removal of individual SNP (48). In addition, the MR 
pleiotropy residual sum and outlier (MR-PRESSO) test 
which conducted a global test of heterogeneity was used 
to identify potential outliers in each SNP and obtain a 
corrected association result after removing the potential 
outliers (49). In order to increase the reliability and stability 
of the results, we used five criteria for screening positive 
results: (I) P value of IVW was less than 0.05; (II) P value 
of FDR-corrected IVW was less than 0.2; (III) the trend of 

https://www.finngen.fi
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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OR values of the five MR analytical methods was consistent; 
(IV) MR-Egger intercept test P value was greater than 0.05; 
(V) MR-PRESSO global test P value was greater than 0.05. 
Lastly, reverse MR analysis was conducted to investigate 
any reverse causal relationship between 10 types of cancers 
and plasma metabolites. 

Results

Causality of plasma metabolites on tumorigenesis

Following a series of rigorous quality control procedures 
as described above, 34,843 SNP associated with 1,400 
plasma metabolites were selected as IVs for MR analysis 
(table available at https://cdn.amegroups.cn/static/
public/tcr-24-359-2.xlsx). Based on a set of rigorous 
screening criteria, we identified suggestive evidence 
that 2 plasma metabolites were associated with bladder 
cancer risk, 1 plasma metabolite with Brain cancer risk, 
6 plasma metabolites with Breast cancer risk, 12 plasma 
metabolites with cervical cancer risk, 7 plasma metabolites 
with colorectal cancer risk, 10 plasma metabolites with 
endometrial cancer risk, 3 plasma metabolites with lung 
cancer risk, 1 plasma metabolite with oropharynx cancer 
risk, 10 plasma metabolites with ovarian cancer risk, and 3 
plasma metabolites with pancreatic cancer risk (Figure 2).  
Summary information for IVs used in these significant 
results was listed in the online table (available at https://cdn.
amegroups.cn/static/public/tcr-24-359-3.xlsx). An analysis 
of five MR analysis methods and sensitivity analysis further 
confirmed the robustness of the causal associations (table 
available at https://cdn.amegroups.cn/static/public/tcr-24-
359-4.xlsx). Specifically, both the MR-Egger intercept test 
and the MR-PRESSO global test ruled out the possibility 
of horizontal pleiotropy (Table 2). Forest plots, funnel plots, 
leave-one-out plots, and scatter plots also indicated the 
stability of the results (Figures S1-S4). 

Genitourinary systems

In the urinary system, a decrease in 5-acetylamino-6-
formylamino-3-methyluracil levels [odds ratio (OR) 
=0.837, 95% confidence interval (CI): 0.765–0.916, 
P=1.07E−04, FDR =0.075) and an increase in paraxanthine 
to 5-acetylamino-6-formylamino-3-methyluracil ratio (OR 
=1.215, 95% CI: 1.113–1.327, P=1.36E−05, FDR =0.019) 
were positively associated with bladder carcinogenesis 

(Figure 2). In the reproductive system, 32 metabolites 
were causally associated with cervical, endometrial, and 
ovarian cancers. As presented in Figure 2, we found that 
N-alpha-acetylornithine levels (OR =1.002, 95% CI: 
1.001–1.003, P=1.02E−04, FDR =0.020), N-acetylleucine 
levels (OR =1.001, 95% CI: 1.000–1.001, P=1.51E−04, 
FDR =0.023), N-acetyltyrosine levels (OR =1.001, 95% 
CI: 1.000–1.001, P=5.25E−05, FDR =0.018), N-acetyl-
L-glutamine levels (OR =1.001, 95% CI: 1.000–1.001, 
P=8.13E−05, FDR =0.019), N-acetylarginine levels 
(OR =1.001, 95% CI: 1.000–1.001, P=2.55E−05, FDR 
=0.018), N-acetylcitrulline levels (OR =1.001, 95% CI: 
1.000–1.001, P=3.94E−05, FDR =0.018), and N-acetyl-1-
methylhistidine levels (OR =1.001, 95% CI: 1.000–1.001, 
P=1.36E−04, FDR =0.023) increased the risk of cervical 
cancer, while alliin levels (OR =0.999, 95% CI: 0.998–1.000, 
P=1.64E−03, FDR =0.191), methionine sulfone levels 
(OR =0.999, 95% CI: 0.998–0.999, P=1.45E−05, FDR 
=0.018), gamma-glutamylcitrulline levels (OR =0.998, 95% 
CI: 0.997–0.999, P=5.04E−04, FDR =0.070), X-24518 
levels (OR =0.999, 95% CI: 0.998–1.000, P=1.33E−03, 
FDR =0.168), and N-delta-acetylornithine levels (OR 
=0.999, 95% CI: 0.999–1.000, P=7.65E−05, FDR =0.019) 
were negatively associated with the risk of cervical 
cancer. Meanwhile, we identified a total of ten plasma 
metabolites that were positively associated with the risk 
of endometrial cancer, including tetradecanedioate (C14-
DC) levels, hexadecanedioate (C16-DC) levels, 5alpha-
androstan-3alpha,17beta-diol monosulfate (1) levels, 
1-oleoyl-glycero-3-phosphorylglycerol (GPG) (18:1) levels, 
glycodeoxycholate 3-sulfate levels, 1-linoleoyl-GPG (18:2) 
levels, octadecenedioate (C18:1-DC) levels, glutarate (C5-
DC) levels, X-22509 levels, and adenosine 5’-diphosphate 
(ADP) to pantothenate ratio. As for ovarian cancer, 10 
plasma metabolites were statistically associated with the risk 
of ovarian cancer, including 4 protective risk factors [2R,3R-
dihydroxybutyrate levels, linolenoylcarnitine (C18:3) 
levels, N-lactoyl phenylalanine levels, and spermidine to 
N-acetylputrescine ratio] and 6 risk factors [5-acetylamino-
6-amino-3-methyluracil levels, ceramide (d18:1/14:0, 
d16:1/16:0) levels, hydroxypalmitoyl sphingomyelin 
[d18:1/16:0(OH)] levels, X-12221 levels, X-12410 levels, 
and 5-acetylamino-6-formylamino-3-methyluracil levels]. 
In summary, our results revealed specific plasma metabolites 
associated with the risk of genitourinary tumors and 
provided new perspectives for human understanding of the 
pathogenesis of genitourinary tumors. 

