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Simple Summary: Structural variants are large changes to the DNA sequences that differ from
individual to individual. We discovered and quality-controlled a set of 24,908 structural variants
and used a technique called imputation to infer them into 35,588 Holstein and Jersey cattle. We then
investigated whether the structural variants affected key dairy cattle traits such as milk production,
fertility and overall conformation. Structural variants explained generally less than 10 percent of
the phenotypic variation in these traits. Four of the structural variants were significantly associated
with dairy cattle production traits. However, the inclusion of the structural variants in the genomic
prediction model did not increase genomic prediction accuracy.

Abstract: Structural variations (SVs) are large DNA segments of deletions, duplications, copy number
variations, inversions and translocations in a re-sequenced genome compared to a reference genome.
They have been found to be associated with several complex traits in dairy cattle and could potentially
help to improve genomic prediction accuracy of dairy traits. Imputation of SVs was performed in
individuals genotyped with single-nucleotide polymorphism (SNP) panels without the expense of
sequencing them. In this study, we generated 24,908 high-quality SVs in a total of 478 whole-genome
sequenced Holstein and Jersey cattle. We imputed 4489 SVs with R2 > 0.5 into 35,568 Holstein and
Jersey dairy cattle with 578,999 SNPs with two pipelines, FImpute and Eagle2.3-Minimac3. Genome-
wide association studies for production, fertility and overall type with these 4489 SVs revealed four
significant SVs, of which two were highly linked to significant SNP. We also estimated the variance
components for SNP and SV models for these traits using genomic best linear unbiased prediction
(GBLUP). Furthermore, we assessed the effect on genomic prediction accuracy of adding SVs to
GBLUP models. The estimated percentage of genetic variance captured by SVs for production traits
was up to 4.57% for milk yield in bulls and 3.53% for protein yield in cows. Finally, no consistent
increase in genomic prediction accuracy was observed when including SVs in GBLUP.

Keywords: genome sequence; structural variants; accuracy; genome-wide association studies;
genomic prediction; genomic selection

1. Introduction

Whole-genome sequences have facilitated the study of large-scale genomic variations.
Structural variations (SVs) are large DNA segments of deletions, duplications, copy number
variations (CNVs), inversions and translocations in a re-sequenced genome compared
to a reference genome [1,2]. Numerous studies have reported associations of SVs with
disease traits in humans [3–5] and some production and disease traits in livestock [6–13].
SVs have been found to be associated with complex traits in various livestock breeds,
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such as nematode resistance in Angus cattle [7], fertility and milk production in Nordic
Red cattle [8], and abdominal fat content in chickens [11]. As the number of individuals of
a species that are whole-genome sequenced increases, the potential to reveal the spectrum
of SVs for that species increases.

Genotype imputation is a strategy to infer missing genetic markers of individuals that
are only genotyped on lower-density panels from a reference set of individuals genotyped
on denser panels [14]. Many studies have used imputed SNP data to improve the power
of genome-wide association studies (GWAS) and to increase genomic prediction accu-
racy [15–17] due to increased density of genetic markers. The process has also been applied
in humans to impute SV genotypes from SNP arrays [18]. Therefore, imputation of SVs can
be an alternative cost-effective solution to recover SV genotypes for large populations and
thus may provide more power for downstream analysis.

Although SVs have been found to be associated with complex traits in various live-
stock breeds, there is limited knowledge of how much genetic variation is explained
by SVs in dairy cattle for complex traits, including milk production traits and fertility.
Including SVs in genomic prediction could potentially improve the accuracy of genomic
estimated breeding values (GEBV) if SVs explain a proportion of the total genetic vari-
ance. In this study, we first detected high-quality SVs using two SV detection programs,
Breakdancer [19] and Pindel [20], from 478 whole-genome sequenced Holstein and Jersey
bulls. We then constructed five sets of SVs from 516 Holstein and Jersey animals with
whole-genome sequence data and tested the accuracy of imputation and compared the per-
formance of two imputation programs: FImpute 2.2 [21] and Eagle2.3 [22] +Minimac3 [23].
We imputed this selected set of SVs in 35,568 Holstein and Jersey cattle and performed
several analyses: (1) single-trait GWAS for SVs for milk production traits, fertility and
overall type and meta-analyses of GWAS results for production traits; (2) estimating the
genetic variance of SVs for phenotypic traits using genomic best linear unbiased prediction
(GBLUP) model; and (3) assessing the accuracy of genomic prediction in Holstein and
Jersey populations using SNPs with or without imputed SV genotypes.

