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Abstract

Long-chain n-6 and n-3 PUFA (LC-PUFA), arachidonic acid (AA) (20:4n-6) and DHA (22:6n-3),
are critical for optimal brain development. These fatty acids can be consumed directly from the
diet, or synthesized endogenously from precursor PUFA by A-5 (encoded by FADS1) and A-6
desaturases (encoded by FADS2). The aim of this study was to determine the potential importance
of maternal genetic variability in FADSL and FADS2 genes to maternal LC-PUFA status and
infant neurodevelopment in populations with high fish intakes. The Nutrition Cohorts 1 (NC1) and
2 (NC2) are longitudinal observational mother-child cohorts in the Republic of Seychelles.
Maternal serum LC-PUFA was measured at 28 weeks gestation and genotyping for rs174537
(FADSL), rs174561 (FADSL), rs3834458 (FADSL-FADS?) and rs174575 (FADS2) was performed
in both cohorts. The children completed the Bayley Scales of Infant Development 1l (BSID-I11) at
30 months in NC1 and at 20 months in NC2. Complete data were available for 221 and 1310
mothers from NC1 and NC2 respectively. With increasing number of rs3834458 minor alleles,
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maternal concentrations of AA were significantly decreased (NC1 p=0.004; NC2 p<0.001) and
precursor:product ratios for linoleic acid (LA) (18:2n-6)-to-AA (NC1 p<0.001; NC2 p<0.001) and
a-linolenic acid (ALA) (18:3n-3)-to-DHA were increased (NC2 p=0.028). There were no
significant associations between maternal FADS genotype and BSID-II scores in either cohort. A
trend for improved PDI was found among infants born to mothers with the minor rs3834458
allele. In these high fish-eating cohorts, genetic variability in FADS genes was associated with
maternal AA status measured in serum and a subtle association of the FADS genotype was found
with neurodevelopment.

Keywords

A-5 Desaturase (A5D); A-6 Desaturase (A6D); Maternal fish consumption; Neurodevelopment;
Seychelles Child Development Study (SCDS)

1. Introduction

An adequate supply of long-chain PUFA (LC-PUFA) arachidonic acid (AA) (20:4n-6) and
DHA (22:6n-3) is critical for optimal brain development [11]. The fetus relies entirely on the
maternal supply of these fatty acids in utero. These LC-PUFA can be obtained directly from
the diet, but can also be endogenously synthesized in all mammalian systems from their
essential n-6 and n-3 PUFA precursors, linoleic acid (LA) (18:2n-6) and a-linolenic acid
(ALA) (18:3n-3) respectively. This synthesis involves a series of elongation and
desaturation steps, catalyzed by the fatty acid desaturase enzymes [39], where A-5
desaturase (A5D) and A-6 desaturase (A6D) are recognized as rate-limiting enzymes [28]
(Fig. 1). However, the endogenous synthesis of LC-PUFA, particularly that of DHA from
ALA, is recognized to be extremely inefficient [35]. For this reason consumption of
preformed DHA from fish sources is recommended.

The FADSL (encoding A5D) and FADS? (encoding A6D) genes are located head-to-head in
a cluster on chromosome 11 (11g12-q13) [10,24,36]. Carriers of certain genotypes in the
FADS gene cluster have consistently been shown to have higher biological status of PUFA
precursors, LA and ALA, and lower status of LC-PUFA products, AA and EPA (20:5n-3),
probably as a result of having lower expression of the functional enzymes
[17,19,23,30,33,47,9]. The highest and the lowest proportion of variability, with respect to
the influence of FADS genes on PUFA composition, have been found for AA and for DHA
respectively [44].

Among cohorts of pregnant women, maternal genetic variation in FADS has frequently been
associated with lower concentrations of AA and EPA in maternal blood and breast milk, as
well as infant blood [19,22,26,47]. Importantly, variation of the maternal FADS genotype
resulting in lower FADSL and FADS? activity has also been associated with lower cognitive
development of infants, possibly owing to lower LC-PUFA status during critical stages of
fetal development [27,40,6].