https://cdn.amegroups.cn/static/public/tcr-24-359-2.xlsx
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Figure 2 Significant MR results of causal effects between plasma metabolites and cancer risk. N.SNP, the number of SNPs used as IVs; SNP, single-
nucleotide polymorphism; IVs, instrumental variables; IVW, inverse variance-weighted; FDR, false discovery rate; OR, odds ratio; CI, confidence 
interval; MR, mendelian randomization; GPC, glycerylphosphorylcholine; GPG, glycerophosphoethanolamine; GPE, glycero-3-phosphorylglycerol.

OR (95% CI)FDR (IVW)P (IVW)N.SNPPlasma metabolites/metabolite ratios (Exposure)Cancer type (Outcome)

Bladder cancer

Brain cancer

Breast cancer

Cervical cancer

Colorectal cancer

Endometrial cancer

Lung cancer

Oropharynx cancer

Ovarian cancer

Pancreatic cancer

0.837 (0.765–0.916)

1.215 (1.113–1.327)

1.894 (1.427–2.514)

1.083 (1.035–1.134)

1.103 (1.048–1.160)

1.059 (1.030–1.088)

0.949 (0.919–0.979)

1.062 (1.025–1.100)

0.938 (0.904–0.973)

1.002 (1.001–1.003)

0.999 (0.998–1.000)

0.999 (0.998–0.999)

0.998 (0.997–0.999)

1.001 (1.000–1.001)

0.999 (0.998–1.000)

1.001 (1.000–1.001)

1.001 (1.000–1.001)

1.001 (1.000–1.001)

1.001 (1.000–1.001)

1.001 (1.000–1.001)

0.999 (0.999–1.000)

1.133 (1.073–1.197)

1.119 (1.065–1.177)

1.076 (1.032–1.121)

0.929 (0.889–0.970)

1.083 (1.047–1.120)

0.903 (0.857–0.951)

1.112 (1.053–1.175)

1.106 (1.042–1.174)

1.120 (1.045–1.201)

1.148 (1.092–1.206)

1.104 (1.039–1.172)

1.086 (1.030–1.144)

1.134 (1.062–1.211)

1.104 (1.036–1.175)

1.175 (1.077–1.283)

1.153 (1.066–1.246)

1.184 (1.084–1.293)

1.193 (1.096–1.298)

0.822 (0.763–0.886)

1.094 (1.045–1.145)

0.448 (0.305–0.657)

1.116 (1.060–1.174)

0.905 (0.857–0.955)

1.122 (1.055–1.194)

0.876 (0.810–0.947)

0.849 (0.769–0.937)

1.096 (1.036–1.160)

1.130 (1.050–1.217)

1.114 (1.045–1.187)

1.071 (1.031–1.113)

0.893 (0.841–0.947)

1.334 (1.140–1.560)

0.722 (0.602–0.866)

1.365 (1.168–1.596)

0.075

0.019

0.014

0.154

0.081

0.076

0.185

0.183

0.154

0.020

0.191

0.018

0.070

0.023

0.168

0.018

0.019

0.018

0.018

0.023

0.019

0.005

0.005

0.109

0.140

0.005

0.033

0.033

0.146

0.160

<0.001

0.158

0.196

0.057

0.196

0.082

0.082

0.057

0.022

<0.001

0.047

0.057

0.038

0.100
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5-acetylamino-6-formylamino-3-methyluracil levels

Paraxanthine to 5-acetylamino-6-formylamino-3-methyluracil ratio

Adenosine 5'-monophosphate (AMP) to flavin adenine dinucleotide (FAD) ratio

Docosadienoate (22:2n6) levels

Myristoleate (14:1n5) levels

Cysteinylglycine disulfide levels

3-bromo-5-chloro-2,6-dihydroxybenzoic acid levels

Histidine to pyruvate ratio

Caffeine to paraxanthine ratio

N-alpha-acetylornithine levels

Alliin levels

Methionine sulfone levels

Gamma-glutamylcitrulline levels

N-acetylleucine levels

X-24518 levels

N-acetyltyrosine levels

N-acetyl-L-glutamine levels

N-acetylarginine levels

N-acetylcitrulline levels

N-acetyl-1-methylhistidine levels

N-delta-acetylornithine levels

1,2-dipalmitoyl-GPC (16:0/16:0) levels

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) levels

1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) levels

1-oleoyl-2-linoleoyl-GPE (18:1/18:2) levels

1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) levels

Retinol (Vitamin A) to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [1] ratio

