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Working memory (WM) load-dependent changes of functional connectivity networks have previously been investigated by graph
theoretical analysis. However, the extraordinary number of nodes represented within the complex network of the human brain
has hindered the identification of functional regions and their network properties. In this paper, we propose a novel method for
automatically extracting characteristic brain regions and their graph theoretical properties that reflect load-dependent changes in
functional connectivity using a support vector machine classification and genetic algorithm optimization. The proposed method
classified brain states during 2- and 3-back test conditions based upon each of the three regional graph theoretical metrics (degree,
clustering coefficient, and betweenness centrality) and automatically identified those brain regions that were used for classification.
The experimental results demonstrated that our method achieved a >90% of classification accuracy using each of the three graph
metrics, whereas the accuracy of the conventional manual approach of assigning brain regions was only 80.4%. It has been revealed
that the proposed framework can extract meaningful features of a functional brain network that is associated with WM load from
a large number of nodal graph theoretical metrics without prior knowledge of the neural basis of WM.

1. Introduction

Working memory (WM) is defined as a system for temporar-
ily holding and manipulating information over short periods
of time during complex cognitive tasks [1, 2]. It is involved in
a wide range of cognitive functions, such as reading compre-
hension [3], reasoning [4], and problem-solving [5]. These
functional cognitive abilities vary from individual to individ-
ual and reflect WM capacity [6, 7]. WM capacity not only
depends on specific neural systems to maintain representa-
tion but also depends on the organization and interaction
of multiple brain regions [8–10]. The 𝑁-back paradigm is
widely used tomeasureWMcapacity [11–13]. Ameta-analysis
of the neural systems involved in WM during the 𝑁-back
task found that the (1) bilateral posterior parietal cortex, (2)
bilateral premotor cortex, (3) dorsal cingulate/medial premo-
tor cortex, (4) bilateral rostral prefrontal cortex or frontal
pole, (5) bilateral dorsolateral prefrontal cortex, and (6) bilat-
eral mid-ventrolateral prefrontal cortex are all involved in

WM [14].Multiple studies have used𝑁-back tests to examine
the effects of WM load variations [15, 16]. Most studies have
focused on regions activated as part of the WM systems and
their relationship withmemory load using a univariate analy-
sis [16–18]. However, changes inWM load havemore recently
been shown to modulate functional connectivity between
regions [19–23]. Also, complex cognitive studies highlight the
importance of conducting functional connectivity analyses
over univariate analysis of functional activation [24].

Functional magnetic resonance imaging (fMRI) is fre-
quently used to measure brain activities noninvasively. Blood
oxygenation level-dependent (BOLD) time series obtained
by fMRI analysis is used to determine changes in resting-
state and task-related functional connectivity in a variety of
subjects and conditions [25, 26], revealing a complex network
of functional connections among the many regions of the
brain [27, 28]. Bullmore and Sporns have shown that graph
theory metrics are able to quantitatively analyze functional
and structural brain networks [27, 28]. These methods can
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determine whether a hub node exists in specific brain states,
how it changes depending on the mental state or WM load,
and how multiple nodes form a module, a community of
densely interconnected nodes [29].

A typical fMRI data consists of hundreds of thousands of
voxels. Multiple whole-brain parcellation schemes have been
developed and/or proposed, and each contains hundreds of
brain regions.The challenge is to determine the characteristic
regions that make up this complex network and the WM
load-dependent changes of their network properties, across
a vast number of nodes. Conventional studies often select
regions of interests (ROIs) identified by previous studies
[30]. These analyses require knowledge of the neural basis
of how the task affects brain activity a priori. In this case,
a data-driven approach, which heuristically extracts the
characteristic brain regions and their properties from analyz-
ing data sets without prior knowledge, should be effective.
Metzak et al. [31] have demonstrated the effectiveness of
using a constrained principal component analysis to detect
ROIs associated with load-dependent functional networks.
However, they did not address how the identified ROIs were
interconnected.