2. Materials and Methods
2.1. Sequencing Data

The animal samples and the whole-genome sequence data were available from the
1000 Bull Genomes Project (Run 5) [24,25]. There were 450 Holstein animals (of which
35 were sequenced twice) and 66 Jersey animals (of which 3 were sequenced twice). The se-
quencing reads were aligned to Bos taurus assembly UMD3.1 with the Burrows–Wheeler
Aligner (BWA) method [26]. A large proportion of the sequences used in this study have
been described and published by Daetwyler et al. (2014) [24]. Of these animals, a total of
200 animals (140 Holsteins and 60 Jerseys) were also genotyped on the BovineHD Bead-
Chip. A total of 478 whole-genome sequenced individuals (415 Holstein and 63 Jerseys)
were used as the reference for imputation. The genome coverage and insert size are sum-
marised in Table S1. SNP genotypes of 632,003 SNPs were available for a total of 4908 bulls
(3903 Holstein and 1005 Jersey) and 30,867 cows (6177 pure Jerseys, 22,903 pure Hol-
steins, 125 quarter Holstein, 563 half Holstein/Jersey and 1099 quarter Jersey). Genotypes
were imputed from lower-density (8000 markers) SNP chips using FImpute [21], except
for 2155 animals, which were directly genotyped with the BovineHD SNP chip (https:
//www.illumina.com/Documents/products/datasheets/datasheet_bovineHD.pdf (ac-
cessed on 2 June 2018)). Quality control for imputation followed Erbe et al. [27]. From the
632,003 SNPs, 578,999 SNPs remained after converting the high-density (HD) genotypes
from top–top to forward–forward orientation to match sequence data. The corresponding
HD SNP genotypes for the 478 whole-genome sequenced bulls were extracted from their
whole-genome sequences based on the BovineHD map positions.

https://www.illumina.com/Documents/products/datasheets/datasheet_bovineHD.pdf
https://www.illumina.com/Documents/products/datasheets/datasheet_bovineHD.pdf
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2.2. Structural Variation Detection and Genotyping

The process to generate high-quality structural variation (SV) sets is described in
Chen et al. [28]. Briefly, Breakdancer [19] and Pindel [20] were first used to generate SVs
(including deletions, insertions, inversions and duplications) from every whole-genome
sequence (Figure S1). SVs were merged if they overlapped by ≥ 1bp between the two
programs. Five SV sets were extracted, further validated and used for imputation from the
merged set: (i) SVs detected in the Holstein population (POP_HOL), (ii) SVs detected in
the Jersey population (POP_JER), (iii) SVs validated in the 38 twice sequenced individuals
(TWICE_SEQ), (iv) SVs validated in the 133 Holstein sire–son pairs (FAM_HOL) and (v)
SVs validated in 28 Jersey sire–son pairs (FAM_JER). The validated SV sets can be found in
Table S2, and the size distribution of each set can be found in Figure S3.

For each of the 478 animals, SVs from the Pindel output (in VCF format) were com-
pared with each of SV sets above using bedtools [29] to produce a unified set of SV
genotypes: if an SV appeared in both the Pindel output and the target SV set, it was treated
as a real SV; if an SV appeared only in Pindel output, it was omitted. The output file
containing true SVs was then transformed to 012 genotype format using VCFtools [30],
where 0 represented the homozygous genotype for the reference allele (no SV), 1 was the
heterozygous genotype (heterozygous SV) and 2 was the homozygous genotype for the
alternative allele (homozygous SV). In each sample, SV genotypes with a read depth below
a threshold of 5 were treated as missing (i.e., coded as 5). Three main SV types, including
deletions, inversions and duplications, were tested for imputation accuracy. Insertions
were omitted as none were detected in the Jersey individuals.

2.3. Structural Variation Imputation Accuracy Assessment

One of the main factors that can influence imputation accuracy is the marker den-
sity of the reference population. To investigate the impact on imputation accuracy by
reference SNP density, three different SNP panels were used as reference panel scaffolds
for imputation and combined with the various SV sets: panel 1, SNP genotypes from
Illumina BovineHD BeadChip; panel 2, SNP positions from BovineHD BeadChip with
genotypes extracted from a whole-genome sequence; and panel 3, SNP genotypes from a
whole-genome sequence whose minor allele frequency (MAF) was greater than 0.05 using
VCFtools. The description of these reference panels used for imputation is summarised in
Table S3.

The combination of reference panels and SV genotypes from the different SV sets
is described in Table S4 and was imputed by two program pipelines: (i) FImpute (ver-
sion 2.2) [21], a phasing and imputation program, and (ii) the phasing program Eagle
(version 2.3) [22] followed by the imputation program Minimac3 [23]. As an SV is a DNA
segment rather than a single-point base pair mutation, the definition of the position of the
SV may affect its imputation. Therefore, three different SV points (start, middle and end)
were used to investigate the impact of position on imputation accuracy in reference panel
1. Using reference panels 2 and 3, SNPs inside SV regions were both included (by default)
and excluded for imputation to test which one achieved higher accuracy. To compare
the imputation accuracy differences between SNPs and SVs, we also randomly selected
12,000 SNPs from sequencing data and imputed them using panel 2. The flowchart of the
pipeline was demonstrated in Figure S2.