Arachidonate (20:4n6) to linoleate (18:2n6) ratio

Tetradecanedioate (C14-DC) levels

Hexadecanedioate (C16-DC) levels

5alpha-androstan-3alpha,17beta-diol monosulfate (1) levels

1-oleoyl-GPG (18:1) levels

Glycodeoxycholate 3-sulfate levels

1-linoleoyl-GPG (18:2) levels

Octadecenedioate (C18:1-DC) levels

Glutarate (C5-DC) levels

X-22509 levels

Adenosine 5'-diphosphate (ADP) to pantothenate ratio

5alpha-androstan-3beta,17alpha-diol disulfate levels

1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) levels

1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) levels

3-acetylphenol sulfate levels

5-acetylamino-6-amino-3-methyluracil levels

2R,3R-dihydroxybutyrate levels

Ceramide (d18:1/14:0, d16:1/16:0) levels

Linolenoylcarnitine (C18:3) levels

N-lactoyl phenylalanine levels

Hydroxypalmitoyl sphingomyelin (d18:1/16:0(OH)) levels

X-12221 levels

X-12410 levels

5-acetylamino-6-formylamino-3-methyluracil levels

Spermidine to N-acetylputrescine ratio

X-18888 levels

X-24494 levels

Retinol (Vitamin A) to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [1] ratio

0 0.5 1 1.5 2 2.5
Odds ratio
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Table 2 The horizontal pleiotropy test results of causal effects between plasma metabolites and cancer risk

Cancer type (outcome) Plasma metabolites/metabolite ratios (exposure)
MR-Egger intercept 

test P value
MR-PRESSO 

global test P value

Bladder cancer 5-acetylamino-6-formylamino-3-methyluracil levels 0.791 0.492

Paraxanthine to 5-acetylamino-6-formylamino-3-methyluracil ratio 0.566 0.327

Brain cancer Adenosine 5'-monophosphate (AMP) to flavin adenine dinucleotide (FAD) 
ratio

0.901 0.855

Breast cancer Docosadienoate (22:2n6) levels 0.740 0.302

Myristoleate (14:1n5) levels 0.226 0.137

Cysteinylglycine disulfide levels 0.167 0.526

3-bromo-5-chloro-2,6-dihydroxybenzoic acid levels 0.501 0.332

Histidine to pyruvate ratio 0.261 0.872

Caffeine to paraxanthine ratio 0.930 0.068

Cervical cancer N-alpha-acetylornithine levels 0.220 0.499

Alliin levels 0.195 0.406

Methionine sulfone levels 0.770 0.943

Gamma-glutamylcitrulline levels 0.963 0.429

N-acetylleucine levels 0.567 0.837

X-24518 levels 0.537 0.891

N-acetyltyrosine levels 0.912 0.729

N-acetyl-L-glutamine levels 0.554 0.647

N-acetylarginine levels 0.936 0.968

N-acetylcitrulline levels 0.845 0.811

N-acetyl-1-methylhistidine levels 0.433 0.595

N-delta-acetylornithine levels 0.744 0.846

Colorectal cancer 1,2-dipalmitoyl-GPC (16:0/16:0) levels 0.814 0.783

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) levels 0.927 0.570

1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) levels 0.585 0.105

1-oleoyl-2-linoleoyl-GPE (18:1/18:2) levels 0.054 0.074

1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) levels 0.176 0.470

Retinol (vitamin A) to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [1] ratio 0.674 0.585

Arachidonate (20:4n6) to linoleate (18:2n6) ratio 0.206 0.183

Endometrial cancer Tetradecanedioate (C14-DC) levels 0.146 0.554

Hexadecanedioate (C16-DC) levels 0.608 0.119

5alpha-androstan-3alpha,17beta-diol monosulfate (1) levels 0.638 0.429

1-oleoyl-GPG (18:1) levels 0.588 0.334

Glycodeoxycholate 3-sulfate levels 0.183 0.313

1-linoleoyl-GPG (18:2) levels 0.109 0.598

Table 2 (continued) 
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Table 2 (continued) 

Cancer type (outcome) Plasma metabolites/metabolite ratios (exposure)
MR-Egger intercept 

test P value
MR-PRESSO 

global test P value

Octadecenedioate (C18:1-DC) levels 0.053 0.236

Glutarate (C5-DC) levels 0.211 0.854

X-22509 levels 0.886 0.966

Adenosine 5'-diphosphate (ADP) to pantothenate ratio 0.833 0.794

Lung cancer 5alpha-androstan-3beta,17alpha-diol disulfate levels 0.361 0.662

1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) levels 0.584 0.602

1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) levels 0.569 0.579

Oropharynx cancer 3-acetylphenol sulfate levels 0.189 0.561

Ovarian cancer 5-acetylamino-6-amino-3-methyluracil levels 0.555 0.431

2R,3R-dihydroxybutyrate levels 0.997 0.913

Ceramide (d18:1/14:0, d16:1/16:0) levels 0.144 0.740

Linolenoylcarnitine (C18:3) levels 0.680 0.462

N-lactoyl phenylalanine levels 0.596 0.889

Hydroxypalmitoyl sphingomyelin [d18:1/16:0(OH)] levels 0.736 0.761

X-12221 levels 0.286 0.787

X-12410 levels 0.385 0.375

5-acetylamino-6-formylamino-3-methyluracil levels 0.224 0.940

Spermidine to N-acetylputrescine ratio 0.129 0.734

Pancreatic cancer X-18888 levels 0.602 0.980

X-24494 levels 0.269 0.401

Retinol (vitamin A) to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [1] ratio 0.303 0.924

