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Abstract: A new two-stage method for the construction of a decision tree is developed. The first stage
is based on the definition of a minimum query set, which is the smallest set of attribute-value pairs for
which any two objects can be distinguished. To obtain this set, an appropriate linear programming
model is proposed. The queries from this set are building blocks of the second stage in which we try
to find an optimal decision tree using a genetic algorithm. In a series of experiments, we show that
for some databases, our approach should be considered as an alternative method to classical ones
(CART, C4.5) and other heuristic approaches in terms of classification quality.

Keywords: query set; decision tree; classification

1. Introduction

One of the main problems in machine learning is finding associations in empirical
data in order to optimize certain quality measures. These associations may take different
forms, such as Bayesian classifiers, artificial neural networks, rule sets, nearest-neighbor
or decision tree classifiers [1]. Classical decision tree learning is performed using sta-
tistical methods. However, due to the large space of possible solutions and the graph
representation of decision trees, stochastic methods can also be used.

Decision trees have been the subject of scientific research for many years [2]. The
most recognized algorithms in that class are ID3 [3], C4.5 [4], and CART [5]. There are
also works on the evolutionary approach to generating trees. The most popular ideas
connected with this research direction are described in the article of Barros et al. [6]. Other
approaches, for instance, the ant colony system, also have been studied [7]. To evaluate
the performance of our approach, the following methods are selected for comparison:
C4.5, CART (classification and regression trees), EVO-Tree (evolutionary algorithm for
decision tree induction) [8], and ACDT (ant colony decision trees) [9]. We test the predictive
performance of our method using publicly available UCI data sets.

The present proposal is about the building of decision trees which maximize the
quality of classification measures, such as accuracy, precision, recall and F1-score, on a
given data set. To this end, we introduce the notion of minimum query sets and provide a
tree construction algorithm based on that concept. The purpose of the present proposal
is fourfold:

1. Defining an integer linear programming model for the minimum query set problem.
It entails preparing zero-one variables along with the set of linear inequalities and an
objective function before starting the searching process.

2. Devising an algorithm for the construction of a decision tree with respect to the
minimum query set. The second objective is also to implement this model through
an available MIP (mixed integer programming) solver to get our approach working.

3. Performing experimental studies confirming the high classification quality of the
proposed method. The third objective is also to investigate to what extent the power
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of MIP solvers makes it possible to tackle the tree induction problem for large-size
instances and to compare our approach with existing ones.

4. Sharing our program because of the possibility of future comparisons with other meth-
ods. The Crystal language implementation of our method is publicly available via
GitHub. (https://github.com/w-wieczorek/mining, accessed on 8 December 2021).

This paper is organized into six sections. In Section 2, we present the necessary
definitions and facts originated from the data structures and classification. Section 3 briefly
introduces the related algorithms, while Section 4 describes our tree-construction algorithm
based on solving an LP (linear programming) model and the genetic algorithm. Section 5
shows the experimental results of our approach with suitable statistical tests. Concluding
comments and future plans are made in Section 6.

2. Preliminaries

In this section, we describe some definitions and facts about binary trees, deci-
sion trees, and the classification problem that are required for good understanding of
our proposal. For further details about the topic, the reader is referred to the book by
Japkowicz and Shah [10].

2.1. Observations and the Classification Problem

In supervised classification, we are given a training set called samples. This set consists
of n observations (also called objects):

X = {x1, x2, . . . , xn}. (1)

For each 1 ≤ i ≤ n, an observation xi is described by m attributes (also called features):

d(xi) ∈ A1 × A2 × · · · × Am, (2)

where Aj (1 ≤ j ≤ m) denotes the domain of the j-th attribute and d : X → A1 × · · · × Am
is a function. The values of the attributes can be quantitative (e.g., a salary) or categorical
(e.g., sex—“female” or “male”). Furthermore, each observation belongs to one of k ≥ 2
different decision classes defined by a function c : X → C:

c(xi) ∈ C = {c1, c2, . . . , ck}. (3)

We assume that there are no two objects with the same description and different decision
classes, that is, for any 1 ≤ q, r ≤ n, q 6= r,

d(xq) = d(xr)⇒ c(xq) = c(xr). (4)

Based on the definitions given above, the classification problem can be defined as follows:
assign an unseen object x to a class, knowing that there are k different decision classes
C = {c1, c2, . . . , ck}, each object belongs to one of them, and that d(x) = (a1, a2, . . . , am).
When k = 2, we are faced with the problem called binary classification. A learning algorithm
L is first trained on a set of pre-classified samples S. In practice, a set S consists of indepen-
dently obtained samples, according to a fixed—but unknown—probability distribution.
The goal of an algorithm L is to produce a “classifier” which can be used to predict the
value of the class variable for a new instance and to evaluate the classification performed
on some test set V. Thus, we can say that in the learning process, a hypothesis h is proposed
and its classification quality can be measured by means of accuracy, precision, recall, etc.