A fivefold cross-validation was used to assess the accuracy of imputation. The 478 in-
dividuals were randomly separated into five different sets. One set was treated as a testing
set, and the other four sets were the reference set. The SV genotypes of individuals in the
testing set were masked as missing (coded as 5), whereas all SNP and SV genotypes in the
training set were used as the reference group for imputation. This process was repeated
five times, testing each set in turn.

Based on the performance of the two programs, we generated a list of SVs imputed
with an accuracy above 0.5 from the four different sets with panel 2 using Eagle + Minimac3.
After merging all four SV sets by 1 bp overlap, a total of 4361 deletions, 60 inversions and
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68 duplications were selected. The merged 578,999 BovineHD SNP and 4489 SV genotypes
of the 478 whole-genome sequenced bulls were then used as the reference set to impute
SVs on 35,568 dairy cattle. Eagle (version 2.3) [22] was first used to phase haplotypes,
and Minimac3 (version 2.0.1) [23] was used for imputation.

2.4. Genome-Wide Association Studies

Association analyses were performed for bulls and cows separately using a mixed
linear model to investigate whether SVs were significantly associated with dairy traits.
SNPs and SVs were tested for significant associations one at a time and for each trait in
turn. The following mixed linear model was fitted:

y = 1nu + Xb + Z1u1 + Z2u2 + e (1)

where y is a vector of daughter trait deviations (DTD) for a trait; 1n is a vector of ones,
n is the number of samples and µ is the population mean term; X contained the genotype
indicator variable of candidate markers coded as 0, 1, 2 tested one at a time and the
breed indicator variable coded as 0 (pure Jersey), 0.25 ( 1

4 Jersey and 3
4 Holstein), 0.5 (half

Jersey and half Holstein), 0.75 ( 3
4 Jersey and 1

4 Holstein) and 1 (pure Holstein); b is the
fixed effect vector for the candidate marker and breed; u1 and u2 are vectors of random
breeding values of individuals and are assumed to be distributed as u1 ~ N(0, G1σ2

a1) and
u2~ N(0,G2σ2

a2), G1 being the genomic relationship matrix (GRM) estimated from SNP
genotypes and G2 being the GRM estimated from SV genotypes; Z1 and Z2 are incidence
matrices for the random effects of SNPs and SVs, respectively; and e are residual effects
distributed as e ~ N(0, Iσ2

e ). σ2
a1, σ2

a2 and σ2
e are SNP, SV and residual variances, respectively.

The GRM for SNPs and SVs were constructed as described in Yang et al. [31].
Meta-analyses for single traits and a multi-trait meta-analysis for production trait

were performed following the approach described in Bolormaa et al. [32] based on the
marker effects estimated from single-trait GWAS. The multi-trait χ2 statistic was calculated
as χ2 = ti

′V−1ti, where ti is a 6 × 1 vector of the signed t-values of the ith marker effects
for the three traits in bulls and cows, ti

′ is the transpose of vector ti, and V−1 is an inverse
of the 6 × 6 correlation matrix, where the correlation is calculated over the 583,488 SNP
and SV signed t-values of estimated effects between two traits.

The choice of p-value significance level of marker effects was guided by the corre-
sponding Bonferroni correction of the p-value of 0.05 as 0.05

Number o f tests , where the number of
tests here is the total number of SNPs and SVs (583,488), so the adjusted p-value threshold
in this analysis was < 1 × 10−7. In the case of no significant SVs identified, less stringent
thresholds of p < 10−5 and p < 10−4 were applied to allow more SVs to be discovered,
although some false positives might arise.

The false discovery rate (FDR) can be used to approximate the number of true positives
at the p-value thresholds. The FDR for SVs was calculated following the approach proposed
by Bolormaa et al. [33]:

FDR =
P
(

1− S
T

)
(

S
T

)
(1− P)

(2)

where p is the p-value threshold, S is the number of SVs that were significant at the p-value
threshold and T is the total number of SVs.

The model was fitted to the data with GCTA v1.26.0 [31]. Manhattan plots and Q–Q
plots for GWAS results were created using the R 3.1.0 package ggplot2.

2.5. Statistical Model for Variance Estimation and Genomic Prediction

The genomic best linear unbiased prediction (GBLUP) model was used to predict
GEBVs [34,35] in ASReml4.1 [36]. Two GBLUP models were compared for estimation of
variance components and genomic prediction: one model included SNP effects only, and the
other included both SNP and SV effects. The latter model is the same as Equation (1), except
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that there is no fixed effect of candidate markers, whereas the first model considering only
the SNP effects further excludes the random effects of SVs (Z2u2).

