
Article
Exome-wide association a
nalysis of CT imaging-
derived hepatic fat in a medical biobank
Graphical abstract
Highlights
d CT-based hepatic fat is associated with cardiometabolic

traits and diseases

d We confirm known single variants associated with hepatic fat

(e.g., PNPLA3, TM6SF2)

d Additional single variants are associated with hepatic fat

(e.g., FGD5, CITED2)

d Gene burdens of rare pLOF variants are associated with

hepatic fat (e.g., LMF2)
Park et al., 2022, Cell Reports Medicine 3, 100855
December 20, 2022 ª 2022 The Authors.
https://doi.org/10.1016/j.xcrm.2022.100855
Authors

Joseph Park, Matthew T. MacLean,

Anastasia M. Lucas, ...,

Marylyn D. Ritchie, Walter R. Witschey,

Daniel J. Rader

Correspondence
rader@pennmedicine.upenn.edu

In brief

Park et al. perform exome-wide

association studies of clinical imaging-

derived hepatic fat quantifications in a

medical biobank, with cross-modality

replication in UK Biobank. They confirm

coding variants previously associated

with hepatic fat and identify additional

coding variants in LMF2, CITED2, and

FGD5 that replicated in UK Biobank.
ll

mailto:rader@pennmedicine.upenn.edu
https://doi.org/10.1016/j.xcrm.2022.100855
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2022.100855&domain=pdf


OPEN ACCESS

ll
Article

Exome-wide association
analysis of CT imaging-derived
hepatic fat in a medical biobank
Joseph Park,1,2,3,10 Matthew T. MacLean,1,4,10 Anastasia M. Lucas,1,3 Drew A. Torigian,4 Carolin V. Schneider,1

Tess Cherlin,3,5 Brenda Xiao,1,3 Jason E. Miller,1,3 Yuki Bradford,1,3 Renae L. Judy,6 Regeneron Genetics Center7

Anurag Verma,1,3 Scott M. Damrauer,1,6,8 Marylyn D. Ritchie,1,3 Walter R. Witschey,4 and Daniel J. Rader1,2,9,11,*
1Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
2Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
3Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
4Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
5Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
6Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
7Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
8Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
9Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
10These authors contributed equally
11Lead contact

*Correspondence: rader@pennmedicine.upenn.edu

https://doi.org/10.1016/j.xcrm.2022.100855
SUMMARY
Nonalcoholic fatty liver disease is common and highly heritable. Genetic studies of hepatic fat have not
sufficiently addressed non-European and rare variants. In a medical biobank, we quantitate hepatic fat
from clinical computed tomography (CT) scans via deep learning in 10,283 participants with whole-exome
sequences available. We conduct exome-wide associations of single variants and rare predicted loss-of-
function (pLOF) variants with CT-based hepatic fat and perform cross-modality replication in the UK Biobank
(UKB) by linking whole-exome sequences to MRI-based hepatic fat. We confirm single variants previously
associated with hepatic fat and identify several additional variants, including two (FGD5 H600Y and CITED2
S198_G199del) that replicated in UKB. A burden of rare pLOF variants in LMF2 is associated with increased
hepatic fat and replicates in UKB. Quantitative phenotypes generated from clinical imaging studies and
intersected with genomic data in medical biobanks have the potential to identify molecular pathways asso-
ciated with human traits and disease.
INTRODUCTION

Hepatic steatosis, or excess accumulation of intrahepatic fat, is

a major risk factor for metabolic dysfunction, liver inflammation,

and end-stage liver disease accompanied by high morbidity

and mortality.1 In particular, nonalcoholic fatty liver disease

(NAFLD) is the most common cause of chronic liver disease

in Western countries, and there is growing evidence that the

clinical burden of NAFLD extends beyond liver-related

morbidity and mortality such as increasing risk for type 2

diabetes mellitus, cardiovascular disease, and chronic kidney

disease.2 While NAFLD has high heritability relative to other

metabolic disorders such as obesity and diabetes and our un-

derstanding of the genetic underpinnings of NAFLD has

advanced,3,4 known genetic risk variants (e.g., in PNPLA3

and TM6SF2) still explain only a fraction of heritability, suggest-

ing the existence of additional genetic variation such as rare
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coding variants and non-European-ancestry-predominant vari-

ants that may confer risk for or protection from NAFLD that

have yet to be uncovered.5

Systematic quantification of hepatic fat in population-based

epidemiological studies has led to discovery of common genetic

variants associated with NAFLD.6–12 Medical centers collect

enormous quantities of advanced abdominal imaging data in

the course of clinical care, but imaging-derived quantitative traits

such as hepatic fat are not systematically generated for research

or clinical use. To address the challenges of conventional anal-

ysis of large numbers of images obtained in clinical care, ma-

chine learning can be brought to bear to provide quantitative im-

age analysis using automation.13,14 With the growth of medical

biobanks linked to large-scale genomic data generation, there

is potential for leveraging imaging-derived phenotypes (IDPs)

from clinical imaging studies and integrating with genomic data

for discovery.
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Figure 1. Flowchart of analysis pipeline for phenome-wide and exome-wide association analyses of hepatic fat in the Penn Medicine Bio-

Bank

Flowchart diagram showing associations between EHR phenotypes, whole-exome sequence data, and automated quantification of hepatic fat from CT scans in

the PMBB.We focused our analyses on the individuals with both whole-exome sequences and quantitated hepatic fat (N = 10,283). For automated quantitation of

hepatic fat from clinical CT scans, CNN1 is the contrast detection network that removes contrasted studies, CNN2 the liver segmentation network, and CNN3 the

spleen segmentation network. For EHR diagnosis codes, wemapped ICD-9 and ICD-10 codes to Phecodes to conduct phenome-wide association studies. From

whole-exome sequences, we analyzed on an exome-wide scale common and low-frequency (MAF > 0.1%) single coding variants as well as gene burdens

aggregating rare (MAF % 0.1%) coding variants for associations with quantitated hepatic fat.
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The Penn Medicine BioBank (PMBB) is a large academic med-

ical biobank in which participants are agnostically recruited from

the outpatient setting and consented for access to their electronic

health record (EHR)data andpermission togenerategenomicand

biomarker data.Comparedwith population-basedbiobanks such

as theUKBiobank (UKB), thePMBB isenriched for awide rangeof

disease15 and includes a substantial number of participants who

have received abdominal and chest computed tomography (CT)

scans in the course of routine clinical care. We built a fully auto-

mated image curation and organ-labeling technique using deep

learning applied to CT scans to quantify hepatic fat and linked
2 Cell Reports Medicine 3, 100855, December 20, 2022
this CT-derived hepatic fat quantitation with whole-exome

sequence data to identify coding variants associatedwith hepatic

fat thatmayconfer risk for or protect fromdevelopment ofNAFLD.

RESULTS

Automated quantification of hepatic fat from clinical CT
scans and validation of the approach
We developed a fully automated approach for extraction of

hepatic fat quantifications from abdominal and chest CT scans

(Figures 1 and S1A). The contrast detection network was



Table 1. PMBB discovery cohort characteristics, related to Figures 1 and 2

Basic demographics

Total population, N 10,283

Female, N (%) 4,551 (44.3)

Median age, years 69

Genetically informed ancestry N (%)

African (AFR) 2,814 (27.4)

Mixed American (AMR) 110 (1.1)

East Asian (EAS) 103 (1.0)

European (EUR) 7,096 (69.0)

South Asian (SAS) 84 (0.8)

Phecodes N (%) OR p

Chronic liver disease and cirrhosis 1,000 (9.7) 1.057 1.70 3 10�45

Other chronic nonalcoholic liver disease 872 (8.5) 1.057 8.89 3 10�42

Alcoholic liver damage 129 (1.3) 1.072 3.50 3 10�15

Viral hepatitis 611 (5.9) 1.022 1.17 3 10�5

Liver replaced by transplant 260 (2.5) 1.032 2.12 3 10�5

Portal hypertension 135 (1.3) 1.070 7.72 3 10�15

Type 2 diabetes 3,018 (29.3) 1.034 9.42 3 10�30

Obesity 2,998 (29.2) 1.026 3.31 3 10�18

Essential hypertension 6,089 (59.2) 1.026 2.40 3 10�14

Basic demographic characteristics and representative Phecodes identified by PheWAS of median hepatic fat in PMBB. Each characteristic is labeled

with count data and percentage prevalence where appropriate. Phecodes are additionally labeled with OR corresponding to one unit change in hepatic

fat (DHounsfield units [HU] = spleen HU – liver HU) and p value as identified from PheWAS. Individuals were determined to be a case for a Phecode if

they had the corresponding ICD diagnosis on two or more dates, while controls consisted of individuals who never had the ICD code. Individuals with

an ICD diagnosis on only one date as well as those under control exclusion criteria based on Phecode mapping protocols were not considered.
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evaluated on 400 randomly selected scans (200 with IV contrast

and 200 without) and classified 399 correctly. We then assessed

the performance of the liver and spleen segmentation networks

by comparing automated versus manual full-volume contours

(Figure S1B) and achieved mean percentage overlaps (Dice ±

SD) of 0.95 ± 0.02 and 0.92 ± 0.07 respectively. Finally, we

compared the mean attenuation computed by the automated

method versus expert radiologic review and found excellent

agreement with interclass correlation coefficients of 0.976 and

0.956 for the liver and spleen, respectively.