2.2. Decision Trees

We define a binary tree recursively as a tuple (S, L, R), where L and R are binary trees
or the empty set, and S is a singleton set containing the value of the root. If L and R are
empty sets, S is called a leaf node (or leaf ); otherwise, S is called a non-leaf node. If (U, L1, R1)

https://github.com/w-wieczorek/mining
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is a binary tree and L1 = (VL, L2, R2) or R1 = (VR, L2, R2), then we say that there is an edge
from U to VL (or from U to VR). Furthermore, VL and VR are called, respectively, left and
right sons of U.

Let Q = {Q1, Q2, . . . , Qt} be a collection of binary test (called queries) Qi : X → {0, 1},
where X is a set of objects for which we define functions d and c as described in (2)–(4). A
decision tree, TX, is a binary tree in which each non-leaf node is labeled by a test from Q
and has non-empty left and non-empty right subtrees; each leaf is labeled by a decision
class; the edge from a non-leaf node to its left son is labeled 0 and the one to its right son is
labeled 1. If Qi1 , Oi1 , Qi2 , Oi2 , . . . , Qih , Oih is the sequence of node and edge labels on the
path from the root to a leaf labeled by c∗ ∈ C, then c(x) = c∗ for all objects x ∈ X for which
Qij(x) = Oij for all j (1 ≤ j ≤ h). We also require that in this manner all leaves in a decision
tree cover the whole set X, i.e., for all x ∈ X, there is at least one path from the root to a leaf
corresponding to x.

The tree in Figure 1 is said to have a depth of 3. The depth (or height) of a tree is defined
as the number of queries that have to be resolved down the longest path through the tree.

A2 = b?

A1 = d?

T

0

A3 = a?

F

0

T

1

1

0

T

1

Figure 1. An exemplary decision tree.

Naturally, every decision tree T can play the role of a classifier as long as the queries
can be resolved for other objects, i.e., those outside the training set. Having given a new
object, let us say y, one may apply queries from the tree starting from the root and ending in
a leaf ` that points out the predicted class p to which the object should belong. Every query
in the tree directs us to a left or right son, toward a leaf `. We denote such a prediction
as T(y) = p.

2.3. Quality of Classification

To assess the quality of classification, we use the classical measures of classification
quality: accuracy (5), precision (6), recall (7), and F1-score (8). Notably, these are binary
classification measures, i.e., for a data set with only two decision classes. However, there
are often more decision classes in data sets, so we use the so-called macro method to
determine the values of these measures. Thus, in the definitions, we denote the following:
TPi to identify all correctly classified cases of the ci class; TNi to identify all cases outside
the ci class that are not assigned to this class; FPi to identify all cases outside the ci class
that are assigned to this class; FNi to identify all misclassified cases of the ci class; and k as
the number of decision classes.
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acc =
1
k

k

∑
i=1

TPi + TNi
TPi + TNi + FPi + FNi

(5)

pre =
1
k

k

∑
i=1

TPi
TPi + FPi

(6)

rec =
1
k

k

∑
i=1

TPi
TPi + FNi

(7)

f 1 =
1
k

k

∑
i=1

2 · TPi
2 · TPi + FPi + FNi

(8)

3. Related Works

This section describes the tree construction methods taken for our comparison. These
are well-known, deterministic C4.5 and CART, and stochastic, population-based algorithms:
EVO-Tree and ACDT.

3.1. C4.5

Developed initially by Ross Quinlan in 1993 [4], the C4.5 algorithm became one of
the most popular decision tree-based algorithms [11] implemented as the standard in
data mining tools, i.e., Weka (https://www.cs.waikato.ac.nz/~ml/weka/, accessed on
8 December 2021). Conceptually, the heuristic is a more advanced version of the ID3
algorithm proposed by the same author in 1986 [3]. The tree-building process recursively
chooses the attribute with the highest information gain ratio. The higher the information
gain the attribute has, the higher position in the tree from the root it has. Each selected
feature splits a node’s set of samples into subsets enriched in one class or the other [12]. To
avoid over-fitting, the pruning technique is used to remove parts of the tree that minimally
affect the estimated classification error. In contrast to ID3, some improvements can be
made to handle missing values and continuous data [12].