Here, we propose a novel machine learning and numer-
ical optimization method that can (1) assess various brain
regions involved in a particular task (WM load in the
present study); (2) use graph theoretical metrics that quan-
titatively represent the interconnectivity of those regions; (3)
reveal which regions are involved in load-dependent func-
tional connectivity changes; and (4) determine whichmetrics
appropriately represent those changes. In particular, we
classify brain states during high and low WM loads using a
support vector machine (SVM) with regional graph metrics
as feature values. A genetic algorithm (GA), one of the most
robust optimization algorithms, is applied to automatically
determine the combination of regional graph metrics that
maximizes classification accuracy between high and low
WM loads. Furthermore, we assess whether our data-driven
approach can extract the characteristic regions associated
with WM.

2. Material and Methods

2.1. The Extraction Method for the Brain Regions and Graph
Metrics Reflecting WM Load. Graph metrics reflecting dif-
ferences in WM load were extracted to investigate related
changes in participating brain networks. Using each graph
metric as a feature value, we classified brain states during high
and low loads. In thismanner, the network features of a region
most important for the WM load were determined.

Although graph metrics are calculated for each brain
region, not all the regions contributed to the brain states
represented. As such, we chose appropriate ROIs that had fea-
ture values associated with eachWM load.Therefore, feature
selectionwas performed using numerical optimizationmeth-
ods to acquire the highest classification accuracy possible.

We used an SVM to assess brain pattern classifications of
WM load and a GA for feature selection. The SVM is a well-
known supervised learning technique applicable for both
classification and regression. It can find nonlinear solutions

using the “kernel trick” in which the dataset is projected into
a high-dimensional space where it can be separated linearly.
The GA is an effective method for dimensionality reduction
in high-dimensional classification problems because it is a
heuristic, multipoint search method that can approximate
optimum solutions with a relatively reasonable computation
time [32, 33]. The overview of our method is illustrated in
Figure 1.

In the method, the optimum combination of the regional
graphmetrics can be derived by solving a combinatorial opti-
mization problem in which we aim to find the best solution
that maximizes the classification accuracy of the brain state.
In this optimization problem, each element decision variable
𝑥𝑖 = (𝑖 = 1 ⋅ ⋅ ⋅ 𝑑) selects or deselects each regional graph
metric 𝑔𝑖 (𝑖 = 1 ⋅ ⋅ ⋅ 𝑑). Here, 𝑑 is the number of brain regions,
and, in this study, we set 𝑑 = 116 because we used automated
anatomical labeling (AAL) [34] for whole-brain parcellation.
The objective function is the classification accuracy of the
two classes (e.g., low- and high-WM load conditions) of the
dataset in the feature space constructed using the SVM with
the selected regional graph metrics, defined by the decision
variable, x = (𝑥1 ⋅ ⋅ ⋅ 𝑥𝑑). A combination of the regional graph
metrics is optimized by finding the optimum solution xopt
that maximizes the objective function 𝑓(xopt) = max𝑓(x).
These procedures can be formulated as follows:

Maximize 𝑓 (x) ,

subject to 𝑥𝑘 ∈ {0, 1} .
(1)

By solving this optimization problem using numerical opti-
mization algorithms, the characteristics of brain networks
that differentiate between the two classes can be extracted
automatically.

In the current study, our proposed method is applied
to fMRI data during an 𝑁-back task to detect the regional
graph metrics that reflect the WM load-dependent changes.
Degree centrality, clustering coefficient, and betweenness
centrality of each region were used as graph metrics to
classify brain states during the 2- and 3-back tasks using
an SVM. Since each graph metric was calculated for the
116 whole-brain regions for each subject, each dataset with
𝑑 = 116 features and 𝑛 = 30 subjects (subject information
was described in Section 2.3) was trained with C-SVM
implemented in LIBSVM [35] to discriminate between the
2- and 3-back tasks C-SVM which is the soft-margin SVM
model which uses the cost parameter to control the cost of
misclassification on the training data. Note that the classifier
was created separately for each graph metric. Also, we used
the radial basis function (RBF) kernel. The hyperparameters
of SVM, the cost of C-SVM, and the gamma of the RBF
kernel were determined by a grid search [36]. Furthermore,
to acquire the average accuracy of the SVM classification, we
used leave-one-subject-out cross-validation (LOSOCV).