A 10-fold cross-validation was used to evaluate the genomic prediction accuracy in
the bull datasets only. The cross-validation procedure was applied to three sets of bulls:
4057 Holstein bulls, 1058 Jersey bulls and 5115 combined Holstein and Jersey bulls. For each
dataset, samples were randomly partitioned into 10 mutually exclusive subsets of approxi-
mately equal size for each trait. Each of the 10 subsets was in turn used as validation, while
the other 9 subsets were combined and used as training set. Genotypes and phenotypic
records were available for the samples in the training set, whereas phenotypes were set to
be missing for the samples in the validation set. The cross-validation process was repeated
10 times by re-sampling the sets randomly. The accuracy was calculated as Pearson’s
correlation coefficient between the predicted GEBV and the DTDs. The validation was
conducted on Holstein, Jersey and mixed Holstein and Jersey breed separately.

3. Results
3.1. Structural Variant Sets

We generated two population SV sets, POP_HOL and POP_JER, and three validated
SV sets, TWICE_SEQ, FAM_HOL and FAM_JER (Table 1). Deletions made up the largest
proportion of SV types. Within the population SV sets, there were more SVs detected
in Holsteins than in Jerseys likely because the Holstein sample was larger, especially for
deletions and inversions. We investigated imputation accuracy in deletions, inversions
and duplications from TWICE_SEQ, FAM_HOL, POP_HOL and POP_JER for further
imputation analysis. We excluded insertions, of which none were found in the Jersey sets
and very few were validated in FAM_HOL. In addition, as only 143 SVs were found in
FAM_JER across all types of SVs, this set was also excluded from imputation analysis.
The size distribution of each set can be found in Figure S3.

Table 1. Number of SNPs and SVs and corresponding FDR below p-value thresholds of 10−7, 10−5 and 10−4 for production
traits, fertility and overall type for meta-analysis of bull and cow GWAS results.

Trait
p-Value Threshold 10−7 p-Value Threshold 10−5 p-Value Threshold 10−4

SNP
Number

SV
Number

FDR
for SV

SNP
Number

SV
Number

FDR
for SV

SNP
Number

SV
Number

FDR
for SV

FY 237 1 0.04% 365 1 4.49% 1159 3 14.95%
MY 289 1 0.04% 505 2 2.24% 1644 2 22.43%
PY 178 1 0.04% 268 1 4.49% 1152 2 14.95%
Fert 34 0 99 0 888 0

Otype 0 0 11 0 763 2 22.43%

SNP: single-nucleotide polymorphism; SV: structural variation; FDR: false discovery rate; GWAS: genome-wide association study;
FY: fat yield; MY: milk yield; PY: protein yield; Fert: fertility; Otype: overall type.

3.2. Imputation Accuracy

Overall Eagle + Minimac3 resulted in a larger proportion of SVs with an accuracy
above 0.5 than FImpute (Figure 1). Both pipelines reported a similar proportion of SVs with
an accuracy above 0.8, while Eagle+Minimac3 performed better with the whole-genome
sequence SNP reference (Figure 1). In addition, no large differences by excluding/including
SNPs within SVs were found between the two pipelines. Both programs reported the high-
est accuracy for FAM_HOL and lowest accuracy for POP_HOL. When imputing the other
two sets TWICE_SEQ and POP_JER, FImpute reported similar accuracy for the two sets,
while Eagle+Minimac3 resulted in lower accuracy in TWICE_SEQ than POP_JER. Imputa-
tion results for inversions achieved higher accuracy when using Minimac3 than FImpute.
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Figure 1. Percentage of deletions with imputation accuracy above thresholds 0.5 (top panel) and 0.8 (bottom panel) for
Eagle + Minimac3 and FImpute. Y axis: imputation scenarios labelled by reference panel and structural variant (SV) sets.

The distribution of imputation accuracy and imputation accuracy versus MAF for
deletions using Eagle + Minimac3 are plotted in Figure S4. For both FAM_HOL and
TWICE_SEQ sets, there are more SVs with accuracy >0.5 than the two population sets
(Figure S4), suggesting that the validated SV sets contribute to higher-quality SV than other
SV sets. In Figure S4, the highest imputation accuracy is found around MAF 0.35 for all the
four sets.