3.2. CART

The classification and regression trees algorithm was co-authored by Leo Breiman,
Jerome Friedman, Richard Olshen, and Charles Stone in 1984 [5], and is one of the most
widely used decision tree making algorithms [11]. The CART is a binary (each node has
two branches), recursive and non-parametric algorithm. It can be used for regression and
classification problems. The decision tree making process uses the Gini impurity measure to
determine attribute order in the tree [12]. The measure can be interpreted as the probability
of incorrect classifying a randomly chosen observation from sample data if the attribute
for the calculation is selected as the new decision tree node. The pruning mechanism is
complex and produces a sequence of nested pruned trees, all candidate optimal trees. The
best one is identified by evaluating the predictive performance of every tree in the pruning
sequence by cross-validation.

3.3. EVO-Tree

The EVO-Tree algorithm [8] is an evolutionary algorithm that generates binary deci-
sion trees for classification. It uses the minimization of a multi-objective fitness function
that utilizes the balance between the number of correctly classified instances and the size of
the generated decision tree. The algorithm starts with the randomly initialized population
of trees and uses two standard genetic operators: crossover and mutation. The crossover
creates offspring by replacing a randomly selected sub-tree in the first parent with a sub-
tree from the second parent. The parents’ selection is made in a series of tournaments. In
each tournament, a certain number of individuals from the population is randomly picked.
Then, the best individual in terms of the fitness function value is chosen as a tournament
winner to be put into the the pool of parents. The mutation randomly changes both at-
tribute and split value of a decision tree. Finally, the algorithm stops if the maximum

https://www.cs.waikato.ac.nz/~ml/weka/
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number of generations is reached or the fitness of the best individual does not improve
after a fixed number of iterations.

3.4. ACDT

The ant colony decision tree (ACDT) algorithm [7] is an application of ant colony
optimization algorithms [13] in the process of constructing decision trees. The good results
typically achieved by the ant colony optimization algorithms when dealing with combina-
torial optimization problems suggest the possibility of using that approach for the efficient
construction of decision trees [14,15]. In the ACDT algorithm, each agent ant chooses an
appropriate attribute for splitting the objects in each node of the constructed decision tree
according to the heuristic function and pheromone values. The heuristic function is based
on the twoing criterion (known from the CART algorithm) [5,16], which helps agent ants
divide the objects into two groups. In this way, the attribute which best separates the objects
is treated as the best condition for the analyzed node. Pheromone values represent the best
way (connection) from the superior to the subordinate nodes—all possible combinations in
the analyzed subtrees. For each node, the following values are calculated according to the
objects classified, using the twoing criterion of the superior node.

4. Proposed Method

Our learning algorithm L receives as its input samples S, which are split into two
subsets, the training set X and the test set Y (in experiments, we chose the proportions 4/7
to X and 3/7 to Y). Hypothesis space HL = {Ti

X}i∈I is searched in order to find a decision
tree that approximates best the unknown true function. To this end, each tree is validated
against Y: as a result, we output a tree T∗X that minimizes err = |{y ∈ Y : T∗X(y) 6= c(y)}|.
Unfortunately, in practice, we are not able to cover the whole hypothesis space. The selected
hypothesis T∗X can then be used to predict the class of unseen examples in the validation set,
taken for the evaluation of L. More exactly, L has two stages. In the first stage, by means of
zero-one linear programming, a minimum query set Q is determined. In the second stage,
by means of the genetic algorithm, the best ordering of Q—in the view of a decision tree
construction—is settled. Let x ∈ X, d(x) = (a1, a2, . . . , am), and v ∈ Aj (1 ≤ j ≤ m). In our
approach, a query can be a function defined by Qi(x) = 1 if aj = v and Qi(x) = 0 if aj 6= v.
Thus, non-leaf nodes contain “questions” such as Aj = v?.

We require Q to be a minimum size query set satisfying the following condition: for
each pair of distinct elements u, w ∈ X with c(u) 6= c(w), there is some query q ∈ Q that
q(u) 6= q(w). We verified experimentally that this minimality is crucial in achieving good
quality decision trees.

