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Abstract: Many health professionals do not use correct person transfer techniques in their daily
practice. This results in damage to the paraspinal musculature over time, resulting in lower back
pain and injuries. In this work, we propose an approach for the accurate multimodal measurement
of people lifting and related motion patterns for ergonomic education regarding the application
of correct patient transfer techniques. Several examples of person lifting were recorded and pro-
cessed through accurate instrumentation and the well-defined measurements of kinematics, kinetics,
surface electromyography of muscles as well as multicamera video. This resulted in a complete
measurement protocol and unique reference datasets of correct and incorrect lifting schemes for
caregivers and patients. This understanding of multimodal motion patterns provides insights for
further independent investigations.

Keywords: human motion dataset; ergonomics in people lifting; tag detection; human motion lab;
decision support; recommending systems; data processing tag detection; motion analysis

1. Introduction

The problem of maintaining correct body posture while performing lifting activities is
important in many professional fields. In particular, it concerns healthcare personnel and
other professionals who help people on a daily basis. The fundamental problems of proper
person handling activities and setting up the most ergonomic approaches are:

• the identification of the appropriate ergonomic techniques for professional workers,
• the selection of proper ergonomic exercises for particular groups of employees,
• the determination of the quality of the performed activities, and
• the evaluation of the quality of their performance.

Therefore, to specify the correct assessment methods and ergonomic exercises, it is
necessary to carry out and record both correct and incorrect person handling activities.
One of the routine and often basic procedures performed by healthcare workers is patient
lifting. This task requires physical exertion for prolonged periods daily. It often results in
musculoskeletal disorders (MSDs) or low-back spinal disorders (LBDs) [1]. Correct lifting
posture and the use of leg muscles, in particular the lateral, intermediate, and medial heads
of the quadricep muscles, is a necessary condition for balancing the lumbosacral loads
when manually moving a patient [2–4]. Although the use of equipment to lift a patient or
dependent person reduces the exposure to injuries associated with manual lifting by up to
95%, it is rarely used in out-of-hospital (out-patient) settings. The purpose of this study is:
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• to propose rules for building a dataset of performed activities for caregivers and
dependent people,

• to use recent recording techniques, such as MoCap, EMG, and GRF to synchronously
record selected activities,

• to suggest an appropriate ergonomic set of exercises for a selected group of
volunteers, and

• to propose multimodal spatio-temporal motion patterns for easier identification of
particular motion phases.

The most important result of this study is the observation and simultaneous registra-
tion of two mutually interacting people’s motions. We present a full correlation between
the caregiver motion and patient, at the same time of the handling procedure.

In this paper, we present an example of person lifting as an action that could cause
injuries to caregivers and patients. The examples of correct (safe) techniques of lifting
patients demonstrate various measurable events that can occur when lifting patients in
surgery. We propose a collective way of representing multi-modal movement information
using Motion Tags [5–10].

The most ergonomic risk assessment methods are described in the medical literature.
We also indicate works in which motion measurements and analyses were conducted, such
as [11–14]. One of the tasks of manual patient transport presented in [15] is lifting the
patient from a lying position to a sitting position on the edge of the bed. In the study [16]
an eighty-kilogram patient dummy was used to analyze the lifting operation. The analyzed
kinematic and kinetic data of the lifting process were recorded with a set of four Kinect
cameras, GRF, and five EMG [17] electrodes. The lifting sequence was divided into three
phases, with each triad for the ergonomic and nonergonomic versions.

In the proposed ergonomic version, attention was paid to bending the knees and
straightening the back. The number of recordings made was not given. The proposal for an
ergonomic approach showed less muscle activity in the lower back, at the expense of more
activity for the leg muscles. The Internet of Things [18] includes important parts of wearable
acquisition systems. In one paper [19] for example, the authors presented the concept and
implementation of an unobtrusive wearable suit for integrated monitoring—that is, the
acquisition, processing, and analysis of human motion and other physiological modalities.

In the work [15], a dummy was used for the exercises, which, as a rigid body, does not
fully reflect the mechanics of the human body in the context of joint movement and muscle
tension. In this work, instead of using a human dummy when simulating lifting patients,
full measurements of the real person being lifted were recorded for the analysis of the
patient’s kinetic and kinematic data. We focused on the important aspect of nurse–patient
cooperation because, in every real situation, the patient undertakes highly individualized
cooperation with the staff.

The nurse reacts to the patient’s comments related to the lifting activity performed.
Experiments in which a mannequin is used do not reflect the actual situation of picking up
a living person. The available mannequins are not able to reflect the real musculoskeletal
system, in particular, to realistically simulate the muscle tension occurring during the
movement of the patient and the nurse. The reaction and interaction to each actual patient’s
lifting are individual.