To extract the meaningful ROIs, a GA implemented in
a Deap [37] library was used. A GA used here is based on
the original description of Holland’s implementation [38]
described in Algorithm 1. Two-point crossover was applied as
the recombination operator, and the bit-flipmutation scheme
which flips the value of the gene of the input individual
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Figure 1: The overview of the method. Here 𝑑 is the number of brain regions and 𝑥𝑖 is a decision variable which determines whether the
corresponding regional graph metric, 𝑔

𝑖
element, should be selected or deselected. States A and B correspond to the low- and high-WM load

conditions, respectively.

(1) 𝑡 fl 0;
(2) initialize 𝑃(𝑡);
(3) evaluate individuals in 𝑃(𝑡);
(4) while termination condition not satisfied do
(5) 𝑡 fl 𝑡 + 1;
(6) select individuals from 𝑃(𝑡 − 1) for mating and copy them to 𝐶(𝑡);
(7) recombine and mutate individuals in 𝐶(𝑡) and store them into 𝐶(𝑡);
(8) evaluate individuals in 𝐶(𝑡);
(9) select individuals for 𝑃(𝑡) from 𝐶(𝑡) and 𝑃(𝑡 − 1);
(10) end while

Algorithm 1: Genetic algorithm.

was used as the mutation operator. Tournament selection,
which selects the best individual among tournament size
of four randomly chosen individuals until the number of
selected individuals reaches the population size, was adopted.
Moreover, the average classification accuracy via LOSOCV of
the SVM model with the graph metrics chosen by the GA
(forming the individual) was utilized for the fitness measure
in the GA. Parameter settings of the GA are shown in Table 1.

2.2. Performance Evaluation of the Proposed Method. To
evaluate the effectiveness of our method, we determined the
combination of the regional graph metrics using a “manual”
approach. In this approach, the brain regions whose graph

metrics increased significantly between the 2-back to 3-
back condition were selected and then classified using the
SVM. These processes were applied for each graph metric:
degree, clustering coefficient, and betweenness centrality.
The classification accuracies of the “automatic” approach
outlined above and the “manual” approach were compared to
demonstrate the effectiveness of combinatorially optimizing
the regional graph metrics.

2.3. Participants. Thirty healthy individuals (aged 20–26
years; 22 males and 8 females) with normal or corrected-
to-normal vision were included in this study. This study
was approved by the Ethics Committee of the Doshisha
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Table 1: Parameters of GA.

GA parameter Value
Population size 100
Gene length 116
Number of generations 100
Crossover method Two-point crossover
Crossover rate 0.7
Mutation rate 0.5
Selection method Tournament selection (tournament size: 4)

Cont. Task

30 50

Time (s)

A
C

A

X
X

X

Presentation: 500 ms
Interval: 2000 ms

Figure 2: Experimental design.

University.Written informed consentwas obtained fromeach
participant. Two participants were excluded from this study
because their heads moved more than half of a voxel (2mm)
during their fMRI scans.

2.4.𝑁-Back Task. TheWM paradigm was the classical letter
𝑁-back task with increasing levels of memory load [17],
including 0-, 2-, and 3-back versions of the task. The 0-back
condition was used as a control. In the 0-back condition,
participants were asked to respond when the target letter “X”
appeared on the screen. As task conditions, we used the 2-
and 3-back conditions. We classified brain activity during
the 2- and 3-back tasks using graph metrics in each region.
Typically, the 1-back condition is included to observe a load-
dependent change of functional connectivity; however, we
investigated whether our method could differentiate between
the two higher load conditions of 2- and 3-back tasks.

During those task blocks, a pseudorandom sequence
of five letters (A–E) was presented on the screen, and the
participantswere asked to respond if the letterwas identical to
the letter𝑁 trials before by pressing the left button; otherwise,
they were instructed to press the right button. Participants
performed two sessions (2- and 3-back tasks) during theMRI
𝑁-back scanning session. Each control condition (0-back)
lasted for 30 s, and task conditions (2- or 3-back tasks) lasted
for 50 s. Each block was presented four times in one session
as shown in Figure 2.

Each letter remained visible for 500ms,with an interstim-
ulus interval of 2000ms. Tasks were presented and synchro-
nized with fMRI data acquisition using the Presentation soft-
ware (NeuroBehavioral System), and participant responses
were acquired by the fORP 932 Subject Response Package
(Cambridge Research System).