4.1. Linear Program for the Minimum Query Set Problem

Let us show how a collection of queries, Q, is determined via an integer program for
the training set X = {x1, x2, . . . , xn}. The integer variables are zjv ∈ {0, 1}, 1 ≤ j ≤ m,
v ∈ Aj, assuming that there are m attributes, A1, A2, . . . , Am. The value of zjv is 1 if some
query in Q is defined with Aj and v ∈ Aj; in other words, Aj = v? is taken as a non-leaf
node label representing the query and zjv = 0 otherwise, i.e., there is no query based on
Aj and v. Let us now see how to describe the constraints of the relationship between a
set Q and a set X, with features and classes defined by functions d (as in (2)) and c (as
in (3)), in terms of linear inequalities. For every pair of distinct elements u, w ∈ X with
c(u) 6= c(w), we should have at least one query that distinguishes between the two. The
following equation is the standard way of showing in a linear program that some elements
(i.e., queries modeled as 0–1 variables) have to be included in the solution:

∑
1≤j≤m
aj 6=bj

zjaj + zjbj
≥ 1, (9)
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where (a1, a2, . . . , am) = d(u) and (b1, b2, . . . , bm) = d(w). Obviously, we are to find the
minimum value of the linear expression

∑
{(j,v) : 1≤j≤m, v∈Aj}

zjv. (10)

Please note that the above-mentioned problem is computationally complex (that is why
we use an LP solver, specifically Gurobi optimizer) since Garey and Johnson’s [17] NP-
complete problem SP6 can be easily transformed to the decision version of the minimum
query test problem.

4.2. The Construction of a Decision Tree with the Help of the Genetic Algorithm

After obtaining a minimum query set Q = {Q1, Q2, . . . , Qt}, we are ready to create
a decision tree TX by Algorithm 1.

Algorithm 1 A recursive algorithm for the construction of TX .

function BUILDTREE(X, Q) . objects X as set, queries Q as array
if all x ∈ X have the same decision c(x) then

return ({c(x)}, ∅, ∅) . a leaf inside
else

find first i for which Qi splits X into to non-empty sets
XL = {x ∈ X : Qi(x) = 0}
XR = {x ∈ X : Qi(x) = 1}
return ({Qi}, BUILDTREE(XL, Q), BUILDTREE(XR, Q))

end if
end function

Theorem 1. Let X be a set of n ≥ 1 observations and let Q = {Q1, . . . , Qt} be a set of such queries
that for every pair of distinct elements u, w ∈ X with c(u) 6= c(w) there is some i (1 ≤ i ≤ t) for
which Qi(u) 6= Qi(w). Then BUILDTREE(X, Q) constructs a decision tree for X.

Proof. Let TX be a tree returned by BUILDTREE(X, Q). The conclusion of the theorem can
be written as follows: TX(x) = c(x) for an arbitrary x ∈ X. We prove it by induction on n.
Basis: We use n = 1 as the basis. The tree consisting of one leaf is returned, with the
decision c(x), so TX(x) = c(x), where x is the only element of X.
Induction: Suppose that the statement of the theorem holds for all k < n, where k = |X|.
We want to show that for an arbitrary x ∈ X, where |X| = n, TX(x) = c(x) holds. Let
us consider two cases: (i) all x ∈ X have the same decision c(x), and (ii) there is such
y ∈ X that c(x) 6= c(y). In the former case, we can easily verify that TX(x) = c(x). In the
latter case, there is some i (1 ≤ i ≤ t) for which Qi splits X into two non-empty sets, XL
and XR. An element x is put into one of them. If it is XL (i.e., x ∈ XL), by the inductive
hypothesis, we can claim that TXL(x) = c(x), where TXL is the left subtree of a non-leaf
node containing Qi. Thus, TX(x) = c(x). For x ∈ XR, we can repeat our reasoning.

Therefore, by strong induction, BUILDTREE(X, Q) constructs a decision tree for any
set X of n ≥ 1 observations.

Please notice that the shape of a tree TX depends on the ordering of queries in an array
Q. As a consequence, the order decides the quality of classification done by a tree returned
by function BUILDTREE. That is why we apply the genetic algorithm (Algorithm 2) as
a heuristic method to search such a large solution space [18]. Each individual is the
permutation of the set {1, 2, . . . , t}, which determines the order of Q = {Q1, Q2, . . . , Qt}.
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Algorithm 2 The genetic algorithm for finding an optimal permutation.

function GENETICALGORITHM
make an initial population P of POP_SIZE individuals
iteration := 0
while iteration < MAX_ITER and err(best_ind) > 0 do

iteration := iteration + 1
select T_SIZE elements from P
recombine two best of them by means of PMX
replace the worst selected element with the child
mutate it with a probability PROB_MUTATION

end while
return best_ind

end function

The population size depends on the complexity of the problem, but usually con-
tains several hundreds or thousands of possible solutions. We follow the advice of
Chen et al. [19] and take POP_SIZE = 2t ln t (they suggested |P| = O(ln n), where n is the
problem size, while our n is t!). The initial population is generated randomly, allowing the
entire range of possible permutations.

During each successive iteration, a portion of the existing population (T_SIZE = 3 is
chosen during preliminary experiments) is selected to breed a new individual. Solutions
are selected through a fitness-based process, where fitter solutions (as measured by a fitness
function) are chosen to be parents.