Hepatic fat extracted from clinical CT scans is highly
significantly associated with a range of cardiometabolic
diseases and traits
Among exome-sequenced individuals in PMBB (N = 10,283;

Table 1), we conducted a phenome-wide association study

(PheWAS) of the quantitative trait ofmedian hepatic fat to interro-

gate the clinical EHR diagnosis phenotypes associated with

hepatic fat (Figure 2). Hepatic fat quantity was associated

with increased risk for chronic liver disease and cirrhosis

(p = 1.70 3 10�45) and other chronic nonalcoholic liver disease

(Phecode representing NAFLD; p = 8.89 3 10�42) at phenome-

wide significance.Hepatic fat also showedphenome-wide signif-

icant associations with increased risk for cardiometabolic

comorbidities such as type 2 diabetes (p = 9.423 10�30), obesity

(p = 3.313 10�18), and hypertension (p = 1.643 10�13). Addition-

ally, viral hepatitis (p = 1.17 3 10�5) and alcoholic liver damage
(p = 3.50 3 10�15) were associated with increased hepatic fat

at phenome-wide significance. Hepatic fat was also highly signif-

icantly associated with the quantitative trait of body mass index

(BMI) (Table S1), consistent with the known relationship between

obesity and hepatic steatosis. We also analyzed the association

of hepatic fat with several clinical EHR laboratory quantitative

traits (Table S1). We found that hepatic fat values were signifi-

cantly positively associatedwith serumalanine aminotransferase

(ALT), aspartate transaminase (AST), alkaline phosphatase,

hemoglobin A1C, random glucose, and random triglycerides,

and significantly inversely associated with high-density lipopro-

tein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol,

and total cholesterol. Thus, our CT-derived hepatic fat quantita-

tion has the expected associations with cardiometabolic

diseases and traits, helping to further validate this approach.

Exome-wide analyses of single coding variants identify
variants associated with hepatic fat
After excluding individuals with alcohol-related and viral hepatitis

diagnoses in order to study the genetic etiologies of NAFLD, we

conducted a univariate exome-wide analysis of hepatic fat for all

nonsynonymous coding variants of sufficient frequency (minor

allele frequency [MAF] >0.1% in gnomAD) (Figures 3A, S2A,

and S4). Among 120,315 total variants with at least 10 carriers,

we identified 91 variants in 86 genes with exome-wide significant

(p < 4.23 10�7) or suggestive (p < 9.93 10�5) associations with

hepatic fat (Tables 2 and S2A). These included variants
Cell Reports Medicine 3, 100855, December 20, 2022 3



Figure 2. PheWAS of median hepatic fat in PMBB
PheWAS plot of the associations of Phecodeswith median hepatic fat among exome-sequenced individuals in PMBB (N = 10,283). Associations were conducted

as trans-ancestral cosmopolitan analyses adjusted for age, genetically determined sex, and PC1-10. Phecodes are plotted along the x axis to represent the

phenome, and the association of median hepatic fat with each Phecode is plotted along the y axis representing –log10(p value). The red line represents the

Bonferroni-corrected significance threshold to adjust formultiple testing (p = 3.583 10�5), and the blue line represents a nominal significance threshold (p = 0.05).
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previously reported to be associated with hepatic fat and/or

NAFLD: PNPLA3 variants I148M, K434E, and S453I, TM6SF2

E167K, and APOE4 (C130R). Additional positive control associ-

ations were found below the significance threshold (Table S2B),

including GCKR L446P, MTARC1 T165A, and TM6SF2 L156P.

Twenty-seven of the 91 single variants were African-ancestry-

specific variants (African/European MAF ratio >10 in gnomAD;

Table S2A).

For replication, we tested the association of these 91 variants

with liver proton density fat fraction (PDFF) measurements

derived from abdominal MRI scans in 9,049 participants in the

UKB who also had whole-exome sequencing available

(Table S2C). Not only were the methods of hepatic fat quantita-

tion different but there were notable differences in the distribu-

tion of hepatic fat between PMBB and UKB (Figure S3).

Furthermore, there was insufficient power in UKB for replication

of the 27 African-ancestry-specific variants, as 20 of 27 variants
4 Cell Reports Medicine 3, 100855, December 20, 2022
had N < 5 carriers in the cosmopolitan analyses. Despite this, in

addition to replicating a number of the previously known associ-

ations, we also replicated associations of H600Y in FGD5 and a

6-bp deletion (S198_G199del) in CITED2 with hepatic fat.

To characterize the clinical implications of these replicated var-

iants, we conducted PheWAS of each variant. The H600Y variant

inFGD5wasnominally associatedwith Phecodes related to insu-

lin resistance in PMBB including impaired fasting glucose (odds

ratio [OR] 1.700, p = 0.0131) and hyperglyceridemia

(OR = 1.800, p = 0.0464) as well as diagnoses for both alcohol-

related and nonalcoholic liver diseases such as alcoholic liver

damage (OR = 2.217, p = 0.0216), liver replaced by transplant

(OR=1.920, p = 0.0230), and other chronic nonalcoholic liver dis-

ease (OR = 1.388, p = 0.0386). Additionally, the 6-bp deletion

(p.S198_G199del) in CITED2 was associated with increased

risk for liver replaced by transplant (OR = 54.379, p = 1.043E-

04), impaired fasting glucose (OR = 19.581, p = 3.484 3 10�3),



A

B

Figure 3. Manhattan plots of exome-wide discovery analyses in PMBB

(A) Manhattan plot showing the results of the exome-wide single-variant discovery analysis in PMBB (N = 9,594) for coding variants of sufficient frequency (MAF >

0.1%, NR 10). The x axis represents the exome and is organized by chromosomal location. The location of each single variant along the x axis corresponds to the

genomic location for each variant according to Genome Reference Consortium Human build 38 (GRCh38). Themost significant association of each single variant

with hepatic fat is plotted vertically above each variant, and the height of each point represents the –log10(p value) of the association. Each variant is annotated

with its corresponding gene name and amino acid change for genes with multiple exome-wide significant variants. The red line represents the suggestive

significance threshold at p = 9.9 3 10�5 to account for multiple hypothesis testing.

(legend continued on next page)
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and diabetes mellitus (OR = 2.531, p = 8.187 3 10�3) in UKB. A

comprehensive review of the clinical indications for the CT scans

included in the PMBB discovery study for carriers of the FGD5

andCITED2 variants did not show signs of bias for other abdom-

inal conditions,whichmayhave confoundedour original findings.

To test whether rare predicted deleterious coding variants in

the 86 genes containing the 91 single variants were also associ-

ated with differences in hepatic fat, we aggregated non-overlap-

ping rare (MAF % 0.1% in gnomAD) predicted loss-of-function

(pLOF) variants into gene burdens for targeted associations

with hepatic fat in PMBB (Table S3A). Gene burdens of rare

pLOF variants in eight genes were significantly associated with

hepatic fat, including genes with previously described common

variation associated with differences in hepatic fat such

as PNPLA3 and PARVB, as well as additional findings such as

PTGR1. We also aggregated the combination of rare pLOF and

rare predicted deleterious missense (pDM) variants (rare exonic

variant ensemble learner [REVEL] R 0.5) per gene for targeted

gene burden association with hepatic fat in PMBB (Table S3A).