MR, Mendelian randomization; PRESSO, pleiotropy residual sum and outlier; GPC, glycerylphosphorylcholine; GPG, glycerophosphoethanolamine; 

GPE, glycero-3-phosphorylglycerol.

Digestive systems

I n  t h e  d i g e s t i v e  s y s t e m ,  1 , 2 - d i p a l m i t o y l -
glycerylphosphorylcholine (1,2-dipalmitoyl-GPC) 
(16:0/16:0) levels (OR =1.133, 95% CI: 1.073–1.197, 
P=7.37E−06, FDR =0.005), 1-palmitoyl-2-stearoyl-GPC 
(16:0/18:0) levels (OR =1.119, 95% CI: 1.065–1.177, 
P=1.05E−05, FDR =0.005), 1-stearoyl-2-arachidonoyl-
glycerophosphoethanolamine (GPE) (18:0/20:4) levels (OR 
=1.076, 95% CI: 1.032–1.121, P=6.24E−04, FDR =0.109), 
1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) levels (OR 
=1.083, 95% CI: 1.047–1.120, P=4.04E−06, FDR =0.005), 
and arachidonate (20:4n6) to linoleate (18:2n6) ratio (OR 
=1.112, 95% CI: 1.053–1.175, P=1.58E−04, FDR =0.033) 

were positively correlated with the risk of colorectal cancer, 
while 1-oleoyl-2-linoleoyl-GPE (18:1/18:2) levels (OR 
=0.929, 95% CI: 0.889–0.970, P=9.02E−04, FDR =0.140) 
and retinol (vitamin A) to linoleoyl-arachidonoyl-glycerol 
(18:2 to 20:4) ratio (OR =0.903, 95% CI: 0.857–0.951, 
P=1.19E−04, FDR =0.033) were negatively associated 
with colorectal cancer (Figure 2, Table 2). In addition, 
high X-18888 levels (OR =1.334, 95% CI: 1.140–1.560, 
P=3.15E−04, FDR =0.183) and high retinol (vitamin A) to 
linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) ratio (OR 
=1.365, 95% CI: 1.168–1.596, P=1.19E−04, FDR =0.125) 
could promote the onset of pancreatic cancer, while X-24494 
levels (OR =0.722, 95% CI: 0.602–0.866, P=4.43E−04, 
FDR =0.183) could be a protective factor against pancreatic 
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cancer (Figure 2, Table 2). Notably, the retinol (vitamin A) 
to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) ratio plays 
diametrically opposed roles in colorectal and pancreatic 
cancers, which may suggest differences in metabolic levels 
pathway between the two cancers. Our results illustrate 
that in digestive system tumors, different tissue origins have 
different metabolic backgrounds, which may suggest new 
solutions for screening cancers of the digestive tract. 

Other cancers

We also found that high 5alpha-androstan-3beta,17alpha-
diol disulfate levels (OR =1.193, 95% CI: 1.096–1.298, 
P=4.56E−05, FDR =0.022) and high 1-stearoyl-2-
arachidonoyl-GPC (18:0/20:4) levels (OR =1.094, 95% 
CI: 1.045–1.145, P=1.34E−04, FDR =0.047) were causally 
associated with lung cancer development, whereas 
1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) levels (OR =0.822, 
95% CI: 0.763–0.886, P=2.66E−07, FDR <0.001) was a 
protective factor for lung cancer. As for breast cancer, 6 
plasma metabolites were statistically associated with the risk 
of breast cancer, including 2 protective factors (3-bromo-
5-chloro-2,6-dihydroxybenzoic acid levels and Caffeine 
to paraxanthine ratio) and 4 risk factors [docosadienoate 
(22:2n6) levels, myristoleate (14:1n5) levels, cysteinylglycine 
disulfide levels, and histidine to pyruvate ratio]. Meanwhile, 
3-acetylphenol sulfate levels (OR =0.448, 95% CI: 0.305–
0.657, P=4.04E−05, FDR =0.057) were negatively associated 
with the risk of oropharynx cancer (Figure 2, Table 2). In 
brain cancer, adenosine 5’-monophosphate (AMP) to flavin 
adenine dinucleotide (FAD) ratio (OR =1.894, 95% CI: 
1.427–2.514, P=9.69E−06, FDR =0.014) is a risk factor for 
tumorigenesis (Figure 2, Table 2). This suggests that high 
energy conversion rate metabolism is selected for brain 
cancer. Therapeutic agents targeting the correction of 
excessive metabolism may yield favorable results in brain 
cancer. 