These findings suggest that the FADS genotype may be an important determinant not only
of LC-PUFA status, but also of the biological effects exerted by LC-PUFA. With respect to
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dietary variation, it is not fully understood how dietary availability of LC-PUFA impacts on
the association between FADS genotype and LC-PUFA status [14]. It has been suggested
that FADS genotype may be a greater determinant of LC-PUFA status in populations where
fish consumption is low and there is expected to be greater dependence on endogenous
synthesis of LC-PUFA [37]. Yet there remain no data on the influence of FADS genotype,
on either LC-PUFA status or neurodevelopment, in populations with high fish consumption.
These data would be important for risk assessment by providing further evidence on the
risks and benefits of fish consumption during pregnancy.

The objective of the current study was to characterize mothers in two high fish-eating
cohorts of the Seychelles Child Development Study (SCDS) for FADSL and FADS? and to
investigate associations among maternal genotype, LC-PUFA status and developmental
outcomes of their infants. It was hypothesized that mothers with minor alleles of SNPs in
either FADS1 or FADS? would have higher blood concentrations of precursor n-6 and n-3
PUFA, LA and ALA, and lower concentrations of LC-PUFA products, AA and DHA. We
further hypothesized that such variation in the maternal status of these PUFA during
pregnancy could impact the cognitive development of their children.

2. Methods
2.1. Study population

The SCDS is a longitudinal observational study conducted in the Republic of Seychelles, an
archipelago in the Indian Ocean. The population resides mainly on the island of Mahé and is
of mixed African, European and East Asian origin. The overall aim of the SCDS is to
investigate the effects of methyl mercury (MeHg) and nutrient exposure, from maternal fish
consumption during pregnancy, on child developmental outcomes. The study has found no
consistent pattern of adverse associations of prenatal MeHg exposure and neurodevelopment
in children of mothers consuming an average of 12 fish meals per week [38,43,45].

Apparently healthy mothers were recruited to Nutrition Cohort 1 (NC1) and Nutrition
Cohort 2 (NC2) during their first antenatal visit (from 14 weeks of gestation) at eight health
centers across Mahé. NC1 mothers were recruited in 2001 until 300 volunteers had
consented [7], and NC2 mothers were enrolled from 2008 until 2011 when the target number
of 1500 mothers had consented [43]. Further information on inclusion criteria and power
calculations for NC1 [41] and NC2 have previously been described [43]. In NC1, mothers
completed a 4-day food diary at 28 weeks gestation to estimate their average daily
consumption of fish [4]. In NC2, mothers completed a retrospective Fish Use Questionnaire,
also at 28 weeks gestation, to estimate their weekly consumption of fish during pregnancy.
This study was conducted according to guidelines laid down in the Declaration of Helsinki
and all study procedures involving participants were reviewed and approved by the
Seychelles Ethics Board, the Research Subjects Review Board at the University of
Rochester, and the Regional Ethics Committee at Lund University, Sweden.

2.2. Blood sampling and analyses

At 28 weeks gestation non-fasting blood samples were collected in both cohorts and serum
and whole blood were obtained after processing at the Public Health Laboratory of the
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Ministry of Health. Maternal serum samples were shipped at —80 °C to the University of
Ulster where they were analyzed for fatty acid concentrations. Total lipids were extracted
and fatty acid methyl esters (FAME) were prepared by boron trifluroide methanol (BF3)
according to an adaptation of the Folch method [8]. FAME were detected and quantified
using the gold-standard technique of Gas Chromatography—Mass Spectrometry (GC-MS)
(Agilent 7890A-5975C, UK) using heptadecaenoic acid (C17:0) as the internal standard, as
previously described [41]. All analytical standards were of >99% purity and purchased from
Sigma-Aldrich, UK. Total serum PUFA composition is presented as mg/ml to indicate
physiological quantities. In NC1, there were 11 women missing 28 week PUFA status, but
values for these women were imputed from PUFA concentrations which were also measured
at delivery in the NC1 cohort [7]. As described previously, the efficiency of blood
processing in the Seychelles was improved in NC2 compared to NC1 [42].