The fitness function is defined over the genetic representation and measures the
quality of the represented solution. We use Algorithm 1 to decode a permutation. The
number of misclassified objects for a test set Y is the fitness value.

For each new solution to be produced, a pair of “parent” solutions is selected for
breeding from the pool selected previously. By producing a “child” solution using the
crossover and mutation operations, a new solution is created which typically shares many
of the characteristics of its “parents”. We use partially mapped crossover (PMX for short)
because it is the most recommended method for sequential ordering problems [18,20]. In
the mutation operation, two randomly selected elements of a permutation are swapped
with a probability PROB_MUTATION = 0.01. This process is repeated until one of the two
termination condition is reached: (i) a solution is found that satisfies minimum criteria, or (ii)
fixed number (MAX_ITER = 500t) of iterations reached. As a result, the best permutation
encountered during all iterations is returned.

The final Algorithm 3 is depicted below. Note that heuristic search procedures that
aspire to find globally optimal solutions to hard optimization problems usually require
some diversification to overcome the local optimality. One way to achieve diversification
is to restart the procedure many times [21]. We follow this advice and call the genetic
algorithm 30 times, returning the best solution found over all starts.

Algorithm 3 The final algorithm.

Require: S = X ∪Y the set of objects with functions d and c
Ensure: a decision tree TX that tries to match a subset Y

define a linear programming model according to (9) and (10)
solve the model to obtain a minimum query set Q = {Q1, . . . , Qt}
multiple times run GENETICALGORITHM to obtain a permutation π
return BUILDTREE(X, [Qπ(1), Qπ(2), . . . , Qπ(t)])

Because our algorithm relies on solving the minimum query set problem (finding the
minimum set of attribute-value pairs that distinguishes every two objects) that is NP-hard,
its overall complexity is exponential with respect to the size of input data. To tackle the
problem, we use an integer linear programming solver. As modern ILP solvers are very
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ingenious, for practical data sets the computing time is not a big problem. Algorithms for
solving ILP-problems and their NP-completeness were described in the book of [22].

5. Experiments

The section describes the comparison between selected referenced methods introduced
in Section 3 and our proposed Algorithm 3 devised in the previous section.

5.1. Benchmark Data Sets

To verify our approach, we select 11 publicly available data sets with different numbers
of objects, attributes, and decision classes. Used data sets are downloaded from the UCI
data sets repository (https://archive.ics.uci.edu/, accessed on 8 December 2021) and are
not subject to any modifications, except for possible ID removal. They are presented in
Table 1, where the abbreviation used further in the paper is given in brackets, followed
by the number of objects in the data set, the number of attributes, and the number of
decision classes.

Table 1. Characteristics of data sets.

Data Set Objects Number of ClassesAttributes

balance-scale (bs) 625 4 3

breast-cancer-wisconsin (bcw) 699 9 2

car (car) 1728 6 4

dermatology (derm) 366 34 6

house-votes-84 (hv84) 435 16 2

lymphography (lymp) 148 18 4

monks-1 (monk1) 432 6 2

Somerville Happiness Survey 2015 (SHS) 143 6 2

soybean-large (soy-l) 307 35 19

tic-tac-toe (ttt) 958 9 2

zoo (zoo) 101 16 7

5.2. Performance Comparison

In this section, we describe some experiments comparing the performance of our ap-
proach implemented (https://github.com/w-wieczorek/mining, accessed on 8 December
2021) in Crystal language with ACDT implemented (https://github.com/jankozak/acdt_
cpp, accessed on 8 December 2021) in C++, Weka’s C4.5 implemented in Java, Scikit-learn’s
CART and EVO-Tree implemented (https://github.com/lazarow/dtree-experiments, ac-
cessed on 8 December 2021) in Python.

For the purpose of the experimental study, all data sets described in Section 5.1 are
divided into three sets: training set (40%), test set (30%), and validation set (30%). For the
classical algorithms (CART, C4.5) and EVO-Tree, the training and test sets are combined
and used to learn the algorithm, while for the other algorithms, the training and test sets are
used separately (according to the rule of the algorithm). In each case, the results are verified
through the validation set. In this section, all given values are the results of classification
performed on the validation set. So a train-and-test approach is used, but it is ensured that
the data breakdowns are exactly the same in each case.