3.3. GWAS

We performed single-trait GWAS, which detected a small number of significant SVs
(Table 1). One deletion on BTA14 was significant (p < 10−7) for all the production traits
with actual p-values 2.2 × 10−13, 2.5 × 10−25 and 1.6 × 10−12 for fat yield (FY), milk yield
(MY) and protein yield (PY), respectively. This corresponds to an FDR of 0.04%. With a
less stringent threshold (p < 10−5), one additional deletion on BTA5 was significant for
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MY (p < 9.2 × 10−6) with an FDR of 4.49%. No significant SVs were found for fertility and
overall type. Hundreds of SNPs were significant for production traits and a smaller set of
34 SNPs for fertility (p < 10−7). Manhattan plots and Q–Q plots for MY, fertility and overall
type are shown in Figure 2 and Figure S5.

Figure 2. Manhattan plots of meta-analyses of single traits: (top panel) milk yield, (middle) fertility
and (bottom) overall type with −log10(p-value) on vertical axis and chromosome number on hori-
zontal axis. Red line is the threshold of p-value 10−7 and black line is the threshold of p-value 10−5.
Blue and red spots represent SNP markers and green spots represent SV markers. Significant SVs
with p-value < 10−7 are circled in red.

A multi-trait meta-analysis for all production traits was performed (Figure 3), and four
significant deletions (p-value < 10−7) were identified with a corresponding FDR of 0.01%,
which was lower than for any individual trait. These significant SVs and their overlap with
single-trait analyses are summarised in Table 2.

Figure 3. Manhattan plots of production multi-trait meta-analysis with−log10(p-value) on the vertical axis and chromosome
number on the horizontal axis. The red line is the threshold of p-value 10−7, and the black line is the threshold of p-value
10−5. Blue and red dots represent SNP markers, and green dots represent SV markers. Significant SVs with p-value < 10−7

are circled in red. SNPs with p-value less than 10−70 were not plotted.
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Table 2. Significant SVs in the production multi-trait meta-analysis GWAS with p-value < 10−7.

Chr Start (bp) End (bp) SV Type p-Value Single-Trait
(p-Value < 10−7)

Single-Trait
(p-Value < 10−5)

Chr5 93,504,218 93,505,234 Deletion 1.9 × 10−10 MY
Chr6 87,209,737 87,211,122 Deletion 1.3 × 10−13

Chr14 1,299,687 1,299,831 Deletion 1.0 × 10−57 FY, MY, PY FY, MY, PY
Chr20 28,914,471 28,915,027 Deletion 2.2 × 10−12

We investigated whether the four significant deletions were in high linkage disequi-
librium (LD) with significant SNP in the same region to determine whether the SV was
likely tagging genetic effects not tagged by SNP. The LD between each deletion and the
surrounding SNPs (±1 Mb for the one on BTA14 as it is on the start of the chromosome and
±500 kb for the remaining three) were calculated (Figure 4). The two deletions on BTA5
and BTA14 were in high LD (R2 > 0.5) with surrounding SNPs that were also significant in
the production multi-trait meta-analysis. On BTA6, although there were many significant
SNPs around the deletion, the LD between these SNPs and the deletion were less than 0.1.
For the deletion on BTA20, only four SNPs were in high LD, of which three were significant
in the production multi-trait meta-analysis.

3.4. Variance Components

The genetic and phenotypic variance components for each trait were estimated for
Holstein and Jersey bulls separately using models with or without SV effects. Overall,
the total genetic variance increased slightly by adding SV information for all traits in both
breeds. For all traits except fertility, a larger proportion of genetic variance was explained
by SVs in Jersey than in Holsteins. The SVs explained up to 3.8% and 7.3% of the total
phenotypic variance for fat and milk yield traits in Holstein and Jersey bulls, respectively
(Table 3). While 3.8% and 3.1% of the phenotypic variance was explained by SVs in Holstein
bulls for protein yield and fertility, respectively, it was almost zero in Jersey for both traits.
No significant SV variance was found for overall type in Holsteins, whereas 2% of the total
phenotypic variance was explained in Jerseys but its SE interval included 0 (Table 3).

We also estimated the variance components combining Holstein and Jersey animals,
but for bulls and cows separately. For the three production traits, the SVs explained up
to 3.6% and 1.3% of the total phenotypic variance for both bulls and cows, respectively.
For fertility, SVs explained 3.8% of the total phenotypic variance in bulls, but almost zero
for cows, whereas for overall type the SV variance components in both bulls and cows
were very close to zero (Table 4). In bulls, although SVs explained similar proportion of the
phenotypic variance for fertility (3.8%) and milk yield (3.6%), more genetic variance was
captured by SVs for fertility (8.11%) than for milk yield (4.57%).