We found 11 additional genes associated with differences in

hepatic fat in PMBB by adding rare pDM variants to pLOFs,

including SAMM50, which contains previously described com-

mon variation associated with differences in hepatic fat. Of

note, the combined CITED2 gene burden was nominally associ-

ated with increased median hepatic fat, although underpowered

(N = 3, beta = 9.723, p = 0.0276). We also tested the burden of

rare pLOFs in the 86 genes for association with hepatic fat in

UKB (Table S3B) and found three concordant gene burdens,

namely ADAM19, EXO5, and SEMA3D. Additionally, the com-

bined burden of rare pLOFs and rare pDM variants (Table S3B)

revealed three additional significant genes, namely ADGRG5,

GPS1, and NOX5.

On exome-wide analysis, a gene burden of rare pLOFs in
LMF2 is associated with increased hepatic fat in PMBB
and UKB
We also performed an exome-wide rare pLOF gene burden anal-

ysis for association with hepatic fat in PMBB. We aggregated

rare (MAF % 0.1% in gnomAD) pLOFs per gene: among

4,187 genes with at least 10 carriers for rare pLOFs who have

CT-derived hepatic fat quantifications available, there were 26

genes that had exome-wide significant (p < 1.2 3 10�5) or sug-

gestive (p < 9.9 3 10�4) associations with hepatic fat

(Figures 3B, S2B, and S4; Table S4). For these 26 genes, we

attempted replication in UKB using a similar rare pLOF gene

burden approach. We found that the LMF2 pLOF gene burden

had a significant association with hepatic fat (beta = 0.429,

p = 5.79 3 10�3, N = 5) and, importantly, in the same direction

(increased) as we observed in PMBB.

We conducted an analysis of the association of the gene

burden of rare pLOFs in LMF2 in PMBB (N = 105 het carriers)

with Phecodes in the digestive group (520–579.8). In addition
(B) Manhattan plot showing the results of the exome-wide gene burden discovery

function (pLOF) variants per gene (NR 10). The x axis represents the exome and is

corresponds to the genomic location for each variant according to GRCh38. Th

vertically above each gene, and the height of each point represents the –log10(p va

represents the suggestive significance threshold at p = 9.9 3 10�4 to account fo
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to a significant association with the NAFLD Phecode, the burden

of pLOF variants in LMF2 had significant associations with an

array of biliary-related Phecodes such as cholangitis, calculus

of bile duct, cholelithiasis with acute cholecystitis, and primary

biliary cirrhosis (Table S5A). Furthermore, the LMF2 pLOF gene

burden was associated with increased serum alkaline phospha-

tase, total cholesterol levels, and BMI (Table S5B), as well as a

trend to an increase in triglycerides (beta = 0.0474,

p = 0.0957). There were no significant associations with HDL,

LDL, ALT, or AST levels. Additionally, a comprehensive review

of the clinical indications for the CT scans included in the

PMBB discovery study for carriers of LMF2 pLOF variants did

not show signs of bias for other abdominal conditions, which

may have confounded our original findings.

Hepatic LMF2 expression is significantly increased in
histologically proven NAFLD cases versus controls
In a primary analysis of publicly available data, we found that

LMF2 expression was significantly increased in human livers of

histologically proven NAFLD cases compared with control

(Table S6). We conducted differential gene expression analyses

for genes nominated by exome-wide association analyses in

PMBB with replication in UKB, namely LMF2, FGD5, and

CITED2. We found that hepatic LMF2 expression was signifi-

cantly increased in both histologically characterized early and

moderate NAFLD cases compared with controls, while there

was no significant difference in hepatic expression of FGD5

and CITED2 in NAFLD versus controls.

DISCUSSION

Hepatic steatosis is common butmarkedly underdiagnosed, hin-

dering EHR-based research into the spectrum of NAFLD. CT

scans performed during clinical care allow for opportunities to

quantitate IDPs such as hepatic fat that can be used for clinical

and genomic research. We developed and applied a machine

learning approach to automating the quantification of hepatic

fat from non-contrast chest and abdomen/pelvis CT images.

By integrating the hepatic fat quantitative trait with coding vari-

ants obtained on whole-exome sequencing in PMBB, we con-

ducted exome-wide association of rare, low-frequency, and

common coding variants with hepatic fat in a medical biobank.

Our single variant analyses confirmed several previously

described coding variants associated with hepatic fat, support-

ing the validity of our approach. Several additional variants were

associated with CT-derived hepatic fat, two of which were

replicated in a separate MRI-based quantitation of liver fat in

the UK Biobank.

Our findings include coding variants in the genes FGD5

and CITED2 significantly associated with hepatic fat. The

variant H600Y in FGD5, a predicted deleterious missense

variant (Combined Annotation Dependent Depletion score, i.e.,
analysis in PMBB (N = 9,594) aggregating rare (MAF% 0.1%) predicted loss-of-

organized by chromosomal location. The location of each gene along the x axis

e most significant association of each gene burden with hepatic fat is plotted

lue) of the association. Each gene is annotated with its gene name. The red line

r multiple hypothesis testing.



Table 2. Significant results from single-variant discovery analyses in the PMBB and replication in UKB, related to Figure 3

Discovery in PMBB

Gene AA change rs ID N Beta p

PNPLA3 p.I148M rs738409 3,639 1.564 1.91 3 10�30

SAMM50 p.D110G rs3761472 2,884 1.325 6.02 3 10�19

TM6SF2* p.E167K rs58542926 847 2.529 1.74 3 10�15

PARVB p.W37R rs1007863 4,240 1.202 7.12 3 10�14

NCAN* p.P92S rs2228603 885 1.737 1.71 3 10�8

LY6G5B p.R176C rs9267532 861 1.535 3.16 3 10�7

KRTAP11-1 p.S78F rs79258920 13 12.711 5.28 3 10�7

PNPLA3** p.K434E rs2294918 5,581 0.795 6.09 3 10�7

PNPLA3 p.S453I rs6006460 477 �1.678 1.23 3 10�6

DNASE1 p.R207C rs148373909 12 10.554 3.42 3 10�6

OLFM4 p.R214X rs34067666 11 12.032 3.98 3 10�6

PLEC p.P4259S rs202040785 25 6.859 4.25 3 10�6

SHISA5 p.P236L rs141742404 14 9.525 4.35 3 10�6

SAMM50** p.I345V rs8418 5,495 0.723 4.81 3 10�6

RIOX2 p.P140L rs41265444 192 2.699 4.92 3 10�6

TATDN2 p.M416T rs61730105 502 1.510 5.66 3 10�6

CITED2 p.S198_G199del rs531316452 11 12.473 5.66 3 10�6

HAVCR2 p.T154S rs150536405 16 10.130 7.18 3 10�6

ZFHX2 p.S129P rs142184428 11 11.147 7.47 3 10�6

TINAG p.K407N rs140019555 10 11.128 7.84 3 10�6

RASSF6 p.Q39K rs145319675 11 9.876 7.85 3 10�6

SPEN p.A970V rs848208 1,458 �0.933 8.39 3 10�6

NUAK1 p.R595L rs141618950 27 6.644 8.78 3 10�6

ZNF217 p.R903Q rs61748378 39 5.243 9.75 3 10�6

PTGR1 splicing rs146469061 13 10.050 1.18 3 10�5

ADGRV1 p.R249K rs41303344 10 10.919 1.19 3 10�5

TBX4 p.P288A rs193204039 10 10.141 1.20 3 10�5

PRRC2Ay p.S1219Y rs41273264 150 2.915 1.35 3 10�5

ZNF563 p.R353X rs112896133 186 2.913 1.41 3 10�5

ADGRG5 p.C425Y rs114796383 13 8.763 1.60 3 10�5

DENND4A p.S248N rs201378259 20 �7.579 1.69 3 10�5

STAB2 p.D2021N rs116894406 168 2.619 1.72 3 10�5

DISP2 p.R114Q rs35070171 647 1.540 1.72 3 10�5

BNIP3 p.R143K rs143231747 48 5.419 2.04 3 10�5

GGPS1 p.A146D rs147202180 15 8.039 2.11 3 10�5

FGD5 p.H600Y rs144177006 16 7.801 2.17 3 10�5

MYOF p.T498M rs190149415 21 8.179 2.40 3 10�5

SBSN p.N529S rs75962883 20 6.952 2.45 3 10�5

PLPP7 p.D54E rs141024100 10 10.452 2.66 3 10�5

MCF2L p.G1000R rs12429945 24 7.799 2.78 3 10�5

GPANK1yy p.R41L rs3130618 2,076 1.164 2.92 3 10�5

GAK p.K1265R rs2306242 516 1.474 3.05 3 10�5

PRRC2Ayy p.P2006S rs10885 2,074 1.156 3.34 3 10�5

ATG9B p.N493S rs7804893 2,680 0.745 3.46 3 10�5

ZNF491 p.E109Q rs149778854 10 �11.327 3.50 3 10�5

TENM2 p.T662M rs201157994 29 7.010 3.63 3 10�5

FILIP1 p.T1126M rs35227190 42 5.353 3.81 3 10�5

(Continued on next page)
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Table 2. Continued