This paper proposes a scheme of lifting the real patient: an experiment was carried
out to show the interaction of people by recording anatomical relationships during lifting.
During the patient’s lifting movement, there are interactions between the caregiver’s and
the patient’s movements. Recorded multimodalities (image, kinematics, kinetics, and
electromyography) provide more information at the same time than unimodal measure-
ments do (Figure 1). Actions and interactions between the patient and the caregivers are
presented. A great deal of research has been conducted into the ergonomics and safety of
patient handling by medical personnel.

Multimodal measurement of the movement of two people represents complex multidi-
mensional information with plenty of mutually dependent features. With the introduction
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of Motion Tags [5], we present a simple equivalent of original data emphasizing the most
important features of the phases of patient lifting in multiperson interaction. Accurate
instrumentation and multimodal measurements increased the efficacy at developing the
assumed model. By combining measurement modalities, Motion Tags represent important
information on a more abstract level and allow for efficient automation of the assessment
between correct and incorrect movements.

Figure 1. Visualization of the correct patient lifting with multimodal data (video, kinematics, kinetics, and electromyography).

2. Dataset with People Lifting Patterns (DPLP)

The Dataset with People Lifting Patterns (DPLP) was created in September 2019
during internships of students from the Wroclaw University of Technology. The recordings
took place in the Human Motion Laboratory at the Research and Development Center
of the Polish–Japanese Academy of Information Technology located in Bytom, Poland
(http://bytom.pja.edu.pl/, accessed on 1 April 2021). The prepared dataset contains
recordings of patient safe transfer from lying to sitting on a bed and squatting scenarios.
These scenarios were performed by two 22-year-old male participants in two variants.

In the first case, the performances of the correct (ergonomic) transfer based on the
right handling techniques [5] were registered and validated by experienced health care
professionals. The second case represents an incorrect (non-ergonomic) transfer, where
the motion was performed incorrectly without professional training. The squats were also
performed with and without a load both in the technically correct and incorrect variants.
These exercises allowed recording of the maximum muscle tension values for the tested
actors. In the prepared recordings, the main attention was focused on the work of the hips,
back, knees, and selected muscle tensions.

2.1. Measurement Configuration

Data were collected using Vicon software and 30 motion capture cameras, an EMG
with a 16 channel configuration, two force plates from Noraxon, and three video Basler
cameras. Multimodal registrations require hardware synchronization and hardware cali-
bration, which are described in the paper [20]. We used the Life Science System from Vicon,
which was able to acquire and synchronise all required modalities on the hardware level

http://bytom.pja.edu.pl/
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with synchronization based on equipment with the highest sampling rate. We stored all
results on a fast VSP G200 Hitachi Data Storage System (1.5 PB capacity). Eventually, a
data acquisition process required 5 GB of storage for the entirety of our experiments.

A detailed description of the applied measurement configuration was presented in [5].
The measurement devices were calibrated and synchronized (Table 1), and the system setup
allowed the acquisition of 404 parameters for two people’s motions. Biometric data of the
registered participants are shown in Table 2. The list and descriptions of the EMG electrode
placement can be found in Table 3 and Figure 2. A description of the marker placement on
the body is provided in Figure 2. Mocap markers were placed on each performer’s body
(nurse and patient) as well as on the table outline (four markers) and the applied loads
(two times four markers).

Table 1. Configuration of the custom prepared environment for multimodal data acquisition of patient lifting.

Data Type Recording System Recorded Parameters

Motion Capture (3D) [200 Hz] 30 Vicon cameras system
(10 MX-T40, 10 Bonita, 10 Vantage)

39 markers for the nurse’s body and 39 for the patient
according to the Plug-In Gait Full-Body model

Electromyography (1D) [1000 Hz] Noraxon 16 EMG measurements (SENIAM)

GRF (3D) [1000 Hz] Kistler Force Plates 9286BA The direction and force of two feet

Multi-camera video (2D) [25Hz] 3 DV Basler Pilot piA1900-3gc 3 video streams (back, right, and left)

Table 2. Biometric data of the registered participants.

ID Person Role Sex Age Weight [kg] Height [mm]

0 B0436 nurse/patient male 23–24 80 1760
1 B0437 nurse/patient male 23–24 57 1760

Table 3. Placement of the EMG electrodes during the recording session (see Figure 2).