3.5. Genomic Prediction

Three sets of bulls including 4057 Holstein, 1058 Jersey and 5115 combined Holstein
and Jersey were tested using models with and without SV effects to compare genomic
prediction accuracy. Mean correlations between GEBV and DTDs for the two models in
10 replicates of 10-fold cross-validation are presented in Table 5. For most of the traits,
higher prediction accuracies were found in Holstein compared with Jersey bulls except for
fat yield. Compared to the model with SNP effects only, there was no consistent increase in
accuracy by including SVs in the analysis.
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Figure 4. Linkage disequilibrium (LD) of four significant deletions with their surrounding SNPs.
In each figure, the red spot is the deletion, black spots are surrounding SNPs and green spots are
SNPs that are significant for multi-trait meta-analysis of production traits with p-value < 10−7.
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Table 3. Proportion of SNP and SV variances of total genetic variance and phenotypic variance for milk (MY), fat (FY),
protein yield (PY), fertility and overall type (Otype) in Holstein and Jersey bulls.

Breed Model Variance Item Traits

FY MY PY Fertility Otype

Holstein SNP σ2
snp/σ2

p 0.708(0.022) 0.79(0.019) 0.763(0.035) 0.495(0.028) 0.476(0.019)
SNP + SV σ2

snp/σ2
p 0.692(0.027) 0.766(0.023) 0.738(0.041) 0.471(0.033) 0.486(0.024)

σ2
sv/σ2

p 0.022(0.021) 0.038(0.019) 0.038(0.03) 0.031(0.024) 0(0.02)
σ2

sv/(σ2
snp + σ2

sv) 0.031 0.047 0.049 0.062 0.000
(σ2

snp + σ2
sv)/σ2

p 0.715(0.023) 0.804(0.019) 0.777(0.036) 0.502(0.029) 0.486(0.02)

Jersey SNP σ2
snp/σ2

p 0.855(0.037) 0.812(0.043) 0.835(0.08) 0.296(0.065) 0.623(0.038)
SNP + SV σ2

snp/σ2
p 0.841(0.058) 0.759(0.068) 0.842(0.11) 0.32(0.089) 0.609(0.06)

σ2
sv/σ2

p 0.019(0.063) 0.073(0.072) 0(0.109) 0(0.094) 0.02(0.068)
σ2

sv/(σ2
snp + σ2

sv) 0.022 0.088 0.000 0.000 0.032
(σ2

snp + σ2
sv)/σ

2
p 0.86(0.041) 0.833(0.047) 0.842(0.087) 0.32(0.075) 0.629(0.043)

σ2
snp is the SNP variance, σ2

sv is the SV variance and σ2
p is the total phenotypic variance. Standard error is shown in parentheses.

Table 4. Proportion of SNP and SV variance components in bulls and cows for fat, milk, protein yield,
fertility and overall type traits using model 2.

Bulls SNP Variance SV Variance SNP+SV Variance SV Variance

Traits σ2
snp/σ2

p σ2
sv/σ2

p (σ2
snp + σ2

sv)/σ2
p σ2

sv/(σ2
snp + σ2

sv)

FY 0.728(0.021) 0.014(0.016) 0.743(0.019) 1.94%
Fert 0.433(0.030) 0.038(0.021) 0.471(0.026) 8.11%
MY 0.758(0.02) 0.036(0.016) 0.794(0.017) 4.57%

Otype 0.526(0.036) 0.000(0.026) 0.526(0.033) 0.00%
PY 0.747(0.020) 0.028(0.016) 0.775(0.017) 3.58%

Cows

Traits σ2
snp/σ2

p σ2
sv/σ2

p (σ2
snp + σ2

sv)/σ2
p σ2

sv/(σ2
snp + σ2

sv)

FY 0.394(0.009) 0.008(0.004) 0.402(0.009) 1.94%
Fert 0.105(0.008) 0.000(0.004) 0.105(0.007) 0.00%
MY 0.466(0.009) 0.007(0.004) 0.474(0.009) 1.54%

Otype 0.139(0.015) 0.000(0.010) 0.139(0.014) 0.00%
PY 0.366(0.009) 0.013(0.004) 0.379(0.009) 3.53%

The number represents the proportion of variance that each item explained in the phenotypic variance for each
trait. SNP: SNP variance; SV: SV variance; SUM: total genetic variance. The last column is the percentage of
genetic variance explained by SV.

Table 5. Prediction accuracy for each trait in Holstein, Jersey and mixed Holstein and Jersey bulls with SNP only and SNP +
SV together in 10-fold cross-validation.