Discovery in PMBB

Gene AA change rs ID N Beta p

ARL11 p.V64I rs143660006 13 8.993 3.92 3 10�5

KRBA1 p.P186L rs114410482 30 6.528 3.95 3 10�5

KRBA1 p.H215R rs188335425 30 6.528 3.95 3 10�5

RWDD3 p.I15V rs142820652 12 8.690 3.97 3 10�5

BPIFA3 p.D166N rs142257117 25 6.787 4.22 3 10�5

TNXBy p.R1064H rs61995676 166 2.628 4.49 3 10�5

FER1L5 p.T687A rs7599598 2,417 �1.347 4.50 3 10�5

CSNK1D p.M404V rs112902236 33 6.431 4.72 3 10�5

SYNM p.A266V rs140039713 106 3.089 4.76 3 10�5

ASB16 p.R428W rs75035743 14 10.252 4.87 3 10�5

CLIC5 p.T114A rs723580 202 2.224 4.93 3 10�5

LRP2 p.L726F rs144451000 22 7.136 5.25 3 10�5

STIM1 splicing rs118128831 176 2.392 5.34 3 10�5

APOBEC3H p.E7Kfs*28 rs760113060 23 7.062 5.38 3 10�5

NOX5 p.R759G rs7168025 179 2.547 5.79 3 10�5

MST1 splicing rs201139286 22 6.281 5.92 3 10�5

QRFPR p.I232S rs139457842 12 9.558 6.24 3 10�5

GALNS p.R376Q rs150734270 28 6.828 6.38 3 10�5

EXO5 p.L151P rs35672330 810 1.106 6.61 3 10�5

AHR p.V570I rs4986826 60 4.087 6.67 3 10�5

TAF2 p.I53V rs112002462 36 �5.305 6.83 3 10�5

NBEAL1 p.N1966S rs143836127 32 �5.566 6.85 3 10�5

ZNF516 p.C610R rs117566743 320 1.744 6.86 3 10�5

KRTAP5-2 p.C137R rs138473551 150 2.601 6.92 3 10�5

METTL11B p.P112S rs183687510 16 7.836 7.00 3 10�5

PPRC1 p.A1192V rs144188174 10 9.756 7.00 3 10�5

PSG7 p.I83V 858 1.018 7.11 3 10�5

P2RY2 p.R334C rs1626154 201 2.111 7.55 3 10�5

FAM111A p.Q451E rs116918730 36 5.793 7.89 3 10�5

TTLL10 p.R623Q rs540494380 29 6.376 7.90 3 10�5

NPFFR2 p.V250A rs61733659 141 2.398 8.10 3 10�5

APOE p.C130R rs429358 2,587 �0.626 8.39 3 10�5

HAUS3 p.Y402C rs143360308 13 �9.915 8.69 3 10�5

CHDH p.N441S rs34974961 16 �7.745 8.70 3 10�5

UGT1A9 p.M33T rs72551330 153 �2.666 9.01 3 10�5

CTNND1 p.T113P rs201815246 19 7.803 9.01 3 10�5

SEMA3D p.D186N rs148351346 12 9.769 9.33 3 10�5

MYO5A p.R1320S rs61731219 29 5.348 9.41 3 10�5

RTN1 p.T124A rs61736371 164 �2.657 9.45 3 10�5

MRGPRX2 p.N62S rs10833049 1,833 �0.806 9.61 3 10�5

PDGFRA p.R376Q rs41279521 10 10.825 9.65 3 10�5

SYNE1 p.L3050V rs117360770 35 5.201 9.66 3 10�5

TTLL2 p.G445S rs9457304 1,110 �1.017 9.75 3 10�5

ADAM19 p.G660D rs2287749 1,600 �0.798 9.87 3 10�5

Replication in UKB

PNPLA3 p.I148M rs738409 3,253 0.094 1.56 3 10�49

TM6SF2* p.E167K rs58542926 1,304 0.133 8.27 3 10�43

(Continued on next page)
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Table 2. Continued

Discovery in PMBB

Gene AA change rs ID N Beta p

NCAN* p.P92S rs2228603 1,323 0.106 2.11 3 10�27

SAMM50 p.D110G rs3761472 2,546 0.072 1.57 3 10�23

PARVB p.W37R rs1007863 4,923 0.049 8.17 3 10�18

APOE p.C130R rs429358 2,512 �0.054 8.10 3 10�14

PNPLA3** p.K434E rs2294918 7,528 0.027 3.73 3 10�7

SAMM50** p.I345V rs8418 7,457 0.022 3.31 3 10�5

PNPLA3 p.S453I rs6006460 12 �0.268 5.78 3 10�3

CITED2 p.S198_G199del rs531316452 6 0.317 2.54 3 10�2

FGD5 p.H600Y rs144177006 197 0.056 2.60 3 10�2

Top: list of significant (p < 9.9 3 10�5) single-variant associations with hepatic fat from the single-variant discovery analyses in PMBB. Each single

variant is annotated with its gene name, amino acid change where appropriate, rs ID if available, and the number of individuals who carry at least

one copy of the alternate allele who also have hepatic fat quantitated in PMBB. Each significant single variant is listed with its most significant beta

and p value from linear regression analyses out of all analyses listed in Table S2A. Single variants are ranked by increasing p values. Pairs of variants

marked with *, **, y, or yy are in linkage disequilibrium with R2 > 0.7 according to 1000 Genomes.

Bottom: list of significantly replicated (p < 0.05) single-variant associations with hepatic fat in UKB. Each single variant is annotated with its gene name,

amino acid change where appropriate, rs ID if available, and the number of individuals who carry at least one copy of the alternate allele who also have

hepatic fat quantitated in UKB. Each significant single variant is listed with its most significant beta and p value from linear regression analyses out of all

analyses listed in Table S2C. Single variants are ranked by increasing p values. Of note, betas are based on normalized MRI-based PDFF values and

are thus different in magnitude compared with those in the PMBB discovery, where CT-based HU were used. Pairs of variants marked with *, **, y, or yy

are in linkage disequilibrium with R2 > 0.7 according to 1000 Genomes.
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CADD16 = 24.1), was associated with increased hepatic fat in