In conclusion, our results indicated that tumors from 
different tissue sources have different metabolic profiles 
and different metabolites. At the same time, different plasm 
metabolites also respond to different lifestyle habits of 
the population, and poor lifestyle habits are responsible 
for metabolic derangement and causing tumorigenesis. 
Our study provides a basis for the health management 
of the population. Finally, our results demonstrate a 
causal relationship between different plasm metabolites 
and different tumors, which makes non-invasive cancer 
screening possible.

Causality of tumorigenesis on plasma metabolites

To explore the causal effects of cancers on plasma 
metabolites, reverse MR analyses were conducted and 
1,390 SNP associated with 10 tumors were selected as 
IVs for reverse MR analysis (table available at https://cdn.
amegroups.cn/static/public/tcr-24-359-5.xlsx). Remarkably, 
we screened the only plasma metabolite 1-palmitoyl-2-
linoleoyl-GPC (16:0/18:2) levels (OR =0.902, 95% CI: 
0.836–0.973, P=0.008, FDR =0.024) with causality by IVW 
method in lung cancer patients with FDR value less than 0.2  
(Figure 3A). Meanwhile, both the MR-Egger intercept test 
and the MR-PRESSO global test ruled out the possibility 
of horizontal pleiotropy (table available at https://cdn.
amegroups.cn/static/public/tcr-24-359-6.xlsx). In addition, 
the OR values calculated by the five methods were in the 
same direction (Figure 3A,3B). Methodological scatter 
plots, forest plots of effect sizes, leave-one-out plots, and 
funnel plots all indicated reliable results (Figure 3B-3E). 
Interestingly, the plasm metabolite 1-palmitoyl-2-linoleoyl-
GPC (16:0/18:2) levels had a negative causal association 
with lung cancer in forward MR above, which is consistent 
with the results of reverse MR analyses. This suggests 
that lecithin metabolism may play a pivotal role in both 
lung cancer development and progression. In summary, 
our results may point to a novel way of understanding the 
specific mechanisms of lung cancer development.

Discussion

Based on a large amount of publicly available genome-wide 
data, we explored causal associations between 1,400 plasma 
metabolites and 24 cancers. To the best of our knowledge, 
this is the first MR analysis to explore the causal relationship 
between plasma metabolites and pan-cancer. It was found 
that 53 metabolites had substantial causal associations with 
ten malignancies of different tissue origins in this study 
(FDR <0.2, IVW method). These plasma metabolites 
are not only star molecules in glucose metabolism, fatty 
acid metabolism, and amino acid metabolism but are also 
involved in phospholipid metabolism, caffeine metabolism, 
and amino acid acetylation. In conclusion, our results 
demonstrate the diversity of metabolic profiles of malignant 
tumors and provide a molecular basis for cancer detection 
and drug targeting. 

In cervical cancer, 11 plasma metabolites were associated 
with amino acid metabolism (X-24518 role is currently 
unknown) and eight plasma metabolites carried N-terminal 

https://cdn.amegroups.cn/static/public/tcr-24-359-5.xlsx
https://cdn.amegroups.cn/static/public/tcr-24-359-5.xlsx
https://cdn.amegroups.cn/static/public/tcr-24-359-6.xlsx
https://cdn.amegroups.cn/static/public/tcr-24-359-6.xlsx
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Figure 3 Significant results of reverse MR. (A) MR results of causal effects between lung cancer risk and 1-palmitoyl-2-linoleoyl-GPC 
(16:0/18:2) levels. (B) Scatter plots of causality, the slope of each line corresponding to the estimated MR effect in different models. (C) 
Forest plot with the estimated MR effect of each IV in IVW and MR-Egger models. (D) Leave one out of sensitivity tests. Calculate the 
MR results of the remaining IVs after removing the IVs one by one. (E) Funnel plot from genetically predicted 1-palmitoyl-2-linoleoyl-
GPC (16:0/18:2) levels on lung cancer. N.NSP, the number of SNPs used as IVs; SNP, single-nucleotide polymorphism; IVs, instrumental 
variables; FDR, false discovery rate; OR, odds ratio; CI, confidence interval; MR, Mendelian randomization; SE, standard error; GPC, 
glycerylphosphorylcholine.
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amino acid acetylation, suggesting a specific relationship 
between cerv ica l  cancer  and prote in  acety lat ion 
modifications. Protein acetylation is a widespread and 
reversible post-translational protein modification that 
regulates biological behaviors such as cellular metabolism, 

division, and signaling by acetylating thousands of 
histones and non-histone proteins in cells through lysine 
deacetylases (KDACs) and lysine acetyltransferases 
(KATs) (50). In our results, eight plasma metabolites with 
N-terminal acetylation were causally associated with 
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cervical cancer, but in inverse MR analysis, cervical cancer 
was not causally associated with all 11 plasma metabolites, 
suggesting that amino acid acetylation may be associated 
with cervical carcinogenesis only. Human papilloma virus 
(HPV), the main cause of cervical cancer, can induce H3K9 
acetylation and affect chromatin modification through its 
early genes, E6 and E7, which in turn directly or indirectly 
affects apoptosis, proliferation, and growth, leading to 
tumorigenesis (51-54), which is consistent with our results. 
Three other causally related plasma metabolites, gamma-
glutamylcitrulline, methionine sulfone, and alliin, have also 
been shown to have inhibitory effects on other malignant 
tumors (55-59), which provides a sidebar to the potential of 
these three metabolites to inhibit cervical cancer, consistent 
with our results.