Sample Set Model
Trait

FY MY PY Fertility OType

Holstein SNP 0.645(0.008) 0.751(0.007) 0.808(0.005) 0.525(0.011) 0.588(0.014)
SNP+SV 0.645(0.008) 0.751(0.007) 0.808(0.005) 0.525(0.011) 0.588(0.014)

Jersey SNP 0.76(0.013) 0.697(0.018) 0.794(0.011) 0.262(0.026) 0.549(0.023)
SNP+SV 0.76(0.013) 0.698(0.018) 0.795(0.011) 0.262(0.026) 0.55(0.023)

Holstein+Jersey SNP 0.657(0.013) 0.835(0.005) 0.788(0.007) 0.623(0.009) 0.553(0.013)
SNP+SV 0.656(0.013) 0.838(0.005) 0.789(0.007) 0.623(0.009) 0.553(0.013)

Standard errors in parentheses.
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4. Discussion

Imputation of SVs from SNP genotype could be a cost-effective way to genotype SVs
in a large number of individuals, at least for SVs that are at reasonable MAF in the reference
population. We identified 24,908 SVs including deletions, inversions and duplications
from four SV sets, which were then imputed using two pipelines. Overall, Eagle2.3-
Minimac3 resulted in higher imputation accuracy than FImpute. SVs from FAM_HOL and
TWICE_SEQ had a higher proportion of SVs with high imputation accuracy than the other
sets. This result suggested that the sire–son validation is useful to remove false positive SVs
as concluded in Chen et al. [28]. A high false positive rate for CNVs has been reported [37].
In addition, low-MAF SVs are difficult to impute [18], while common SVs are imputed
more accurately and require an SV to be observed in both sire and son, which increases the
average MAF for the FAM sets. We found that there were a larger number of rare SV calls
in Holstein population calls than in the other sets, which could partly explain why SVs in
validated sets achieve higher accuracy (Figure S4).

The comparison between FImpute and Eagle+Minimac3 implied that the latter pipeline
can impute SVs more accurately, especially when the SNP markers are very dense (Figure 1).
Despite the fact that the percentage of SVs with an accuracy above 0.8 in Eagle+Minimac3
were 1% to 2% lower than FImpute, Eagle+Minimac3 achieved considerably more SVs
with an accuracy above 0.5 than FImpute, especially when the imputation was from whole-
genome sequence SNPs. It is possible that the imputation accuracy of the SNP themselves
could have affected the accuracy of SV imputation. For example, it is known that lower
MAF SNPs are less well imputed [24,38]. While the pattern of imputation accuracy versus
MAF for SVs was similar to SNP imputation (Figure S4), the overall imputation accuracy
for SVs was much lower than for SNPs. This suggests that it is difficult to impute SVs
from SNPs based on our current pipeline, yet with the potential to improve SV imputation
towards a similar accuracy of SNP. We considered that the way we merged original SV
outputs could affect the imputation results. Our threshold of merging SVs with 1 bp
overlap could combine discrete mutations with different effects. Our testing with larger
overlaps did not substantially change the results.

We performed GWAS in Holstein and Jersey dairy cattle breeds for both bulls and cows
to investigate the associations between phenotypes, including production traits, fertility
and overall type, and SNP genotypes as well as SV information. In single-trait GWAS,
many SNPs that were found significant for FY, MY, PY and fertility were also previously
reported in the literature, whereas none was found for overall type. In terms of SV,
two deletions were significant for milk yield, whereas in the multi-trait meta-analysis four
deletions were significantly associated with at least one production trait. The significant
deletions on BTA5 and BTA14 may be mainly due to the high linkage disequilibrium
(LD) with their surrounding SNPs. The LD for the two SVs on BTA6 and BTA20 and the
surrounding SNPs was not high, even though there were many significant SNPs on these
chromosomes. This may indicate that these SV tag genetic information additional to that
of SNP.

A list of genes within ±500 kb distance of the four significant SVs (Table S5) was
compiled. Several genes have been previously identified for milk production traits. MGST1
on BTA5 has pleiotropic effects on bovine milk composition [39]. A cluster of genes on BTA6
around CSN2 (β-casein) directly regulates milk protein synthesis [40,41]. The histatherin
(HSTN) gene was found 5 kb downstream to the SV found on BTA6, which was involved
in a genomic rearrangement within the casein gene cluster. As this genomic rearrangement
moved HSTN to a regulatory element that is important for CSN2 expression, HSTN is
likely to be regulated like the casein genes during the lactation cycle [42]. C14H8orf33 [43],
ZNF34 and RPL8 [44,45], which were identified to be associated with milk production
traits, are the top three genes that are close to the SV on BTA14. The four SVs found
in our study may have potential effects on these genes. The DGAT1 gene located on
BTA14:1,795,425–1,804,838 was suggested to be a candidate gene for milk production traits
in cattle [46]. The deletion on BTA14: 1,299,687–1,299,831 found in our study was located
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500 kb upstream of DGAT1. To investigate whether this deletion was affected by DGAT1,
another GWAS model with the fixed effect of this gene added was applied to eliminate the
effect of this gene, where the gene was represented as the genotype of the most significant
BTA14 SNPs in each individual production trait (BTA14: 1736599). The significant deletion
on BTA14 dropped below the significance threshold, suggesting this deletion was likely
also tagging DGAT1.