2.5. Data Acquisition. Whole-brain imaging data were
acquired with a 1.5 T MR scanner (Echelon Vega, Hitachi

Corporation, Japan). For functional imaging, a gradient-echo
echo-planar imaging (GE-EPI) sequence was used (TR =
2500ms, TE= 50ms, FA= 90∘, FOV= 240×240mm,matrix =
64×64, thickness = 6.0mm), providing whole-brain coverage
in 20 slices. For T1 anatomical imaging, an RF-spoiled steady-
state gradient echo (RSSG) was used (TR = 9.4ms, TE =
4.0ms, FA = 8∘, FOV = 256 × 256mm, matrix = 256 × 256,
thickness = 1.0mm, and slice number = 192).

2.6. Preprocessing. The fMRI data were analyzed using SPM8
(Wellcome Department of Cognitive Neurology, London,
UK) on MATLAB (MathWorks, Sherborn, MA). The first
six images collected were discarded from the analysis in
order to eliminate nonequilibrium effects of magnetization.
All functional images were realigned to correct for head
movements, and then anatomical images were coregistered
to the mean of the functional images. Realigned functional
images were normalized with the anatomical image and
were smoothed using a Gaussian filter (8mm full width-half
maximum).

2.7. Activation Mapping. To identify activated voxels in each
task condition, a boxcar reference function convolved with a
hemodynamic response function was adopted for individual
analysis and used in a general linear model. Using a random-
effects model, we performed a paired 𝑡-test to examine the
difference in activation between the 2- and 3-back tasks. The
AAL atlas was used to determine activated brain regions.
An ROI-based activation analysis was employed in order to
equate it with the following functional connectivity analysis.

2.8. Functional Connectivity. To analyze functional connec-
tivity, we used conn toolbox [39] on MATLAB. In addi-
tion to the preprocessing through SPM8, a band-pass filter
(0.008Hz–0.09Hz) was applied to remove physiological and
low-frequency noise. Then, we used a CompCor strategy
[40] to regress out the BOLD signals from the white matter
and cerebrospinal fluid and also remove subject-movement
and physiological confounding effects. To calculate the cor-
relation coefficient during task blocks (2-back and 3-back
sessions), block regressors for each condition were convolved
with a canonical hemodynamic response function that takes
into account hemodynamic delay, and these block regressors
were regressed out to remove any potential confounding
effects of shared task-related responses. All scans with
nonzero effects in the resulting time series were concatenated
for each condition and across all sessions. We defined the
brain regions as nodes and correlation coefficients as edges
in applying the fMRI data to graph theoretical analysis. We
chose the AAL atlas to define ROI, and Pearson’s correlation
coefficient was calculated between the seed time courses
and those of all other regions. These correlation coefficients
were converted to normally distributed scores using Fisher’s
transformation for group analysis. A total of 116×116whole-
brain, functional connectivity matrices were generated for
each session across all participants.

We used only positive connections to calculate the graph
theoretical metrics, rather than using negative weights, fol-
lowing well-established precedent [41, 42]. Graph theoretical
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Table 2: Brain regions that were significantly activated between the control and 2-back or 3-back tasks (FWE-corrected, 𝑝 < 0.05).

Task Region 𝑥 𝑦 𝑧 𝑍 value Cluster size

2-back

Precentral L −34 −2 60 Inf 2584
Supp Motor Area L −2 10 56 7.63

Parietal Sup L −26 −70 52 7.65 2865
Parietal Inf L −28 −68 42 7.32

Frontal Sup R 28 0 62 6.66 718
Parietal Inf R 30 −56 50 6.61 2083
Precuneus R 12 −72 50 6.20

Parietal Sup R 44 −51 60 6.05

Insula L −34 18 8 6.58 331
Frontal Inf Tri L −30 32 6 5.24

Caudate L −16 −6 16 6.07 450
Thalamus L −14 −14 18 5.52
Precentral R 52 10 36 5.95 290
Insula R 34 22 6 5.57 113
Vermis 6 4 −64 −20 5.47 62
Caudate R 20 −6 24 4.96 4
Vermis 1 2 2 −34 −16 4.88 8