PMBBand replicated in UKB. The H600Y variant was also associ-

ated with clinical diagnoses related to insulin resistance and both

alcoholic andnonalcoholic liver diseases inPMBB.FGD5encodes

a liver-expressed protein17 that is expressed preferentially in the

hepatic endothelium.18 While FGD5 has not previously been

described in the liver, this expression pattern is consistent with

its role in regulating vascular endothelial growth factor (VEGF)

signaling during angiogenesis.19 FGD5 also activates CDC42,20

a member of the Rho GTPase family, and plays important roles

in the regulationof thecytoskeletonaswell as cell proliferation,po-

larity, and transport. Importantly, liver-specific knockout ofCdc42

inmicehasbeenshown to lead toexcessive hepatic accumulation

of lipids during liver regeneration after partial hepatectomy, likely

due to impaired cytoskeletal organization and intracellular traf-

ficking in hepatocytes.21 Heterozygous knockout mice for Fgd5

also had abnormal liver morphology and lower liver weight

comparedwithwild type inunpublisheddata fromthe International

Mouse Phenotyping Consortium.22

Additionally, we found that a 6-bp deletion (p.S198_G199del)

with predicted deleteriousness (CADD= 20.1) inCITED2, a coac-

tivator of HNF4a, was also associated with increased hepatic fat

in PMBB and replicated in UKB. This variant was also associated

with clinical diagnoses related to insulin resistance and liver

transplantation in the UK Biobank, although underpowered. A

burden of rare predicted deleterious coding variants in CITED2

was also associated with increased hepatic fat (although under-

powered). Importantly, HNF4a is essential for normal liver archi-

tecture and organization of the sinusoidal endothelium during

development, and its expression is crucial for differentiation of

hepatocytes, accumulation of hepatic glycogen stores, and

generation of hepatic endothelium in adults.23 Mice lacking
HNF4A have high hepatic lipid accumulation, impaired gluco-

neogenesis during fasting, and defective lipid transport and

metabolism.24,25 Furthermore, Cited2 has been shown to be

essential for mouse fetal liver development, and knockout of

Cited2 in fetal liver leads to disrupted sinusoidal architecture

and accumulation of lipid droplets in the sinusoidal space.26

By leveraging our whole-exome data and extending our

analyses to gene burdens of rare deleterious variants in genes

nominated by the single-variant discovery, we gained additional

insights into genes not previously associated with hepatic fat in

humans. For example, a relatively rare splicing variant in the

gene PTGR1 was associated with increased hepatic fat; we

also found that a gene burden of rare pLOFs as well as predicted

deleterious missense variants in PTGR1 were also associated

with increased hepatic fat in PMBB. PTGR1 encodes an enzyme

called Prostaglandin Reductase 1, which is involved in the

inactivation of the chemotactic factor leukotriene B4 and has

its highest expression in the liver.27 Notably, leukotriene B4

has been shown to promote insulin resistance in mouse

hepatocytes,28 suggesting that haploinsufficiency of PTGR1

could lead to increased activity of leukotriene B4 and adverse

effects on liver metabolism. Additionally, the single variant

G660D in ADAM19, a predicted deleterious missense variant

(CADD = 23.9), was associated with decreased hepatic fat; we

also found that a gene burden of pLOF variants in ADAM19

was associated with decreased hepatic fat in PMBB (although

underpowered) and UKB. Importantly, ADAM19 has been sug-

gested to be pro-obesogenic and enhance insulin resistance in

mice,29 consistent with our observation that reduced function

is associated with decreased hepatic fat and suggesting that

silencing could be a potential therapeutic approach to NAFLD.

Furthermore, a single variant I232S in QRFPR (GPR103), a
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predicted deleterious missense variant, was associated with

increased hepatic fat; gene burdens of pLOFs as well as pLOFs

combined with pDM variants in this gene were also associated

with increased hepatic fat. QRFPR encodes the G-protein-

coupled receptor for neuropeptide 26RFa (encoded by QRFP).

26RFa and QRFPR work both in the hypothalamic nuclei to con-

trol feeding behavior as well as in the gut and pancreatic islets.30

Specifically, 26RFa increases insulin sensitivity and prevents

pancreatic beta cell death and apoptosis, and disruption leads

to dysregulation of glucose homeostasis and a deficit in insulin

production by pancreatic islets.31–33 The mechanisms by which

haploinsufficiency of QRFPR increases risk for hepatic steatosis

remain to be determined.

There is a substantial gap of knowledge regarding the clinical

implications of genetic variants overrepresented among individ-

uals of African ancestry.34 In the PMBB discovery cohort, 27.4%

of individuals with whole-exome sequencing linked to hepatic fat

quantifications were of African ancestry, and, interestingly, we

identified 27 African-ancestry-specific or -predominant single

variants that were significantly associated with hepatic fat.

These variants represented a challenge for replication in UKB

given there were only 70 individuals who identified as having

African, Caribbean, or any other black ethnic background in

the subset of individuals with MRI-derived hepatic fat linked to

whole-exome sequencing data in UKB. The previously

described AFR-predominant S453I variant in PNPLA3, among

the more common of the 27 AFR-predominant variants, was

able to be replicated via cosmopolitan analyses in UKB. Howev-

er, the rest of the AFR-predominant single variants were in very

low numbers in UKB, with 20 of 27 variants having N < 5 carriers

and thus not even being included in replication studies. Our find-

ings suggest that larger experiments of this type in ethnically

diverse cohorts are essential for improving our understanding

of the contribution of ancestry-specific genetic variation to the

regulation of intrahepatic fat.

Our single variant analysis identified a number of genes

and variants previously associated with hepatic fat and/or

NAFLD and in some cases extends previous observations.

For example, PNPLA3 I148M and K434E were both significantly

associated with increased hepatic fat as previously

reported,6,35 whereas S453I, which is predominant in individ-

uals of African ancestry, was significantly associated with

reduced hepatic fat. Importantly, our gene burden analysis of

pLOFs in PNPLA3 also showed a significant association with

reduced hepatic fat, suggesting that S453I is likely a reduced

function allele, in contrast to I148M and K434E, which are likely

to have a toxic gain of function. Our results support the concept

that silencing of PNPLA3 may be a potential strategy for thera-

peutic intervention for NAFLD.36 We confirmed previous reports

that TM6SF2 E167K and L156P are associated with increased

hepatic fat,8,37 and that GCKR L446P38 and MTARC1 A165T39

were associated with decreased hepatic fat. While we found no

association between a burden of rare pLOF ± pDM variants in

TM6SF2 and GCKR with hepatic fat, we did see a nominal

association between a gene burden of rare pLOF and pDM var-

iants in GCKR with increased hepatic fat (beta = 1.82,

p = 0.035, N = 54), which is consistent with previous observa-

tional data.40
10 Cell Reports Medicine 3, 100855, December 20, 2022
We confirmed that D110G in SAMM50 was associated with

increased hepatic fat,41 but noted that a gene burden of rare

pLOFs and predicted deleterious missense variants in

SAMM50 was significantly associated with decreased hepatic

fat in PMBB, suggesting that D110G could represent a gain-of-

function allele. A similar situation was seen with PARVB, where

theW37R variant was confirmed to be associated with increased

hepatic fat,42 but a gene burden of rare pLOFs alone as well as

rare pLOFs plus pDM variants in PARVB was associated with

decreased hepatic fat. While the SAMM50 D110G and PARVB

W37R variants are in relatively close proximity to PNPLA3

I148M (about 43 and 71 kb away respectively), they are in

weak or moderate linkage disequilibrium (R2 < 0.7) with PNPLA3

I148M. Thus, while additional functional work is needed to deter-

mine themechanisms underlying the associations of PARVB and

SAMM50 gene burdens with hepatic fat, the signals seen from

rare pLOFs and/or pDMs in each of these genes suggest a

protective role for haploinsufficiency in these genes and nomi-

nates both SAMM50 and PARVB as candidates for therapeutic

silencing as an approach to NAFLD.

We also report rare variant gene burden discovery analysis for

exome-wide gene-based associations with hepatic fat. We iden-

tified a burden of rare pLOF variants in LMF2 as being associated

with increased hepatic fat in PMBB and replicated this observa-

tion in UKB. Importantly, common coding variants in LMF2 were

not exome-wide significant in our single-variant discovery. LMF2

is a paralog of LMF1 and is the ancestral gene, and Lmf1

emerged in echinoderms after losing an internal segment of

the DUF1222 domain and gaining a C-terminal tail with lipase

maturation activity.43 While LMF2 does not have this C terminus,

it may share a common ancestral cellular function with LMF1,

possibly the maintenance of ER homeostasis. Additionally, we

found through a primary analysis of publicly available transcrip-

tomic data in livers of histologically characterized human NAFLD

cases that hepatic expression of LMF2 is increased in NAFLD

versus control. While additional investigation of the function of

LMF2 is needed, given the relevance of ER stress signaling in

the pathogenesis of NAFLD and its progression to chronic liver

disease,44 our gene burden and transcriptomic analyses

together suggest that LMF2 plays a role in the ER stress

response to accumulation of lipids in hepatocytes, and that

LMF2 haploinsufficiency may contribute to an increase in

hepatic fat.