Additionally, for the algorithms that do not work deterministically (the proposed
MQS and the compared EVO and ACDT) each experiment is repeated 30 times and the
values presented in Tables 2 and 3 are the averages. The stability of the results obtained by
these algorithms is also tested, which is presented in the form of box plots in Figures 2–4.

https://archive.ics.uci.edu/
https://github.com/w-wieczorek/mining
https://github.com/jankozak/acdt_cpp
https://github.com/jankozak/acdt_cpp
https://github.com/lazarow/dtree-experiments
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Table 2. The quality of classification depending on the approach (bold text is the best value).

Data Set Measure MQS C4.5 CART EVO ACDT

bs acc 0.7551 0.6809 0.8085 0.7730 0.7936
pre 0.5559 0.4562 0.5891 0.5196 0.5482
rec 0.5360 0.4843 0.5739 0.5505 0.5646
f1 0.5436 0.4656 0.5783 0.5290 0.5538

bcw acc 0.8817 0.9333 0.9190 0.9317 0.9192
pre 0.8855 0.9340 0.9252 0.9270 0.9144
rec 0.8808 0.9261 0.9059 0.9313 0.9173
f1 0.8812 0.9300 0.9135 0.9290 0.9158

car acc 0.9210 0.9056 0.9730 0.7069 0.9492
pre 0.7946 0.7667 0.9267 0.3029 0.8511
rec 0.8565 0.7600 0.9329 0.2609 0.9131
f1 0.8205 0.7630 0.9275 0.2306 0.8714

derm acc 0.8861 0.9364 0.9273 0.7879 0.9361
pre 0.8605 0.9334 0.9152 0.7753 0.9276
rec 0.8478 0.9244 0.9157 0.7225 0.9248
f1 0.8488 0.9278 0.9142 0.7293 0.9253

hv84 acc 0.9078 0.9466 0.9313 0.9603 0.9450
pre 0.8897 0.9300 0.9224 0.9528 0.9385
rec 0.9096 0.9534 0.9326 0.9641 0.9442
f1 0.8981 0.9436 0.9269 0.9578 0.9412

lymp acc 0.8222 0.8222 0.8222 0.7896 0.8163
pre 0.5411 0.7613 0.6677 0.6178 0.5764
rec 0.6683 0.9122 0.6722 0.4980 0.5741
f1 0.5837 0.7912 0.6679 0.5290 0.5718

monk1 acc 1.0000 0.8385 0.9538 0.7959 0.9331
pre 1.0000 0.8807 0.9548 0.8469 0.9330
rec 1.0000 0.8333 0.9548 0.7899 0.9330
f1 1.0000 0.8323 0.9538 0.7857 0.9330

SHS acc 0.6125 0.4419 0.4186 0.4682 0.4985
pre 0.6481 0.5974 0.4378 0.5837 0.6118
rec 0.6500 0.5428 0.4352 0.5532 0.5785
f1 0.6124 0.4028 0.4173 0.4481 0.4844

soy-l acc 0.5634 0.8478 0.8495 0.4706 0.7789
pre 0.4974 0.8565 0.8560 0.4912 0.7173
rec 0.6348 0.8553 0.8382 0.3224 0.6909
f1 0.5294 0.8229 0.8232 0.3418 0.6367

ttt acc 0.9514 0.8368 0.9132 0.7434 0.8927
pre 0.9626 0.8092 0.8951 0.7387 0.8978
rec 0.9253 0.8146 0.9066 0.6175 0.8485
f1 0.9412 0.8118 0.9005 0.6217 0.8675

zoo acc 0.8800 0.9677 0.9677 0.8720 0.9505
pre 0.7381 0.9524 0.7857 0.7998 0.9080
rec 0.8163 0.9643 0.8571 0.7539 0.8964
f1 0.7636 0.9510 0.8095 0.7587 0.8857
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Table 3. Decision tree characteristics depending on the approach.