Electrode (Left Side) Electrode (Right Side) Muscles Name

Voltage.1 Voltage.9 latissimus dors
Voltage.2 Voltage.10 lumbar erector spinae
Voltage.3 Voltage.11 obliquus externus abdominis
Voltage.4 Voltage.12 rectus femoris
Voltage.5 Voltage.13 biceps femoris
Voltage.6 Voltage.14 gastrocnemius medialis
Voltage.7 Voltage.15 gastrocnemius lateralis
Voltage.8 Voltage.16 soleus

In addition to the data already acquired directly from the measurements, the software
facilitated computing additional parameters for the body motion for each actor, such as the
virtual markers, angles, moments, forces, and powers. The part of the Vicon software plug-
in Gait simplified the calculation of the kinematics (angles) and kinetics (forces, moments,
and powers) of the estimated joints from the applied motion model and measured positions
of the XYZ markers.

In addition to the data already created from the actual measurements, the software
allowed us to produce additional parameters for the body motion for each actor, such as
virtual markers, angles, moments, forces, and powers. The Gait plug-in directly calculates
the kinematics (angles) and kinetics (forces, moments, and powers) from the measured
positions of the XYZ markers.



Sensors 2021, 21, 3142 5 of 11

Figure 2. The placement of 39 motion capture markers and EMG electrodes on the nurse. The same
scheme was used for the patient (without the EMGs). Skeleton schema as well as marker abbreviations
of the marker names sources: http://www.lifemodeler.com/LM_Manual_2010/A_motion.shtml,
accessed on 1 April 2021.

2.2. Measurement Protocols

The carryover was considered to be correct if it was performed according to the
phases of movement from Table 4 and if the nurse followed the appropriate principles.
Correct squats are those that abide the following rules: keep the head and neck in a proper
alignment with the spine; maintain the natural curvature of the spine; do not bend at the
waist (in a light squat); avoid twisting the body when moving a person; always hold a
person being transferred close to your body (arms not outstretched); keep legs shoulder-
width apart for balance; and use leg muscles to lift and/or pull the patient (knees should
not cross the toe line). Movements of patient lifting performed by a nurse without following
the given rules were considered abnormal.

Table 4. Description of the patient lifting movement scenarios.

ID Move Movement Name Movement Phases

0 E01 Correct F01—Preparing to move
Patients Lifting F02— Extending hands to the patient

F03— Patient’s leg flexion
F04— Right arm position
F05— Left arm position

F06— Turning the patient over
F07— Lowering the patient’s legs

F08— Seating the patient

1 E02 Incorrect F01— Preparing to move
Patients Lifting F02—All actions simultaneously

2 E03 Correct squats with load F01—Squat
3 E04 Correct squats without load F02—Upright
4 E05 Incorrect squats with load
5 E06 Incorrect squats without load

http://www.lifemodeler.com/LM_Manual_2010/A_motion.shtml
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2.3. Dataset Organization

The created dataset includes all the files that were created as a result of the session
recording. It contains, in particular, .C3D, .AVI, and other files necessary for the advanced
processing of recorded data. The naming convention of the files in the dataset is as
described in the previous chapter. We used Mokka—an open-source editor for the .C3D
data visualization. Missing marker positions were completed using Vicon Nexus software.
In addition, the data were annotated according to the time phases present in Table 4. The
annotations are visible as start and end pose labels in the .C3D file.

The file naming convention is as follows: YYYY name T99.c3d, where

• YYYY-MM-DD is the date of recording in the format (year, month, day);
• name is:

– CorrectLifting: 3 recordings for B0436 and 3 recordings for B0437,
– InCorrectLifting: 2 recordings for B0436 and 2 recordings for B0437,
– InCorrectSquat: 2 recordings for B0436 and 1 recording for B0437,
– InCorrectSquatLoad: 1 recording for B0436 and 0 recordings for B0437,
– CorrectSquat: 1 recording for B0436 and 2 recordings for B0437,
– CorrectSquatLoad: 1 recording for B0436 and 1 recording for B0437, and
– InCorrectSquatLoad2: 1 recording for B0436 and 0 recordings for B0437; and

• T99 is the individual repetition ID number of the sequence.

The dataset with patient lifting (DPLP) has been made public for scientific research
purposes according to the initiative of Living Labs for Human Motion Analysis and
Synthesis in Shared Economy Model [21] and is available in the resources of the R&D
Center PJAIT: https://res.pja.edu.pl (accessed on 1 April 2021).

3. Multimodal Data Representation

In the visual analysis of the recorded data, the variable behavior of muscle activity,
which depends on the movement performed, was observed. In abnormal lifting, all muscles
generated high tensions simultaneously. In contrast, in the correct approach, muscle tension
was distributed throughout the exercise, and activity was at a lower level. The assumptions
that a correctly performed movement would decrease tension on the back muscles and
increase tension on the lower extremities were confirmed.