While several single variants successfully replicated in UKB

following discovery analyses in PMBB, we noticed a relative

lack of significant findings when interrogating rare variant gene

burdens in UKB regarding replication of significant genes from

the gene burden discovery as well as targeted analyses of genes

nominated by the single variant discovery. Even after log-trans-

formation of MRI-PDFF in UKB to account for MRI-specific

differences in quantification of hepatic fat and allow for regres-

sion analyses for replication, the distribution of hepatic fat was

still substantially skewed toward lower values in UKB compared

with PMBB. This might be expected, given the UKB is a popula-

tion-based biobank that is widely recognized to have a ‘‘healthy

volunteer selection bias,’’45 and we have previously described

the relative lack of replication for rare variant gene burdens in

UKB compared with medical biobanks.15 Thus, our study
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suggests that additional experiments of this type linking exome

sequencing to imaging-derived hepatic fat quantifications in

medical biobanks are warranted to interrogate the impact of

rare variation on differences in hepatic fat.

In 2021, the AmericanGastroenterological Association and the

Lancet Global Commission both issued guidance on the urgent

need to develop population-based approaches for NAFLD.46,47

Studies suggest that 11% of patients with incidentally discov-

ered hepatic steatosis are at high risk for advanced hepatic

fibrosis, and experts recommend identification and further clin-

ical evaluation of patients with suspected steatosis.48 Identifica-

tion of hepatic steatosis has clinical implications for monitoring

of transaminases and interventions such as weight loss and bar-

iatric surgery. Our automated approach to quantitating hepatic

fat from chest and abdominal CT scans was validated by our

PheWAS demonstrating many expected clinical associations

and by the associations with genetic variants known to be asso-

ciatedwith steatosis. This approach could be included as a stan-

dard aspect of chest and abdominal CT scans, leading to an

automated reporting of liver fat as an incidental finding and

potentially leading to improved monitoring and treatment of pa-

tients with hepatic steatosis. Further work is necessary to

demonstrate the clinical impact of this approach. Additionally,

broader application of automated machine-learning-based

quantitation of hepatic fat from clinical CT scans could lead to

greater opportunities for genomic discovery and for identifica-

tion of individuals with hepatic steatosis who may be candidates

for clinical trials.

Additionally, we recognize that while CT imaging provides the

opportunity to quantify hepatic fat through rapid and scalable im-

aging, there are some limitations. In particular, the presence of

iron, copper, glycogen, fibrosis, edema, and postsurgical hard-

ware may confound attenuation values and lead to errors in he-

patic fat quantification.49 CT studies in the PMBB were obtained

in routine clinical care. Given that these CT scans were per-

formed for clinical indications, it was important for us to exclude

potential confounding comorbidities. To address this concern,

we excluded individuals with International Classification of Dis-

eases (ICD) 9/10 diagnosis codes indicating chronic hepatitis B

or C as well as alcohol-related conditions or dependence, such

as alcoholic liver disease, alcoholic hepatitis, alcoholic fibrosis

and sclerosis of the liver, alcoholic cirrhosis of liver and/or asci-

tes, alcoholic hepatic failure, coma, unspecified alcoholic liver

disease, and alcohol dependence. After exclusions (<10% of

all scans analyzed), the remaining sample size for exome-wide

association studies was 9,594 for analyses. For PheWAS, any

indications for which there were <20 cases based on Phecodes

were excluded.

Nevertheless, there are several rare distinct causes of steato-

sis that were not excluded, including Wilson disease, glycogen

storage disease, and hemochromatosis.50 However, exclusion

of these diagnoses relies upon accurate recording of ICD billing

codes, which are often incomplete. In the PMBB data, we

believe the contribution from these rare cases has minimal

impact on our findings given that these cases represent a small

fraction of all CT studies analyzed based on available ICD co-

des. There are also additional causes of altered hepatic atten-

uation that are not captured by billing codes such as radia-
tion,51 IV hyperalimentation,52 and certain drugs such as

corticosteroids, amiodarone, and methotrexate.53 In addition,

deep learning methods applied to CT scans label the whole

liver, including vasculature and intrahepatic lesions if present,

and thus could incorrectly estimate hepatic attenuation for

use in downstream association analyses. However, by con-

ducting replication studies in UKB using MRI-PDFF, a more ac-

curate measure of hepatic fat compared with CT-derived quan-

titation,54 we suggest that replicated signals are less likely to be

confounded by these factors. Furthermore, the substantially

larger number of CT scans obtained in hospitals compared

with MRI scans allows for considerably increased power for

conducting these types of IDP-based association studies in

healthcare-based populations. Thus, we suggest that there is

value in interrogating multiple imaging modalities for increased

specificity.

In conclusion, we leveraged machine learning of clinical CT

imaging in a medical biobank to automate the quantitation of

hepatic fat and integrated this clinically important phenotype

with whole-exome sequence data in the same individuals for

genomic discovery. Our study not only extends existing

knowledge regarding genetic variation associated with hepatic

fat but also demonstrates the feasibility and value of aggre-

gating rare predicted deleterious coding variants into gene bur-

dens on an exome-wide scale for association with hepatic fat

quantifications for the discovery of genes that may regulate in-

trahepatic fat and confer risk for or protect from NAFLD.

Furthermore, our study provides an example of the value of

IDPs extracted from clinical imaging in the context of a medical

biobank, making it evident that there is significant utility in ex-

tracting IDPs from images collected in routine clinical imaging.

We suggest that much larger experiments of this type that link

IDPs derived from clinical imaging to genetic sequencing will

lead to insights into the genetic regulation of a range of

important phenotypes that are highly relevant to human health

and disease.

Limitations of the study
Our study replicates well-established associations between he-

patic steatosis and genetic variants in genes such as PNPLA3,

TM6SF2, and APOE, and also identifies additional variants,

including those in FGD5, CITED2, and LMF2. While we support

our findings with clinical characterization of these additional var-

iants and bioinformatic analyses of relevant publicly available

datasets, a limitation of this study is the lack of functional studies

investigating the precise mechanism underlying these associa-

tions. Future directions of this work include studying the impact

of these variants on histological features of liver damage, their

biological processes, and pathways leading to NAFLD patho-

genesis, and the exact cell types by which the variants exert their

function. Another limitation of this study is that CT scans per-

formed in amedical biobankmay have clinical indications, which

could potentially bias genetic associations. We address this

concern through manual review of clinical indications of CT

scans for carriers of our additional variants of interest in FGD5,

CITED2, and LMF2. A future direction of this work includes a

comprehensive analysis of the clinical indications for all CT

scans included in this study.
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captured via whole exome sequencing in PMBB can be accessed via the PennMedicine Biobank GenomeBrowser (pmbb.me-

d.upenn.edu/allele-frequency/). Individual-level data, including sequencing, EHR phenotype, and original CT images analyzed
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d The deep learning model weights and relevant code for performing inferencing on computed tomography data have been

deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Setting and study participants
All individuals recruited for the PennMedicine BioBank (PMBB) are patients of clinical practice sites of the University of Pennsylvania

Health System. Appropriate consent was obtained from each participant regarding storage of biological specimens, genetic

sequencing, access to all available EHR data, and ability to recontact. These analyses focused on the subset of PMBB participants

(N = 10,283) who had both CT-derived hepatic fat quantitation and whole exome sequence data (WES) available (Table 1). This study

was approved by the Institutional Review Board of the University of Pennsylvania and complied with the principles set out in the

Declaration of Helsinki.

METHOD DETAILS

Clinical data collection
All International Classification of Diseases Ninth Revision (ICD-9) and Tenth Revision (ICD-10) diagnosis codes, clinical imaging, and

laboratory measurements were extracted from the patients’ EHR. All ICD diagnosis codes and outpatient laboratory measurements

available up to July 2020 were extracted for PMBB participants. Abdominal and chest CT images available up to March 2019 were

extracted for PMBB participants regardless of the availability of whole exome sequences (N = 14,249). All laboratory values

measured in the outpatient setting were extracted for participants from the time of enrollment in PMBB until July 2020; all units

were converted to their respective clinical Traditional Units. Minimum, median, and maximum measurements of each laboratory

measurement were recorded per individual for association analyses. Minimum, median, and maximum values for hemoglobin

A1C, alkaline phosphatase, ALT, AST, and triglycerides were log-transformed to normalize their distributions.