Data Set Parameter MQS C4.5 CART EVO ACDT

bs time[s] 76.1 <0.1 <0.1 20.5 0.3
size 257.1 31.0 241.0 15.1 79.4

height 14.9 4.0 10.0 8.1 8.9

bcw time[s] 11.7 <0.1 <0.1 12.5 0.2
size 51.1 22.0 71.0 9.1 18.0

height 8.0 3.0 12.0 5.4 5.7

car time[s] 114.1 <0.1 <0.1 11.2 0.5
size 318.9 134.0 163.0 1.7 109.4

height 13.3 6.0 14.0 1.5 11.8

derm time[s] 26.6 <0.1 <0.1 10.2 0.4
size 64.7 25.0 27.0 10.8 16.6

height 9.0 7.0 10.0 5.7 6.8

hv84 time[s] 2.6 <0.1 <0.1 4.3 0.1
size 31.6 7.0 41.0 3.8 16.4

height 5.9 3.0 6.0 2.5 4.2

lymp time[s] 1.2 <0.1 <0.1 5.5 0.1
size 34.0 20.0 49.0 11.0 20.0

height 6.0 6.0 7.0 6.2 5.0

monk1 time[s] 0.1 <0.1 <0.1 3.9 0.1
size 20.3 32.0 89.0 4.1 23.0

height 5.0 5.0 10.0 2.6 6.1

SHS time[s] 2.4 <0.1 <0.1 2.5 0.1
size 64.3 9.0 87.0 8.0 15.6

height 7.9 3.0 13.0 4.2 6.1

soy-l time[s] 14.6 <0.1 <0.1 14.3 1.3
size 151.8 67.0 75.0 14.0 45.8

height 9.3 9.0 17.0 6.6 8.8

ttt time[s] 24.9 <0.1 <0.1 17.5 0.4
size 228.2 124.0 151.0 7.8 54.2

height 9.0 7.0 11.0 4.1 8.0

zoo time[s] 0.5 <0.1 <0.1 3.3 <0.1
size 19.1 15.0 19.0 9.0 13.2

height 4.9 6.0 7.0 5.1 4.9

5.3. Results of Experiments

The proposed algorithm is compared with two classical approaches and two heuristic
algorithms (another genetic algorithm and the ant colony optimization algorithm). Our
goal was to experimentally verify whether the MQS algorithm allows finding different
(often better) solutions than the compared algorithms. The achieved results show that our
assumption is confirmed.

The MQS algorithm, in terms of the analyzed metrics (see Section 2.3), allows for a
significant improvement in the results for 3 out of 11 data sets. Thus, in the case of the
monks-1 data set, the improvements in classification quality of almost 5% (with respect to
CART), almost 7% (with respect to ACDT), about 16% (with respect to C4.5), and as much
as about 20% with respect to another genetic algorithm (EVO-Tree) are obtained. There
is an even greater improvement for the 2015 Somerville Happiness Survey data set and
slightly less for tic-tac-toe.
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Figure 2. Box plot—accuracy of classification for the MQS algorithm.
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Figure 3. Box plot—accuracy of classification for the EVO-Tree algorithm.
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For the remaining data sets, the MQS algorithm obtains similar or slightly worse
results, but only in one case the difference in classification quality is large—this is for
the soybean-large data set. However, in two more cases, it is noticeable: dermatology
and zoo. In each of these cases, the second GA algorithm has also poorer classification
quality. As can be seen, the problem concerns sets with a large number of attributes (34 for
dermatology, 16 for soybean-large, and 16 for zoo), so as the solution space increases (for
classification, it depends on the number of attributes and the values of these attributes),
the MQS algorithm has a harder time finding a suitable solution.

Our aim is to propose a new algorithm that will allow finding new optima in the
solution space (in terms of classification quality). Thus, in some cases, it will allow to
improve the quality of classification compared to other algorithms. Therefore, we do not
try to improve either the size of the tree, the height of the tree, or the algorithm’s running
time, which is hard to compare between genetic and deterministic algorithms. However,
we make a comparison of these decision tree-related parameters, and the results are shown
in Table 3.

As can be seen, the MQS algorithm is similar in the decision tree learning time to
another algorithm related to genetic algorithms (EVO-Tree). However, in terms of decision
tree size and height, the proposed algorithm mostly constructs the largest trees. This
is probably related to searching the solution space and covering the solution with the
local optima. The size of the decision tree does not correlate with its classification quality
(in relation to other algorithms) and so a significantly larger tree, e.g., in the case of the
balance-scale data set, does not improve the results, while in the case of tic-tac-toe, the
results are improved while increasing the decision tree.

The stability of the results obtained is also subject to our analysis, because the stability
allows us to assume that the classifier will always be of similar quality. While in the case of
classical algorithms, the results are deterministic, in the case of MQS, EVO-Tree and ACDT,
a different classifier may emerge each time. Box plots are prepared with classification
accuracy for each data set in case of MQS (Figure 2), EVO-Tree (Figure 3), and ACDT
(Figure 4) algorithms. To prepare the graphs, the corresponding quantiles (minimum value
is lowest on the OY axis, 1st quantile, 2nd quantile (median), 3rd quantile and maximum
value that is highest on the OY axis) from all 30 repetitions of learning the decision tree
are determined.