In endometrial cancer, the scenario changes. 1-linoleoyl-
GPG (18:2) is a regulator of fatty acid metabolism, which 
can promote tumorigenesis by regulating key enzymes of 
lipid metabolism (60,61). Zhao et al. demonstrated that 
abnormal fatty acid metabolism can directly promote 
endometrial cancer formation and invasive migration of 
endometrial cancer cells through mTOR signaling by 
observing the intestinal flora and spatial visualization of fatty 
acids (62). Mozihim et al. and Wang et al. also illustrated 
the critical role of uncontrolled excess fatty acid metabolism 
in the development of endometrial cancers from the 
perspectives of sexual hormone metabolism and fatty acid 
metabolism regulatory enzymes, respectively (63-67). In our 
study, both 1-linoleoyl-GPG (18:2) and tetradecanedioate 
were risk factors for endometrial cancer, which may be due 
to the fact that the transporter protein tetradecanedioate 
can promote tumorigenesis by participating in fatty acid 
metabolism (63-66). Glycodeoxycholate 3-sulfate is a bile 
acid metabolite, and its elevation in plasma is also predictive 
of endometrial cancer, in line with established studies 
(67,68). In addition, it has been shown that endometrium 
under the environment of uncontrolled glutarate 
metabolism develops abnormalities of decidualization, and 
this abnormality not only leads to miscarriage but also 
the development of endometrial cancer (69). This is also 
illustrated by Our results that there is a causal relationship 
between high plasma glutarate levels and the development 
of endometrial cancer. Moreover, our results suggest that 
the metabolite hexadecanedioate (C16-DC), which also 
leads to abnormal endometrial decidualization, is also 
causally associated with the development of endometrial 
cancer (FDR <0.2, IVW method), which is the first report 
of this kind to the best of our knowledge.

In this study, ovarian cancer was causally linked to 
a variety of plasma metabolites, including amino acid 
metabolism, lipid metabolism, and caffeine metabolism 
(the role of X-12221 and X-12410 is unknown at this 
time). In our results, both 5-acetylamino-6-formylamino-
3-methyluracil and 5-acetylamino-6-formylamino-3-
methyluracil are products of caffeine metabolism (70) 
and our results that the more of these metabolites, the 
higher the probability of developing ovarian cancer. In 
previous prospective studies, caffeine intake predicted 
a better prognosis in ovarian cancer (71), and the same 
results were obtained in in vitro experiments (72). However, 
whether caffeine intake has a causal relationship with 
the occurrence of ovarian cancer is still controversial 
in current studies (73,74). We speculate that caffeine 
and its metabolites may play different roles in ovarian 
carcinogenesis and progression, which needs to be 
explored in further studies. Meanwhile, the relationship 
between caffeine and metabolites also needs more explicit 
evidence. Sphingomyelin is composed of ceramide with 
either choline phosphate or ethanolamine phosphate 
attached to the hydroxyl group (75). Our results show that 
both hydroxypalmitoyl sphingomyelin [d18:1/16:0(OH)] 
levels and ceramide (d18:1/14:0, d16:1/16:0) levels can 
promote ovarian carcinogenesis. Existing studies illustrate 
that sphingomyelin can contribute to poor prognosis by 
activating AKT/mTOR/4EBP1 (75), mediate cisplatin 
resistance in ovarian cancer by altering ceramide 
1-phosphate (C1P) activity (76), and enhance the viability 
of tumor cells in harsh metabolic environments (77), they 
proved the reliability of our results on the other hand.

Our results indicate that breast cancer is similarly 
associated with multiple metabolic pathways, including 
caffeine metabolism, histidine-pyruvate-mediated glucose 
metabolism, and lipid metabolism. In breast cancer, we 
used the caffeine-to-paraxanthine ratio to evaluate the 
direction of the caffeine metabolic pathway. Paraxanthine 
is an intermediate in the caffeine metabolic pathway, 
which serves as a substrate for the synthesis of caffeine or 
continues to be metabolized into 5-acetylamino-6-amino-
3-methyluracil and 5-acetylamino-6-formylamino-3-
methyluracil (70). Our results showed that the caffeine to 
paraxanthine ratio was inversely related to the occurrence 
of breast cancer. Jiang et al. and Zheng et al. conducted 
a meta-analysis of 37 published studies and found that 
caffeine intake was negatively associated with the risk of 
breast cancer in postmenopausal women (78,79). Bellerba 
et al. used metformin to lower breast cancer recurrence 
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rates and found that paraxanthine was lower in a population 
with low breast cancer recurrence rates (80). These 
studies partially explain our results from both caffeine and 
paraxanthine perspectives. Histidine is one of the essential 
amino acids, which can be partially synthesized in adults 
through the gluconeogenic pathway (pyruvate as a raw 
material), can protect tumor cells to a certain extent from 
harsh environments, and has some potential as a plasma  
marker (81). In this study, we used histidine to pyruvate 
ratio to show the possible direction of histidine metabolism 
and found a positive correlation with breast cancer 
development, which is consistent with the results of existing 
studies (81), which may serve as a new prognostic marker 
for tumor patients.