2.3. Genotyping

Maternal whole blood samples were shipped at —80 °C to the University of Lund, Sweden
for genotyping. Four candidate SNPs: FADSL rs174537 and rs174561, FADSL-FADS?
rs3834458 and FADS2 rs174575; were selected based on evidence of impacting on LC-
PUFA in epidemiological studies (Online Resource 1). The rs3834458 is located in the
promoter of FADS2 and 5’ of FADSL and is often referred as intergenic [26]. DNA was
extracted from maternal blood using the Qiagen DNA Blood Mini kit (Qiagen, Hilden,
Germany). SNPs were genotyped by using the iPLEX® Gold assay on the MassARRAY
platform (Sequenom™, San Diego, USA) and by TagMan allelic discrimination assay on an
ABI 7900 instrument (Applied Biosystems, Foster City, CA, USA), according to the
manufacturer’s instructions. A random selection of the samples were re-analyzed for quality
control purposes with perfect agreement between original and repeat genotyping runs for all
SNPs. Mother’s DNA samples missing more than two of the five SNPs recorded in each
genotyping batch were considered unreliable and not included in the database, whilst those
missing less than two of all SNPs were included. These differences in genotyping efficiency
account for different sample sizes for each SNP measured.

2.4. Developmental assessment

When infants were aged approximately 30 months in NC1 and 20 months in NC2, they
completed developmental testing with the Bayley Scales of Infant Development (BSID-I1).
Testing was conducted by specially trained nurses at the Child Development Centre, Mahé.
All study forms were shipped to the University of Rochester, where data were double-
entered and the Mental Development Index (MDI) and Psychomotor Development Index
(PDI) endpoints were scaled according to the child’s age at testing. Test reliabilities for the
BSID-I1 were determined as previously described [41].

2.5. Statistical analyses

Deviations from Hardy—Weinberg equilibrium were tested using chi-square analysis. One
SNP (rs174561) was in Hardy Weinberg disequilibrium in both populations (Online
Resource 2). As this SNP was genotyped with two different methods (NC1 with Sequenom
and NC2 with Tagman) and there was a perfect match between re-runs, we considered the
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genotyping results correct. Linkage disequilibrium was evaluated using Haploview [3].
Tests for associations between outcomes and SNPs were carried out from a priori analysis
plans and all effects were tested using two-sided tests of significance at the a =0.05 level.
Unadjusted linear regression was used to estimate the effect of each of the four FADS SNPs
on each of the eight individual LC-PUFA measurements and on the precursor:product ratios,
LA:AA, ALA:EPA and ALA:DHA. The ratios of LA:AA and ALA:EPA are commonly
used as crude indicators of desaturase activity [46]. The minor allele frequencies were
sufficiently large in each of these SNPs that heterozygote and variant homozygote effects
were estimated separately. In order to make the LC-PUFA results more comparable, we
scaled maternal serum PUFA composition in each cohort using homozygote carriers of the
common SNP as a reference and the relative differences are presented [31,32].

Multiple linear regression was used to estimate the effect of FADS SNPs on the child’s
neurodevelopment, measured as BSID-I1 scores. Adjustments were made for covariates
previously chosen to cover the most important determinants of neurocognitive development
in children [41]. These include child sex, maternal age at delivery, presence of two parents
in the household, socioeconomic score, and birth weight (NC1) or child age at testing
(NC2).

The children in the NC2 cohort were tested approximately 10 months before the age at
which testing of NC1 children took place. Over the course of the SCDS, we have observed
that the mean scaled score within each cohort decreased with age when followed
longitudinally. To make the results more comparable between cohorts, we scaled the BSID-
Il scores in each cohort by using estimated mean scores in homozygote carriers of the
common SNP as a reference and the relative differences are presented.