We also queried the EHR image-server based on Current Procedural Terminology (CPT) codes for chest (CPT 71250 (N = 28,025),

71,270 (N = 1,149)), abdomen (CPT 74150 (N = 2,420), 74,170 (N = 1,422)), and abdomen/pelvis (CPT 74176 (N = 10,086), 74,178

(N = 1,923)) CT scans for liver fat analysis. Chest studies were included as these routinely include one-third to one-half of the liver,

and an even larger fraction of the spleen, which is sufficient for evaluation of liver fat. All training data was manually generated by a

trained technician under the supervision of a board-certified abdominal radiologist using 3D Slicer software. More detailed explana-

tions about the exclusion criteria applied as well as the number of scans processed in each part of the study are shown in Figure S1.

Image analysis hardware and image pre-filtering
All convolution neural networks (CNN) were implemented in Python 3.5 using the Tensorflow package (version 1.12.0) in the cloud

(Amazon Web Services).55 Training was conducted using an NVIDIA P100 graphical processing unit (GPU) and inferences used par-

allel processing across 8 NVIDIA K80 GPUs. For both the classification and segmentation networks, the inputs were 2D axial slices

with size 256 3 256. The input slices were transformed with a window width of 150 and level of 30, meaning that they were scaled

such that voxels with Hounsfield Units (HU) between �45 and 105 occupied the 8-bit range between 0 and 255. Image analysis was

performed consistent as described below and consistent with previously reported techniques.56

Detection of non-contrast CT scans
The first network (CNN1) identified intravenous (IV) contrast CT scans and removed them from the analysis pipeline. This network

consisted of convolutional layers which flattened into fully connected layers modeled after the VGG-16 classification network13 (Fig-

ure S1). The network outputs a probability between 0 and 1 indicating the likelihood that a slice contains IV contrast. Scans were

considered to have contrast if the average per-slice probability was greater than or equal to 0.5. This network was trained on 800

scans, 400 with IV contrast, and 400 without. Additionally, half these scans were of the abdomen/pelvis and half were thoracic.

320 scans (50,654 slices) were randomly placed in the training group, and 80 scans (12,867 slices) in a validation group. Training

was conducted with a batch size of 32 and terminated when the model converged after 10 epochs. To evaluate performance of

the classification network, model sensitivity and specificity was calculated on an additional 400 randomly selected scans, with

200 being thoracic and 200 abdomen/pelvis scans (Figure S1).

Segmentation
Additional networks were trained to segment the liver (CNN2) and spleen (CNN3) from axial 2D slices modeled after a U-Net archi-

tecture.57 This model is composed of symmetric paths joined by skip connections where localized feature information from the

contracting path is combined with contextual information from the expanding path. The complete architecture is shown in Figure S1.

The networks output a probability for each voxel indicating the probability that it belongs to the organ of interest. For liver segmen-

tation, the network was trained on a total of 106 abdomen/pelvis scans with 81 scans (7,999 slices) randomly selected for training and
Cell Reports Medicine 3, 100855, December 20, 2022 e2
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25 scans (2,436 slices) for validation. For spleen segmentation, the network was trained on a total of 158 scans with 127 scans

(12,399 slices) randomly selected for training and 31 scans (2,865 slices) for validation. Training data was selected iteratively

when the model underperformed on a scan. Training was conducted with a batch-size of 32 and terminated when the model

converged after 135 epochs for the liver, and 108 for the spleen.

To evaluate segmentation performance, a testing set of 20 abdomen/pelvis CT scans was randomly selected from PMBB and both

manual as well as automated segmentations for liver and spleen were produced. Percent overlap was calculated to measure agree-

ment between manual and automatic segmentations. Additionally, 50 scans were selected at random and mean attenuation was

measured in the liver and spleen by the manual placement of ROIs. Eight spherical (20 mm diameter) ROIs were placed in the liver

with four in the left and four in the right lobe. Two spherical (15mmdiameter) ROIs were placed in the spleen. Care was taken to avoid

placement near edges or in regions of vasculature or lesions. Themean HUwas computed between ROIs for the liver and spleen and

compared to that obtained from the automated approach.

Quantification of hepatic fat
Consistent with the standard radiologic approach, hepatic fat was quantitated in PMBB by subtracting the mean attenuation of all

voxels contained within the liver from the mean attenuation of all voxels contained in the spleen (spleen HU – liver HU) to create a

measure that is directly proportional to intrahepatic fat.58 Minimum, median, and maximum measurements of hepatic fat were

recorded per individual given the multiple independent CT scans available per patient.

Phenome-wide association study of hepatic fat with EHR diagnoses and traits
A phenome-wide association study (PheWAS) approach was used to determine the phenotypes associated with the quantitative trait

of median hepatic fat in PMBB for the 10,283 unrelated individuals in PMBB with both exome sequences and quantitated hepatic fat

available.59 ICD-10 encounter diagnoses were mapped to ICD-9 via the Center for Medicare and Medicaid Services 2017 General

Equivalency Mappings (https://www.cms.gov/Medicare/Coding/ICD10/2017-ICD-10-CM-and-GEMs.html) and manual curation.

Phenotypes for each individual were then determined by mapping ICD-9 codes to distinct disease entities (i.e. Phecodes) using

the R package ‘‘PheWAS’’ version 0.99.5-4.60 Patients were determined to have a certain disease phenotype if they had the corre-

sponding ICD diagnosis on 2 or more dates, while phenotypic controls consisted of individuals who never had the ICD code. Indi-

viduals with an ICD diagnosis on only one date as well as individuals under control exclusion criteria based on PheWAS phenotype

mapping protocols were not considered in statistical analyses. Each Phecode was tested for association with quantitated hepatic fat

using a logistic regression model adjusted for age, genetically determined sex, and principal components (PC1-10) of genetic

ancestry. Our association analyses considered only disease phenotypes with at least 20 cases based on power calculations in a prior

simulation study.15 This led to the interrogation of 1396 total Phecodes, and we used a Bonferroni correction to adjust for multiple

testing (p = 0.05/1396 = 3.58E-05). These analyses were performed separately by African and European genetic ancestry and com-

bined with inverse variance weighted meta-analysis.

Whole exome sequencing, variant annotation, and selection for association testing
A subset of 43,731 individuals in the PMBB had undergone whole exome sequencing (WES). We extracted DNA from stored buffy

coats and thenmapped exome sequences as generated by the RegeneronGenetics Center (Tarrytown, NY) toGRCh38 as previously

described.15 Samples with low exome sequencing coverage, high missingness (i.e. greater than 5% of targeted bases), dissimilar

reported and genetically determined sex, and genetic evidence of sample duplication were not included in this subset. For subse-

quent phenotypic association analyses, we removed samples with evidence of 1st and 2nd-degree relatedness, leading to a total of

sample size of 41,759 for analysis.

Genetic variants were annotated using ANNOVAR (version 2019Oct24)61 for information regarding variant effect as determined by

the NCBI Reference Sequence (RefSeq) database,62 Rare Exonic Variant Ensemble Learner (REVEL) scores for missense variants,63

and allele frequencies reported by the Genome Aggregation (gnomAD) v2.64 Predicted loss-of-function (pLOF) variants were defined

as frameshift insertions or deletions, gain of stop codon, and disruption of canonical splice site dinucleotides. For splicing variants,

we removed those with SpliceAI scores <0.2 for loss or gain of acceptor or donor site.65 For single variant association tests in the

PMBB discovery, all nonsynonymous coding variants and splicing variants with minor allele frequency (MAF) > 0.1% in Africans

or non-Finnish Europeans in gnomAD were selected for association testing. For gene burden association tests, rare (MAF %0.1%

in gnomAD) pLOF variants were aggregated per gene with or without rare missense variants with REVEL score R0.5.