In bladder cancer, our results could not circumvent 
the caffeine metabolic pathway. As mentioned above, 
5-acetylamino-6-formylamino-3-methyluracil is one 
of the end products of the caffeine metabolic pathway, 
while paraxanthine is an intermediate product of caffeine 
metabolism (70). Cui et al. found that low levels of 
5-acetylamino-6-formylamino-3-methyluracil levels in 
urine were associated with the development of bladder 
cancer by first giving caffeine to subjects and then testing 
their urine (82). Landi et al. explained the effect of caffeine 
on bladder carcinogenesis by detecting changes in the 
levels of 5-acetylamino-6-formylamino-3-methyluracil 
levels in the blood of subjects after caffeine consumption by 
affecting the activity of cytochrome P4501A2 (CYP1A2), 
indicating that acetylamino-6-formylamino-3-methyluracil 
is a protective factor against bladder cancer (83). In our 
results, there was a causal relationship between low levels 
of 5-acetylamino-6-formylamino-3-methyluracil levels and 
bladder carcinogenesis, and a causal relationship between 
high paraxanthine to 5-acetylamino-6-formylamino-3-
methyluracil ratio and bladder cancer, and these results are 
consistent with the above studies (84). However, we note 
that all causal relationships between caffeine metabolic 
pathways and tumors avoid the role of caffeine itself. 
Further studies are needed to clarify the specific role of 
caffeine and its metabolites in the body and in vitro.

Retinol (vitamin A) to linoleoyl-arachidonoyl-glycerol 
(18:2 to 20:4) ratio plays different roles in colorectal and 
pancreatic cancer. Our results indicate that the retinol 
(vitamin A) to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) 
ratio is inversely associated with colorectal carcinogenesis 
but promotes pancreatic cancer. A meta-analysis has 
demonstrated that retinol is a protective factor against 
colorectal carcinogenesis (85), as well as in vitro experiments 

demonstrating that retinol can reduce chronic inflammation 
of the intestinal mucosa and decrease the incidence 
of colorectal cancer by inducing foxp3+ regulatory T 
cells to regulate T cells into the Th1/Th2/Th17/Tregs  
pathway (86), and in a mouse model, a retinol deficiency 
leads to dysregulation of T-cell responses, leading to 
colitis and colorectal cancer (87), in partial agreement 
with our findings. On the other side, retinol promotes 
pancreatic development and maintains the normal 
secretory function of the pancreas (88), and loss of retinol 
leads to pancreatic astrocyte apoptosis and pancreatic  
fibrosis (89). The question arises then as to what role the 
plasma metabolite linoleoyl-arachidonoyl-glycerol (18:2 
to 20:4) plays in pancreatic cancer. It has been shown that 
linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) may be a 
product formed by esterification of retinol, an intracellular 
storage form of retinol (90). Linoleoyl-arachidonoyl-
glycerol (18:2 to 20:4) may have roles in regulating the 
ability of the pancreas to metabolize lipids (91) and 
regulating neutrophil chemotaxis in some tumors (92). 
However, to the best of our knowledge, there is no evidence 
to indicate a specific role for linoleoyl-arachidonoyl-
glycerol (18:2 to 20:4) in pancreatic and colorectal cancers. 
Our results suggest that the direct use of retinol (vitamin 
A) to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) ratio to 
predict tumorigenesis may be more reliable than the use of 
one of the plasma metabolites alone.

Disorders of lipid metabolism are the main protagonists 
of lung cancer. Available evidence indicates that in lung 
cancer, 1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) plays 
a critical role in regulating tumor cell metabolism (93). 
Unsaturated short-chain fatty acids are reduced in tumor 
cell membranes, whereas the increase in saturated long-
chain fatty acids is to protect cells from oxidative stress 
that arises during the development of various cancers 
(93,94), consistent with our results that 1-palmitoyl-2-
linoleoyl-GPC (16:0/18:2), which is a saturated long-
chain fatty acid, is a protective factor in lung cancer. 
Fatty acid metabolism has a precise predictive effect for 
specific malignant tumors, and our inverse MR results 
also obtained a causal relationship between lung cancer 
and 1-palmitoyl-2-linoleoyl-GPC (16:0/18:2). Our results 
suggest that lung carcinogenesis may lead to decreased 
1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) levels, implying 
that 1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) may be 
involved in both lung carcinogenesis and progression, and 
is a novel and valuable target throughout the whole process 
of lung cancer prediction, diagnosis, and treatment. Loss of 
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1-palmitoyl-2-linoleoyl-GPC to an L-α-GPC (also known 
as choline glycerophosphate) and attachment of a 3-acetyl-
rac-glycerol to form 1-palmitoyl-2-linoleoyl-3-acetyl-rac-
glycerol (PLAG), an inhibitory factor in lung cancer (95-97). 
PLAG inhibits tumor progression in lung cancer animal 
models by promoting the degradation of adenosine 2B 
receptors (A2BRs) (96), and PLAG also modulates PAR2/
EGFR transactivation by accelerating protease-activated 
receptor 2 (PAR2) degradation to attenuate metastatic 
activity in lung cancer (97). In our results, 1-palmitoyl-
2-linoleoyl-GPC, which shares the same motif as PLAG, 
has similar inhibitory effects on lung cancer as PLAG 
in both forward MR and reverse MR. Unfortunately, 
there is no definite evidence for the relationship between 
1-palmitoyl-2-linoleoyl-GPC and PLAG in metabolism 
and its direct effect on lung cancer. In conclusion, our 
results on 1-palmitoyl-2-linoleoyl-GPC are very rare 
and give a new perspective on plasma cancer detection in 
lung cancer. Furthermore, our results also suggest that 
1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) levels are a 
high-risk factor for lung carcinogenesis. In existing studies, 
1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) can regulate 
cell growth via exosomes, which in turn promotes lung  
carcinogenesis (98), is consistent with findings in a mouse 
model (99), validating the reliability of our results. Our 
results also revealed a positive correlation between 5alpha-
androstan-3beta,17alpha-diol disulfate levels and lung 
carcinogenesis, which is the first report to our knowledge.