A total of n=222 NC1 mothers and n=1400 NC2 mothers were included in the current study
after exclusions owing to missing data in developmental outcomes, LC-PUFA, SNPs and
covariates. Descriptive characteristics of the two cohorts, including covariate data, are
presented in Table 1. The LC-PUFA values differed between the cohorts and were, apart
from LA, generally higher in NC2. This finding may be as a result of potential oxidation of
samples during blood processing in NC1, as previously described [42]. NC1 mothers
consumed on average 9 fish meals per week [41], whereas NC2 mothers consumed an
average of 8.5 estimated fish servings per week [43].

The genotype distributions in NC1 and NC2 are presented in Table 2. The allele frequencies
for the FADS SNPs were similar between the Seychellois cohorts (Online Resource 2). For
all SNIPs, the minor allele frequencies were lower in the Seychellois populations compared
to European and African populations [12]. FADS2 rs174575 was found not to be in linkage
disequilibrium (LD) with any of the other SNPs, whereas the other three SNPs (FADSL
rs174561 and rs174537, FADSL-FADS2 intergenic rs3834458) had pairwise LD values
ranging from 0.83 to 0.93 (data not shown). Therefore, the following results are presented
for rs174575 (not in strong LD with other SNPs) and rs3834458 (in strong LD with
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rs174561 and rs174537). Results for the other SNPs in LD with rs3834458 are presented in
Online Resources 3 and 4.

Genetic associations with maternal PUFA composition were evaluated as shown in Table 3.
There was a significant association between rs3834458 and serum composition of AA and
the ratio of LA:AA in both cohorts. With increasing number of variant alleles, the relative
concentrations of AA were reduced in both cohorts (NC2 p<0.001; NC1 p=0.004). The
magnitude of association was somewhat larger in NC2 where rs3834458 deldel carriers
showed 20% lower AA than TT carriers, compared to 16.5% lower AA shown in NC1
deldel carriers (Fig. 2). The association with the LA:AA ratio was as expected, with ratios
being significantly higher with increasing number of variant alleles (NC2 p<0.001; NC1
p<0.001). In the larger NC2 cohort further associations between rs3834458 and PUFA status
were found with variant carriers having significantly higher LA (p=0.002) and ALA
(p=0.017) concentrations and significantly different ratios of ALA:DHA (p=0.028, all 2 df
tests). For ALA:DHA, deldel carriers had a 24.4% higher ratio compared to TT carriers. The
results were very similar for the two other SNPs in LD with rs3834458 (Fig. 2).

In NC1, rs174575 appeared to modify LA:AA in that G allele carriers showed higher ratios
compared to CC carriers (p=0.002, 2 df test). In NC2, rs174575 was associated with lower
AA concentrations with increasing number of variant alleles (p=0.025). There were no
significant associations between FADS genotype and concentrations of EPA (Fig. 3), DHA
or the ratio of ALA:EPA in either cohort.

The genotype of the mothers was evaluated in relation to neurodevelopmental outcomes in
the children as shown in Table 4. There were no significant genetic associations between
FADS genotype and child developmental scores in either NC1 or NC2. A non-significant
trend for infants of rs3834458 del carriers to score higher on the Psychomotor
Developmental Index (PDI) was found in both NC1 and NC2 (p=0.07 and 0.07
respectively).