This would result in fewer injuries to medical personnel resulting from excessive
pressure on the lumbar spine. The indicated observations were also noted in the work
of [5], where the concept of the Motion Tag (Figure 3) was also proposed. A Motion Tag is
a concise, minimal representation of a given motion measurement segment that includes
characteristic data blocks of the selected motion. In our case, the data blocks represent
motion phases with a specific correlation between parameters. In the following analysis, we
will attempt to determine the correctness of patient lifting motion based on Motion Tags.

Figure 3. The EXTag concept with four level of operations [5].

https://res.pja.edu.pl
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Annotations of particular situations according to the measurement protocol were
performed manually by the personnel involved in the recordings. The start and end
positions for each movement phase were determined and marked. The proposal of the
extraction of the position of the nurse and patient from markers was aimed toward an
automation process that would reveal the movement phases described in Table 4.

By observing changes in the position of the patient’s pose, body markers were pro-
posed as follows:

• F02—Approximation of the markers RWRA, RWRB, LWRA, and LWRB (the nurse’s
hands) to RKNE and LKNE (the patient’s knees).

• F03—Change the values for RANK, RTOE, RHEE, LANK, LTOE, and LHEE (the
patient’s feet) and RKNE and LKNE (the patient’s knees)

• F04—Change the values for RWRA and RWRB (the patient’s hand) versus RELB (the
patient’s elbow).

• F05—Change the values for LWRA and LWRB (the patient’s hand) versus CLAV (the
patient’s chest).

• F06—Abrupt change for most markers by 90 degrees.
• F07—Change in value of RANK, RTOE, RHEE, LANK, LTOE, and LHEE (the pa-

tient’s feet).
• F08—Change of C7, T10, and CLAV values (change of patient’s back position from

horizontal to vertical).

Best practices from medical protocols suggest a set of the most characteristic multi-
modal features for correct people handling. The individual changes in the posture of the
patient in synchronization with the changes in the posture of the nurse are not sufficient to
conclude that the caregiver’s movement is correct (ergonomic). Therefore, based on the ad-
ditional date from the surface EMG where the muscle showed increased activity, the proper
phases of the movement were chosen. The raw EMG data were rectified and normalized as
in [22], and the result is presented in Figure 4. The combined multimodal motion patterns
were used for the comparison of different subjects performing the movement. Each subject
with selected movement phases is presented in Figure 5.

With this knowledge and the determined movement phases described in Table 4, in-
creased muscle activity was detected and was physiologically correct according to SENIAM
(The SENIAM project (Surface ElectroMyoGraphy for the Non-Invasive Assessment of
Muscles) is a European concerted action in the Biomedical Health and Research Program
(BIOMED II) of the European Union (http://www.seniam.org/ accessed on 1 April 2021)),
recommendations were made for each specific movement phase. For each movement and
processed EMG, a muscle was considered to be active only if its activity was greater than
20% of the highest tension throughout the movement. In this way, a table of muscle activity
in a particular phase for each movement was obtained. If a given activity was repeated for
at least three lifting samples, we considered that, in that phase, the muscle would be active
for the correct movement. The described observations are included in Table 5.

Table 5. Detected muscle (Table 3) activity in relation to movement phases (Table 4) in progress.

Muscles ID F02 F03 F04 F05 F06 F07 F08

Voltage.1 active active active
Voltage.2 active
Voltage.3 active active active active
Voltage.4
Voltage.5 active active active active active
Voltage.6 active active active active
Voltage.7 active active active active active active
Voltage.8
Voltage.9 active

http://www.seniam.org/
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Table 5. Cont.

Muscles ID F02 F03 F04 F05 F06 F07 F08

Voltage.10
Voltage.11 active active active active
Voltage.12 active active
Voltage.13 active active
Voltage.14 active active active
Voltage.15 active active
Voltage.16 active active active active active active active

Figure 4. Activity of selected muscles for patient transfer. The first three graphs show the incorrect
transfer, the next three graphs show the correct transfer.
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Figure 5. Activities of selected muscles for the patient transfer divided into movement phases (see Table 4). The first three
diagrams show the incorrect transfer, and the next three show the correct transfer.

4. Summary

The multimodal form using motion patterns presented sophisticated and detailed
insights for further independent investigations of the ergonomic movements of lifting. This
provided additional information regarding the mutual relations between a caregiver and
patient. In addition, such a multiperson and multimodal approach reveals a new kind of
relationship between different motion features (e.g., the muscle tension to the kinematic
configuration of a nurse or patient in a certain phase of lifting).

We proposed and disseminated a complete measurement protocol and unique ref-
erence dataset of the correct and incorrect lifting schemes for nurses and patients. The
possibility of using Motion Tags for motion correctness detection was considered as pre-
sented in [5]. Assumptions about muscle activities and changes in the marker positions
were described in the paper and can be used as the basis for motion patterns.
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