Frontal Mid L −38 50 24 4.76 1
Varmis 3 −2 −28 −12 4.73 2

Temporal Inf L −48 −54 −16 4.72 1
Frontal Mid R 40 34 36 4.70 2

3-back

Parietal Inf L −42 −54 52 7.49 2334
Precentral L −30 −2 60 7.38 4437

Supp Motor Area L −8 10 52 7.13
Angular R 36 −66 48 7.30 1993

Parietal Inf R 44 −44 54 6.12
Frontal Mid R 38 36 32 6.03 299

Insula R 34 22 8 5.88 204
Frontal Mid L −30 54 12 5.58 61
Putamen L −20 0 14 5.26 43
Caudate L −18 0 22 4.72
Thalamus L −16 −22 18 4.93 10
Pallidum L −18 4 0 4.77 2

metrics, such as degree, clustering coefficient, betweenness
centrality, and modularity, were computed using the Brain
Connectivity Toolbox [43]. Degree is defined as the number
of links connected to a single node. In functional connec-
tivity analysis, regions with high degrees indicate that they
cooperate with many others. The clustering coefficient is the
fraction of triangles around a node and is equivalent to the
fraction of that node’s neighbors that are neighbors of each
other. Therefore, it is a measure of the tendency of nodes to
cluster into strictly connected neighborhoods. Betweenness
centrality is the fraction of the shortest paths within the
network that contains a given node. Nodes with high values
of betweenness centrality indicate themost central nodes in a
graph, as they act as bridges between other nodes.Modularity
subdivides a network into separate modules by maximizing
the connections within each module and minimizing the
number of connections between modules. Here we applied
the Newman modularity algorithm [44] to the functional

connectivity matrix that was averaged across all participants.
After the modules were identified, the BrainNet Viewer [45]
was used to visualize them.

3. Results

3.1. Behavioral Performance. Average correct answers for the
2- and 3-back tasks were 94.5%± 5.11% and 85.84%± 7.59%.
Correct answers for the 2-back task were significantly higher
than those for the 3-back task [𝑡(27) = 4.88, 𝑝 < 0.001].

3.2. Activation Patterns. Figure 3 shows activated regions for
the 2- and 3-back tasks based on the comparisons of task
and control condition data. Significantly activated regions are
shown inTable 2.However, therewas no significant difference
between the 2- and 3-back tasks with respect to differential
brain activity (i.e., different activated regions) by random-
effects theory (𝑝 < 0.05; corrected).
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(a) (b)

Figure 3: Activation pattern for the (a) 2-back task and (b) 3-back task, comparing the control and task conditions.

3.3. Functional Connectivity. Correlation coefficients be-
tween the brain regions were calculated using BOLD fMRI
signals. Average functional connectivity matrices for the 2-
and 3-back tasks are shown in Figures 4(a) and 4(c). Func-
tional connectivity matrices that were reordered by defining
modularity for the 2- and 3-back tasks are shown in Figures
4(b) and 4(d).

Vertical and horizontal axes indicate brain regions, and
each cell shows the correlation coefficient between regions.
Clustered functional graphs in anatomical space are shown
in Figure 5.

The number of modules for the 2- and 3-back tasks were
4 and 5, respectively, and modularity values were 0.1407
and 0.1421. Figure 5 illustrates the depth of the brain and
the difference in clustering with regard to the density of
connections between the occipital lobe (indicated as dashed
areas). Regions which had a significantly higher graphmetric
value in the 3-back task than in the 2-back task are listed in
Table 3 as are the classification accuracy of each graphmetric,
the degree, the clustering coefficient, and the betweenness
centrality of these regions.

The brain regions selected automatically by our method
and the classification accuracy using them are shown in
Table 4. In Figure 6, the anatomical locations of the regions
selected by our algorithm and which match the AAL atlas are
colored red.