Exome-wide association studies of hepatic fat
This study focused on a subset of 10,283 unrelated individuals in PMBB with both WES and quantitated hepatic fat available. For

exome-wide association studies of hepatic fat, individuals with ICD9/10 diagnosis codes indicating chronic hepatitis B or C

(B18.0-B18.2, 070.32, 070.21, 070.22, 070.23, 070.31, 070.33, 070.54) or alcohol-related conditions or dependence, such as alco-

holic liver disease (571.0, K70.0), alcoholic hepatitis (571.1, K70.1), alcoholic fibrosis and sclerosis of the liver (571.2, K70.3), alcoholic

cirrhosis of liver and/or ascites (571.2, K70.2), alcoholic hepatic failure, coma, and unspecified alcoholic liver disease (571.3, K70.4,

K70.40, K70.41, K70.9), and alcohol dependence (303.0, 303.9, F10.229, F10.20), were excluded (N = 689), leading to total sample

size of 9,594 for analyses.
e3 Cell Reports Medicine 3, 100855, December 20, 2022
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Exome-wide association studies of hepatic fat were conducted in two stages, namely single variant discovery and gene burden

discovery. For the discovery analyses, single variants and gene burdens with at least 10 total carriers with hepatic fat quantifications

available were associated with hepatic fat using a linear regression model adjusted for age, genetically determined sex, and principal

components (PC) of ancestry (PC1-5 in Africans, PC1-10 in Europeans). For targeted gene burden analyses of genes nominated by

the single variant discovery, gene burdens with at least 5 total carriers with hepatic fat quantifications available were associated with

hepatic fat. For all gene burdens, we used an additive genetic model to aggregate variants as previously described.15 These analyses

were performed separately by African and European genetic ancestry and combined with inverse variance weighted meta-analysis.

Additionally, trans-ancestral cosmopolitan analyses were also performed, adjusted for age, genetically determined sex, and cosmo-

politan PC1-10.

We conducted a PheWAS for the gene burden of pLOF variants in LMF2, where we focused on a subset of 162 Phecodes in the

‘‘digestive’’ group, leading to a Bonferroni-corrected significance threshold of p = 0.05/162 = 3.09E-04. The gene burden PheWAS

analysis was performed separately by African and European genetic ancestry and combined with inverse variance weighted meta-

analysis. PheWASwas also performed for replicated single variants in PMBB andUKB, namely the FGD5H600Y variant and the 6-bp

deletion (p.S198_G199del) in CITED2. Each Phecode was tested for association with genetic variation using a logistic regression

model adjusted for age, genetically determined sex, and principal components (PC1-10) of genetic ancestry.

Replication analyses in the UK Biobank (UKB)
Replication analyses were conducted in the UKBiobank (UKB) looking for consistent directions of effect by linking exomes to hepatic

fat based on liver proton density fat fraction (PDFF) extracted from abdominal MRI scans, given the strong linear correlation between

hepatic fat extracted from non-contrast CT scans and PDFF quantifications derived from MRI scans.66,67 We focused on 9,071

individuals with both exome sequences (after removing samples with evidence of 1st and 2nd-degree relatedness, high missingness,

and dissimilar reported and genetically determined sex) and liver PDFF. Individuals with ICD10 diagnosis codes indicating chronic

hepatitis B or C or alcohol-related conditions or dependence were excluded (N = 22) using the same exclusion criteria as in the

PMBB discovery analyses, leading to a total sample size of 9,049 for analyses. Single variants and gene burdens with at least 5 total

carriers with hepatic fat quantifications available selected based on discovery in PMBBwere associatedwith hepatic fat using a linear

regression model adjusted for age, genetically determined sex, and PC1-10 of ancestry. Similarly, for targeted gene burden analyses

of genes nominated by the single variant discovery in PMBB, gene burdenswith at least 5 total carriers with hepatic fat quantifications

available were associated with hepatic fat in UKB. These analyses were performed in individuals of European ancestry, accompanied

by trans-ancestral cosmopolitan analyses. Liver PDFF values from UKB were log-transformed to normalize their distribution for

regression analyses. For replication studies in the UKB, International Classification of Diseases Tenth Revision (ICD-10) diagnosis

codes and liver PDFF values derived from abdominal MRI scans were downloaded. Access to the UKB data for this project was

from application 32133.

Analysis of publicly available expression datasets
We interrogated RNA-sequencing data publicly available on the NCBI GEO platform (https://www.ncbi.nlm.nih.gov/geo/).68 We

assessed hepatic expression levels for genes of interest informed by our exome-wide association studies in human livers from a

cohort of histologically characterized NAFLD samples (GSE135251).69 Among the 206 NAFLD cases were 168 early NAFLD cases

and 38 moderate NAFLD cases, which were each compared to 10 control cases. Gene counts were normalized using the trimmed

mean of M values method and transformed using limma’s voom methodology, consistent with the original work. These normalized

and transformed counts were analyzed for differential expression using linear models per implementation by limma.70 Comparisons

of gene expression in early or moderate NAFLD versus control were conducted for case-control ratios of 1:1, 2:1, and 5:1, with 10

random samplings per case-control ratio. For each gene, we calculated log2 fold-change of normalized gene expression in NAFLD

vs. control, unadjusted p value, and Benjamini-Hochberg false discovery rate adjusted p value, and calculated mean and standard

deviation for each statistic given the multiple samplings per analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

PheWAS analyses in PMBB
Each Phecode was tested for association with quantitated hepatic fat using a logistic regression model adjusted for age, genetically

determined sex, and principal components (PC1-10) of genetic ancestry. Our association analyses considered only disease

phenotypes with at least 20 cases based on power calculations in a prior simulation study.15 This led to the interrogation of 1396 total

Phecodes, and we used a Bonferroni correction to adjust for multiple testing (p = 0.05/1396 = 3.58E-05). These analyses were per-

formed separately by African and European genetic ancestry and combined with inverse variance weighted meta-analysis. All

phenome-wide association analyses were completed using R version 3.5 (Vienna, Austria). Further statistical details of these ana-

lyses can be found in the Results, figure legends, and supplemental figures/tables.
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Exome-wide association studies in PMBB and replication studies in UKB
For the discovery analyses in PMBB, single variants and gene burdens with at least 10 total carriers with hepatic fat quantifications

available were associated with hepatic fat using a linear regression model adjusted for age, genetically determined sex, and principal

components (PC) of ancestry (PC1-5 in Africans, PC1-10 in Europeans). For targeted gene burden analyses of genes nominated by

the single variant discovery, gene burdens with at least 5 total carriers with hepatic fat quantifications available were associated with

hepatic fat. For all gene burdens, we used an additive genetic model to aggregate variants as previously described.15 These analyses

were performed separately by African and European genetic ancestry and combined with inverse variance weighted meta-analysis.

Additionally, trans-ancestral cosmopolitan analyses were also performed, adjusted for age, genetically determined sex, and cosmo-

politan PC1-10.

For replication analyses in UKB, single variants and gene burdens with at least 5 total carriers with hepatic fat quantifications avail-

able selected based on discovery in PMBBwere associated with hepatic fat using a linear regression model adjusted for age, genet-

ically determined sex, and PC1-10 of ancestry. These analyses were performed in individuals of European ancestry, accompanied by

trans-ancestral cosmopolitan analyses. Liver PDFF values from UKB were log-transformed to normalize their distribution for regres-

sion analyses. All exome-wide discovery and replication association analyses were completed using R version 3.5 (Vienna, Austria).

Further statistical details of these analyses can be found in the Results, figure legends, and supplemental figures/tables.

Association analyses with laboratory measurements
To associate hepatic fat phenotypes or genotypes with serum laboratory measurements in PMBB, we used a linear regression model

adjusted for age, genetically determined sex, and PCs of genetic ancestry (PC1-5 in Africans, PC1-10 in Europeans). These analyses

were performed across all ancestries (cosmopolitan, PC1-10) and/or separately by African and European genetic ancestry and

combined with inverse variance weighted meta-analysis. All statistical association analyses were completed using R version 3.5

(Vienna, Austria). Minimum, median, and maximum values for hemoglobin A1C, alkaline phosphatase, ALT, AST, and triglycerides

were log-normalized for regression analyses.
e5 Cell Reports Medicine 3, 100855, December 20, 2022
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