4. Discussion

We found in two high fish-eating observational mother-child cohorts from the Republic of
Seychelles that maternal FADS genotype rs3834458 was significantly associated with LC-
PUFA status. The strongest associations were observed for AA and the LA:AA ratio, with
variant homozygotes in the much larger cohort (NC2) showing 20% lower AA and 42%
higher LA:AA than those with the homozygous reference genotype. These findings support
prior studies reporting that carriers of the minor alleles of FADS SNPs, including
rs3834458, tend to have a lower blood composition of LC-PUFA, particularly of AA but
also of EPA [19,33,47]. However, in our study there was no association of rs3834458, or
any other FADS genotype, with either serum EPA or DHA composition. This finding agrees
with the majority of studies which have shown DHA status to be less influenced by genetic
variation in FADS genes [13,19]. One plausible reason for this finding is that whilst the LC-
PUFA desaturation pathway mainly takes place within the endoplasmic reticulum, the final
conversion step from docosapentaenoic acid (DPA; C22:5n-3) to DHA (partial $-oxidation)
requires a translocation to the peroxisomes [39]. This peroxisomal conversion accounts for

Prostaglandins Leukot Essent Fatty Acids. Author manuscript; available in PMC 2016 December 01.



1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Yeates et al.

Page 7

DHA being the least efficiently synthesized n-3 LC-PUFA in the body and as a result, the
impact of genetic variation may be ‘diluted” and less likely to influence DHA status [21]. It
could also be hypothesized that the reason for a lack of genetic influence on DHA status
shown in the current study may be related to high fish consumption and subsequently higher
levels of preformed DHA in the population, which may mean lower dependence on the
endogenous synthesis pathway. This hypothesis is supported by the recent study by Scholtz
et al where the influence of FADS genotype on DHA status became non-significant
following fish oil supplementation among a group who had lower DHA status at baseline
[37]. However, despite high fish intake in our cohorts, some endogenous activity for
production of n-3 LC-PUFA might exist and thereby account for the higher LA:AA found in
both cohorts and higher ALA:DHA found in NC2. A recent randomized controlled trial of
fish oil supplementation reported that increased dietary intakes of EPA and DHA were
associated with higher activity of A5D and lower activity of A6D [2]. These findings may
suggest that the endogenous LC-PUFA synthesis pathway remains active, and perhaps
enhanced, despite abundant preformed LC-PUFA in the diet. However we must
acknowledge that the ALA:DHA ratio is limited as an indicator of FADS enzyme activity
given the notably low conversion of DHA which occurs from ALA endogenously. We also
cannot clearly differentiate which of the SNPs is related to the LC-PUFA phenotype, as
there is strong linkage for the FADSL SNPs and the FADSL-FADS2 intergenic rs3834458.
However, a less pronounced association was found for FADS? rs174575 compared to the
FADSIL SNPs, which could suggest that the functional association is related to differences in
AS5D rather than A6D activities, but we cannot exclude the potential influence of other genes
in the LC-PUFA pathway.

The maternal FADS genotype was not significantly associated with infant development in
either cohort. However, we did find a trend for improved psychomotor development among
infants of mothers with the variant allele for rs3834458 in both NC1 (p=0.07) and NC2
(p=0.07). This suggests a subtle association of the FADS genotype with neurodevelopment,
even at high fish intake. We suspect, from the lack of associations between rs3834458 and
EPA or DHA, that this trend might be related to lower production of AA, which is a
precursor for pro-inflammatory eicosanoids [18]. Data from the English mother—child
ALSPAC cohort, also found children of mothers with the rs3834458 minor allele performed
better in tests of intelligence quotient at 8 years [40]. In our recent analysis of the
associations between maternal PUFA status and neurodevelopment in NC2, we found no
direct associations of maternal AA status with cognitive outcomes. However, we did find
significant adverse associations between higher maternal n-6/n-3 ratios and both infant
psychomotor development and communicative ability at 20 months of age. This suggests
that the balance between AA and DHA may be important for neurodevelopment and a
possible mechanism would be through influencing the inflammatory milieu [43].

Recent studies suggest that the interaction between PUFA and genetic variability is
complex. One recent study suggests that n-3 LC-PUFA supplementation can induce
epigenetic regulation of FADS genes and genes encoding the elongase enzymes, ELOVL5
and ELOVL2, in a sex-specific manner [16]. If true, this regulation may explain why
different populations, with similar allelic frequencies of FADS SNPs but with distinct diets,
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may present health disparities [25]. Future studies may need to consider genetic variation in
genes controlling eicosanoid synthesis from LC-PUFA, such as 5-lipoxygenase (ALOX5)
[25]. Taken together, these data provide a firm basis for considering each population group
separately in studies of FADS and PUFA status.