4. Discussion

The behavioral data collected during our 𝑁-back testing
indicated that the increased WM load from the 2-back to 3-
back tasks affected participants’ performance. We expected
that this increased WM load would be reflected in neural
activation. Indeed, the brain regions activated during the 2-
and 3-back tasks (shown in Table 2) are consistent with those
previously reported [14]. However, there was no statistically

significant difference in the specific regions activated between
the 2- and 3-back tasks as analyzed using the method imple-
mented on SPM8 (Figure 3). Despite the similarity of regions
activated, the functional connectivity between the regions did
differ significantly between the two task conditions.

Though both the frontal area (Frontal Mid) and parietal
region (Parietal Inf) were activated under both WM tasks,
functional connectivity between these regions decreased
from the 2-back to the 3-back test. This result differs
from other studies which report that functional connec-
tivity increases with increasing the WM load [21–23]. The
difference between our results and that of the others may
be attributed to differences in the experimental paradigms
used. WhenWM load is excessive, brain activation decreases
through what is termed overflow [46]. In our experiment,
several subjects may have been in this “overflow” state,
causing a reduction in the detected functional connecti-
vity.

The modules of the brain illustrated in Figure 5 indicate
that the occipital lobe and deep brain are more densely con-
nected during the 2-back task.Therefore, the functional con-
nectivity between the occipital lobe and the deep brain has
been suggested to be involved in the WM load. However, the
modularity observed, which reflects the quality of clustering,
was lower than the values that have been previously reported
(0.2 to 0.3) in social networks. Here because modularity was
less than 0.2, the precision of clustering was not sufficient.
One contributing factor may have been the method of cre-
ating group-averaged functional connectivity matrices. The
functional connectivity matrix used to calculate modularity
excluded negative values and was obtained by averaging the
correlation coefficients of all subjects. Differences between
the brain networks within each subject are thought to affect
the approach to and performance of each task. Therefore,
simply averaging all subjects’ networks may have affected the
accuracy of clustering. Therefore, group analysis techniques
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Figure 4: Group-averaged connectivity matrix for the 2- and 3-back tasks. (a) Functional connectivity for the 2-back task. (b) Functional
connectivity for the 2-back task reordered using modularity. (c) Functional connectivity for the 3-back task. (d) Functional connectivity for
the 3-back task reordered using modularity.

Table 3: Brain regions in which degree, clustering coefficient, and betweenness centrality values were significantly increased in the 3-back
task and the classification accuracy using each graph metric of these regions.

Degree Clustering coefficient Betweenness centrality
Accuracy 80.36 73.21 60.71
Cost 5.12 × 102 1.28 × 102 3.13 × 10−2

Gamma 4.88 × 10−4 5.00 × 10−2 7.81 × 10−3

Region

Frontal Mid R Olfactory L Precentral R
Supp Motor Area L Caudate L Frontal Inf Tri L

Rectus R Frontal Med Orb R Temporal Pol Sup L
Fusiform L Cingulum Ant L Temporal Mid L
Thalamus R Cingulum Ant R Cerebellum Crus1 L

Lingual R Cerebellum 8 R
Occipital Sup L
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Table 4: The brain regions selected automatically by our proposed method and the classification accuracy using them.

Degree Clustering coefficient Betweenness centrality
Accuracy [%] 91.07 92.86 91.07
Cost 8.00 3.28 × 104 3.13 × 10−2

Gamma 3.05 × 10−5 3.13 × 10−2 3.05 × 10−5

Region

Frontal Sup L Frontal Sup L Precentral R
Frontal Sup R Frontal Sup Orb R Frontal Mid L

Frontal Sup Orb R Frontal Mid R Frontal Mid R
Frontal Mid R Frontal Mid Orb L Frontal Mid Orb R

Frontal Mid Orb L Frontal Inf Tri L Frontal Inf Oper R
Frontal Mid Orb R Frontal Inf Tri R Frontal Inf Tri L
Rolandic Oper L Frontal Inf Orb L Frontal Inf Tri R
Rolandic Oper R Frontal Inf Orb R Rolandic Oper R
Supp Motor Area L Supp Motor Area R Supp Motor Area R

Olfactory L Olfactory L Frontal Sup Medial L
Frontal Sup Medial R Olfactory R Frontal Med Orb L
Frontal Med Orb L Frontal Med Orb R Frontal Med Orb R