A small proportion of the total genetic variance was explained by SVs. The proportion
explained seemed to also be variable between traits as well as between bulls and cows.
The between trait variation can likely be explained by SVs affecting different pathways,
whereas the differences between sexes may be due to sampling from unequal popula-
tion sizes for bulls and cows. Despite some genetic variance being explained by SVs,
genomic prediction did not benefit from adding SVs. While the GBLUP model assumes
that the SNP effects follow a normal distribution, other models assume that the SNP effects
follow a mixture distribution such as BayesR [27] or exponential distributions such as
Bayesian Lasso [47]. These models may be more appropriate if SVs have moderate or large
effects on the trait. Therefore, we also performed genomic prediction using the BayesR
model for 5115 bulls, which yielded very similar accuracy as GBLUP, and no benefit was
observed by adding SV information (Table S6).

In our study, the most likely reason that no significantly higher accuracy was found in
the SNP+SV model is that the set of selected SVs were imputed from SNP arrays. Genomic
prediction based on imputed whole-genome sequencing data may have very small or no
benefit compared to SNP array data [48,49]. SNPs with low MAF are more difficult to im-
pute correctly [50]; yet incorporating rare mutations with low minor allele frequency (MAF)
variants can improve the genomic prediction accuracy by up to 30% [49]. As the imputation
method used in our study relies on LD information, the selected SVs (accuracy > 0.5) were
very likely to be in high LD with the surrounding SNPs. More than half of the originally
reported SVs were excluded because SVs with low MAF cannot be imputed well. As many
SVs with potential genomic contribution are rare and may have been discarded during
the imputation process, we did not observe consistent benefits in genomic prediction by
including the imputed SV genotypes. Additionally, the method we used to detect SV with
high confidence may lead to high accuracy but low sensitivity, i.e., many potential real
SVs were filtered out during the SV detection pipeline [28]. Nevertheless, we find this
as preferable to allowing a large number of false positives. The inability to detect SVs in
repetitive and poorly mapped regions also limits the detection of the whole-spectrum SV
in the bovine genome [51].

Our analyses were based on the UMD3.1 reference assembly and Run5 of the 1000 Bull
Genomes Project. More recent runs of the 1000 Bull Genomes Project include a much larger
set of Holstein cattle and approximately twice the Jersey samples. This would likely affect
imputation accuracy as it would increase the reference dataset. Likewise, the ARS-UCD-
1.2 bovine assembly has better resolved repetitive regions of the genome [52]. However,
the limited quality of SV detection with paired-end short-read data is expected to remain
even with an improved reference and a larger dataset. Third-generation sequencing, in-
cluding single-molecule real-time (SMRT) sequencing from Pacific BioSciences (PacBio)
and Oxford Nanopore sequencing, can produce long reads of several kilobases to facili-
tate genome assembly. Long reads can help overcome the issue of multiple alignments
or misalignments existing with short-reads in repetitive regions because they can span
the entire region. Thus, they have been used to improve assembly quality and genome
gaps [52–55] and increase the accuracy and sensitivity of SV detection in low-complexity
regions [56]. In addition, several hybrid methods combining reads from next-generation
sequencing and single-molecule sequencing have been developed to detect SVs, and many
novel SVs within gapped regions and low-complexity regions can now be captured with
higher accuracy [54,57,58].
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5. Conclusions

The accurate detection of structural variants from short-read whole-genome sequence
and subsequent imputation into animals with only SNP chip genotypes presented a signifi-
cant challenge. Overall, few SVs were found to be associated significantly with phenotypes,
SVs explained a small proportion of the genetic variance, and there was limited influence of
SVs on genomic prediction accuracy. Taken together, our findings indicate that the routine
application of SVs from short-read sequence data in cattle breeding should not be a priority.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-2
615/11/2/541/s1: Table S1. Summary of genome coverage read depth and insert size of SV for
the whole-genome sequenced animals; Table S2. Summary of SV set output; Table S3. Summary
of reference panel datasets used for imputation; Table S4. Summary of imputation scenarios with
different reference panels and variant sets; Table S5. Genes within ± 500 kb distance of the four
significant SVs; Table S6. Genomic prediction accuracies for milk yield, fat yield, protein yield, fertility
and overall type of 5115 bulls with BayesR; Figure S1. Flowchart of population SV pipeline; Figure S2.
Flowchart of 5-fold cross-validation of imputation pipeline; Figure S3. Plot of size distribution of
deletions, insertions, inversions and duplications; Figure S4. Imputation accuracy for deletions in
POP_HOL, POP_JER, FAM_HOL and TWICE_SEQ sets; Figure S5. Q-Q plots for meta-analysis of
single traits: fat yield, milk yield, protein yield, fertility and overall type.
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