There are some methodological issues to consider with the current study. The processing
time of the blood collected was different between the two cohorts, and may partially explain
the different serum concentrations of LC-PUFA reported [42]. However, to compensate for
this and make the cohorts more comparable, we scaled PUFA values in each cohort to the
estimated mean concentration in homozygote carriers of the reference genotype, as
described [31,32]. We included developmental testing points in the two cohorts that were
reasonably close in age (30 months in NC1 and 20 months in NC2) to enhance
comparability. Average MDI scores across the cohorts were similar whereas PDI scores
were greater in the NC2 cohort, possibly owing to the younger age at examination. We
further included similar a priori covariates in the regression analysis to increase
comparability of associations across cohorts. We observed relatively consistent genetic
associations in the two cohorts, but fewer were statistically significant in the NC1 cohort,
perhaps owing to the smaller sample size. We acknowledge that the precursor:product
PUFA ratios are limited as markers of enzyme activity. However, these ratios have been
used frequently for this purpose and we believe that our use of serum absolute PUFA
concentrations in denoting these ratios is a strength of the current study.

In conclusion, we found that the maternal FADS genotype is an important predictor of
maternal AA, but not of EPA and DHA status. To our knowledge this is the first time that
such associations have been described within a high fish-eating cohort. These results
highlight the importance of considering FADS genotype, even at high fish intake, to aid
understanding associations between maternal LC-PUFA status, fish consumption and child
development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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AA Arachidonic acid

ALA Alpha-linolenic acid

BSID-I1 Bayley’s Scales of Infant Development |1

A5SD A5-desaturase

A6D AB-desaturase

LA Linoleic acid

LC-PUFA Long-chain polyunsaturated fatty acids

MDI Mental Developmental Index

NC1 Nutrition Cohort 1

NC2 Nutrition Cohort 2

PDI Psychomotor Developmental Index

SCDS Seychelles Child Development Study
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Fig. 2.

Prgenatal arachidonic acid (AA; to compare the two cohorts we report the relative difference
compared to the mean AA in carriers of the reference genotype). Boxplots are shown for
each genotype in both the NC1 and NC2 cohorts. Differences between the genotypes are
significant for all four SNPs in both cohorts except rs174575 in the NC1 cohort (see Table 3
and S3).
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Prenatal Eicosapentaenoic acid (EPA; to compare the two cohorts we report the relative
difference compared to the mean EPA in carriers of the reference genotype). Boxplots are

shown for each genotype in both the NC1 and NC2 cohorts. Differences between the

genotypes are not significant for either cohort or any SNP (see Table 3 and S3).
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Table 2

Genotype distribution in NC1 and NC2 mothers®P:c,

NC1 N genotyped Reference homozygote Heterozygote Minor allele homozygote
(%)
FADSI rs174537 180 63.3 GG 31.1GT 56TT
FADSI rs174561 193 7727TT 16.1TC 6.7 CC
FADSI-FADS2 rs3834458 220 659TT 28.2 Tdel 5.9 deldel
FADS2 rs174575 214 59.8 CC 35.0CG 51GG
NC2
FADSI rs174537 1413 67.9 GG 285GT 36TT
FADSI rs174561 1413 721TT 248TC 31cCC
FADSI-FADS? rs3834458 1414 704TT 26.4 Tdel 3.2 deldel
FADS2 rs174575 1413 61.2CC 33.3CG 55GG

aNCl, Nutrition Cohort 1; NC2, Nutrition Cohort 2; del=one base-pair deletion.

b

n=180-220 in NC1 and n=1413-1414 in NC2 depending on genotyping efficiency for the different SNPs.

Cr53834458 is FADS1-FADS?2 intergenic (NCBI).
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