Insula L Rectus R Insula L
CingulumMid L Insula L Insula R
Cingulum Post R Cingulum Ant L CingulumMid L
Hippocampus R Cingulum Ant R CingulumMid R
Amygdala L CingulumMid R Hippocampus R
Calcarine R Cingulum Post R Amygdala R
Cuneus L Hippocampus L Calcarine L
Cuneus R Hippocampus R Calcarine R
Lingual L ParaHippocampal R Lingual L

Occipital Inf L Amygdala L Occipital Mid L
Fusiform L Calcarine R Occipital Mid R
Fusiform R Cuneus L Occipital Inf L
Postcentral L Cuneus R Postcentral R
Parietal Inf L Lingual L Precuneus L
Parietal Inf R Occipital Sup L Paracentral Lobule R
Angular L Occipital Sup R Caudate L
Precuneus L Occipital Inf R Caudate R
Precuneus R Parietal Sup L Pallidum L
Caudate L Parietal Inf L Temporal Sup L
Caudate R Angular L Temporal Pole Sup L
Putamen R Paracentral Lobule L Temporal Mid L
Pallidum L Paracentral Lobule R Temporal Pole Mid R
Pallidum R Caudate R Temporal Inf L
Thalamus R Putamen L Cerebellum Crus1 L

Temporal Pole Sup L Putamen R Cerebellum Crus2 L
Temporal Mid L Thalamus L Cerebellum Crus2 R
Temporal Mid R Thalamus R Cerebellum 4 5 R

Temporal Pole Mid R Temporal Sup L Cerebellum 6 L
Temporal Inf L Temporal Pole Sup L Cerebellum 7b L

Cerebellum Crus1 L Temporal Pole Sup R Cerebellum 8 R
Cerebellum Crus1 R Temporal Pole Mid L Cerebellum 9 L
Cerebellum 6 L Temporal Pole Mid R Cerebellum 9 R

Vermis 6 Temporal Inf R Cerebellum 10 L
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Table 4: Continued.

Degree Clustering coefficient Betweenness centrality
Vermis 7 Cerebellum 7b L Vermis 1 2
Vermis 8 Cerebellum 8 L Vermis 4 5

Cerebellum 9 L Vermis 8
Vermis 7
Vermis 8
Vermis 9
Vermis 10

(a) (b)

Figure 5: Functional connectome. Degrees of connectivity of the group-averaged connectome for the 2-back (a) and 3-back tasks (b) are
shown. Node colors indicate distinct clusters identified using Newman algorithm implemented in Brain Connectivity Toolbox. Edges reflect
correlation coefficients higher than 0.5.

of functional connectivity matrices should be considered in
future studies.

Conversely, degree, clustering coefficient, and between-
ness centrality of several identified regions were found to be
significantly higher during the 3-back task than during the 2-
back task. Increases in the degree between the Frontal Mid
R, Sup Motor Area L, rectus R, fusiform L, and thalamus
R indicated cooperation between these regions to cope with
the increased WM load. The Precentral R, Frontal Inf Tri L,
Temporal Pole Sup L, Temporal Mid L, Cerebellum Crus 1
L, and Cerebellum 8 R all exhibited increased betweenness
centrality from the 2-back to the 3-back tasks indicating
that, under increased WM load, these regions became cen-
tral bridging nodes between disparate brain regions. Under
increased WM load, the clustering coefficients between the
Olfactory L, caudate L, Frontal Med Orb R, Cingulum Ant
L and R, Lingual R, and Occipital Sup R indicated that
these regions strengthened their connections. According to
Osaka et al. [47], the WM load is positively correlated with
the BOLD signal in the Cingulum Ant. Although we did
not observe an increased BOLD signal in the Cingulum
Ant from the 2-back to the 3-back tasks, the increased
correlation coefficients of the Cingulum Ant suggest that it

plays important roles in connecting neighboring nodes and
in synchronizing activity with frontal areas during increased
WM load. Because we only used significantly increased graph
metrics for classification (Table 3), classification accuracy was
low. This suggests that the difference between the circuits
recruited during the 2- and 3-back tasks is difficult to be
explained by the simple fluctuation (e.g., the increase from
2-back to 3-back) of graph metrics. Similarly, extraction of
the network properties reflective of WM load-dependent
change by the conventional “manual” approach may also be
problematic.