In oropharynx cancer,  our results  showed that 
3-acetylphenol sulfate levels were the only protective 
factor, which was similarly demonstrated in a recent RCT  
study (100). 3-acetylphenol sulfate levels are a promising 
marker for oropharynx cancer with potential as markers for 
plasma cancer detection in cancer. The major difference 
between tumor cells and normal tissue cells resides in their 
higher energy demand and higher metabolic efficiency, and 
it is no exception in brain cancer (101-103). AMP and FAD 
are both important energy metabolism intermediates, which 
can directly participate in electron transfer, form electron 
chains, and directly generate energy (104-107). The 
difference is that the same amount of AMP provides more 
energy and is more efficient than FAD (108,109). Maher 
et al. used [U-13 C]-labeled glucose to trace the metabolic 
processes of brain cancer and obtained the result that brain 
cancer has a high metabolic rate (101); Martínez-Reyes 
et al. revisited the high metabolic profile of brain cancer 
again from the perspective of the mitochondrial electron 
transport chain (ETC) (102). Based on our findings, AMP 

to FAD ratio is a risk factor for brain cancer, reflecting 
the high energy demand of brain cancer, and is a strong 
corroboration of the results of existing studies (101,102). 
Notably, in addition to energy metabolism, FAD is also 
associated with the activity of several biological enzymes, 
such as spermine oxidase (SMO), which can lead to tumor 
progression by regulating the biological behavior of tumor 
cells (110). On the other hand, AMP can directly participate 
in the activation of adenosine monophosphate-activated 
protein kinase (AMPK), and then regulate the PI3K 
signaling pathway, mTOR signaling pathway, Wnt signaling 
pathway, etc., which can directly affect the survival of tumor 
cells and play a two-way regulatory role of “inhibiting 
cancer when cancer is absent and promoting cancer cell 
growth when cancer is present” (111). This demonstrates 
the superiority of using ratio rather than AMP or FAD 
alone to predict brain cancer. Rather than taking into 
account individual metabolites, we only consider the overall 
effect. It could be a source of new markers.

There have been several MR articles published 
investigating the relationship between plasma metabolites 
and tumors. Despite this, they use fewer types of plasma 
metabolites than we do, and our data sources are more 
current and comprehensive. Additionally, they tend to 
focus on a specific tumor or group of tumors, which can 
lead to one-sided results due to individual differences. 
Finally, we used the ratio between plasma metabolites to 
illustrate their relationship with tumorigenesis, which can 
avoid the disadvantage that some plasma metabolites play 
multiple roles in the organism and cannot be judged alone. 
The overall effect of plasma metabolites on malignant 
tumors can be more accurately described by our approach, 
which considers the overall effect. In conclusion, our work 
provides the most comprehensive atlas to date of the causal 
relationships between 1,400 plasma metabolites and 24 
cancers with the expectation of providing novel ideas for 
specific tumor plasma markers, plasma cancer detection, 
and therapeutic targets.

We used published large genome-wide cohorts for our 
two-sample MR analyses, which is statistically efficient 
and statistically reliable. Genetic IVs and causal inference 
were used in this study to derive conclusions. There were 
no confounding factors such as horizontal polytomies or 
other confounding factors that affected the results. There 
are, however, still limitations to our study. First, horizontal 
polyvalence cannot be completely ruled out even when 
multiple methods of quality control were conducted. 
Second, the lack of individual information on participants 
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prevented us from further stratifying the population. Third, 
due to the study’s European database, the conclusions 
cannot be generalized to other races, which limits our 
results’ generalizability. Finally, we adapted more flexible 
thresholds for assessing the results, which may result in 
more false positives, but this simultaneously enabled us to 
assess plasma metabolites’ association with tumors in a more 
comprehensive manner.

Conclusions

In summary, our MR study found that there is a causal 
relationship between plasma metabolites and cancer and 
that they may play different roles at different times of tumor 
growth. In addition, our study provides a comprehensive 
map of plasma metabolites associated with pan-cancer 
and suggests an important role of biometabolism in 
tumorigenesis and development, showing the direction of 
basic cancer research and providing possible targets for 
plasma cancer detection.
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