We were able to classify the patterns of brain activation
by performing pattern recognition of network features in 116
brain regions (Table 4). However, there are some limitations
with the present approach. Future work should address
several issues. First, we used the AAL atlas in this experiment;
however, functional connectivity depends largely on the
atlas used. Second, in segmenting the regions, the amount
of information is drastically reduced because thousands of
voxels are averaged into a single value making fine-grained
identification of regional brain changes impossible. Novel
approaches for segmenting regions and voxel-based analysis
are important considerations for future studies. In particular,
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(a) (b) (c)

Figure 6: Anatomical location of the brain regions selected by the method. Each sphere indicates the anatomical location determined by the
automated anatomical labeling (AAL) atlas. Red spheres indicate the regions selected by ourmethod. Each panel shows regions selected using
one of the graph metrics: degree (a), clustering coefficient (b), and betweenness centrality (c).

structural parcellations such as the AAL and Brodmann area
may be inappropriate for functional connectivity analysis
as anatomical boundaries do not necessarily correlate with
functional ones [48].Therefore, functional parcellations such
as the Power [49, 50] and Craddock et al. [51] atlases
might be more appropriate. Furthermore, we used leave-
one-subject-out cross-validation for evaluating classification
accuracy, but this method may include some inherent biases.
Bootstrapping may avoid these issues.

Another limitation of our work is the randomness of
GA optimization. In general, the GA is used to find the
suboptimal solutions within the reasonable computational
time, and its control parameters such as the number of initial
population and iterations, crossover rate, and mutation rate
significantly affect the variability of the obtained solutions.
This may lead to less reproducibility of the characteristic
network properties associated with the dataset. It should be
further investigated how much the selected ROIs vary due
to them. However, the evolutionary computation techniques,
such as the GA, an evolutionary strategy, and a particle
swarm optimization, have been widely used in neuroscience
researches [52–54]. Moreover, Baldassarre et al. [55] tried
to interpret the classifier weights of the sparse models for
classifying fMRI images during visualization of pleasant and
unpleasant pictures. They stated that interpretability and
stability of the predictive brain maps can be affected by the
model selection.Their result suggests that the reproducibility
issue is not only for the evolutionary algorithms. It should be
further discussed how to resolve this problem. In spite of this
drawback, since it is hard to choose the seed ROIs and their
network metrics for the dataset whose neural basis has not
yet been investigated, in that case the proposed method will
be valuable even if the obtained results would have the higher
variability.

Furthermore, because we adopted a nonlinear kernel for
the SVM, it made it harder to interpret the relation between
the selected ROIs and the classification boundary. A possible
future direction could be to evaluate the proposedmethod on
the linear classifier.

Irrespective of these limitations, the present work devel-
oped a framework for optimizing the combination of regional
graphmetrics to extract meaningful ROIs and for using these
graphmetrics to associateWM load-dependent changes with
functional connectivity networks.

5. Conclusions

The present work implemented a machine learning-based
feature selection algorithm for extracting network properties
such as functional connectivity that are associated with WM
load using an 𝑁-back paradigm and fMRI. Our method
consisted of two machine learning algorithms: (1) a GA
that optimized the combination of regional graph theoretical
metrics and (2) an SVM that classified two different brain
states.Themethod first identified which brain regions should
be used for classification and used three regional graph
theoreticalmetrics, namely, degree, clustering coefficient, and
betweenness centrality to classify these regions under the
testing conditions.

The experimental results showed that our method could
obtain more than 90% of classification accuracy using each
of the three graph metrics. On the other hand, the accuracy
of the manual approach that classified the regions whose
graph metrics increased significantly from the 2-back to 3-
back task was up to 80.36% in three graph metrics. The
data indicate that our method outperforms a conventional
manual approach to choosing ROI. Although, in the present
study, our method was applied to the analysis of WM load-
dependent functional network changes, its framework is
more broadly applicable to other experimental paradigms
seeking to identify, parcellate, and classify regional brain
features that differentiate between two cognitive states. We
are in the process of validating the method within various
additional experimental scenarios.
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