The MQS algorithm is the most stable; in Figure 2, we can see that only for the
Somerville Happiness Survey 2015 and soybean-large data set, small (compared to the
other algorithms) differences appear. For the other data sets, the results are very repeatable.
For the other algorithms, the repeatability of the results is much lower, and so for EVO-
Tree, we can see in Figure 3 that in seven cases, the differences are quite divergent; for
the dermatology, soybean-large and tic-tac-toe databases, the classification accuracy in
successive repetitions changes even by several dozen percentage points. In the case of
the ACDT algorithm, the results are more reproducible (Figure 4)—significant differences
appear in two to three cases, while for the monks-1 set, the difference can be as much as
several dozen percentage points.

5.4. Statistical Analysis

The experimental results of the MQS approach are compared using a non-parametric
statistical hypothesis test, i.e., the Friedman test [23,24] for α = 0.05. Parameters of the
Friedman test are shown in Table 4. The same table presents the average rank values
for the compared algorithms for learning decision trees (in terms of classification qual-
ity). Results in terms of each of the classification quality measures analyzed are used for
statistical testing.

The MQS algorithm obtains a rank of 3.1591, so it is significantly better than the
EVO-Tree algorithm (the 5% critical difference is 0.6192); MQS is worse than the other
algorithms, but this is by no means a critical difference. Therefore, we confirm that it is
possible to use the MQS algorithm in the decision tree learning process, so it should always
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be considered and tested because it can output a significantly better classifier than the other
algorithms. This is especially valid when we are given a data set with a small number of
attributes. At the same time, we confirm that the proposed algorithm is significantly better
than another genetic algorithm used for decision tree learning.

Table 4. The Friedman test results and mean ranks.

Values

N 44

Chi-Square 24.0594

degrees of freedom 4

p value is less than 0.0001

5% critical difference 0.6192

Mean ranks

MQS 3.1591

C4.5 2.6932

CART 2.5568

EVO 3.9545

ACDT 2.6364

As the EVO-Tree algorithm is found to be critically inferior to all other approaches
analyzed, we perform a second round of statistical analysis. The results of the Friedman
test and the mean ranks after rejecting the critically inferior method are recorded in Table 5.
As can be seen, in this case, none of the methods is critically better or worse than all the
others. The big difference remains only when contrasting MQS with CART.

Due to the lack of significant differences and the advantage of obtaining significantly
higher results (when the MQS algorithm gets a rank of 1, it is better by several/dozen
percentage points, where in other methods, the advantage is often negligible—see Table 2),
the proposed method can be considered for use in selected classification problems.

Table 5. Friedman test results and mean ranks after rejection of the critically worse method.

Values

N 44

Chi-Square 5.8

degrees of freedom 3

p value is less than 0.1218

5% critical difference 0.5305

Mean ranks

MQS 2.8864

C4.5 2.4205

CART 2.2614

ACDT 2.4318

5.5. Discussion

To evaluate the proposed algorithm, we made comparisons with classical approaches
and other non-deterministic algorithms. This is a new algorithm proposal, so we wanted to
make a fair comparison. We used up to four different measures of classification quality. We
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also compared the size and height of the decision tree and the learning time of the classifier.
Finally, we performed statistical tests.

As decision trees learned with non-deterministic methods often search a much larger
solution space, this must affect their running time. It can also result in larger, more
extensive decision trees. When proposing the MQS algorithm, we knew that the classifier
learning time would require more time. Therefore, its application, like other stochastic
methods, should be considered for classifiers that are built once in a while—not online
classifiers. Our study confirmed that the MQS algorithm takes longer to learn than statistical
methods. However, it is comparable to non-deterministic methods (especially another
genetic algorithm).

In this case, the classification time is more important, and it depends primarily on the
height of the decision tree. Our analyses indicated, for example, that the MQS algorithm
is better than the CART algorithm in 10 out of 11 cases, remaining worse than the other
algorithms in 7–9 cases. In terms of the size of the decision trees (this affects the memory
occupation needed to store the finished classifier), the situation is similar. The MQS
and CART algorithm learn larger decision trees than the others. However, it should be
emphasized that no pruning of decision trees is performed for the proposed MQS algorithm.
At this stage, we wanted to keep the complete decision trees.

However, our aim was to find new alternative classifiers with which a better classifica-
tion could be achieved. Therefore, the most important analysis concerned the evaluation
of classification quality. In this case, we were able to see that for some data sets, the MQS
algorithm allows to build a classifier better than all other algorithms.

This is particularly important because often the differences (in classification quality
assessment) between different algorithms are a few percentage points. However, for the
monks-1, Somerville Happiness Survey 2015 and tic-tac-toe data sets, the MQS algorithm
allows a very large improvement in each of the classification quality assessment measures.

We analyzed the exact structure of these data sets. Our observations show that the
application of the proposed algorithm can be particularly beneficial for data sets with two
decision classes and attributes with a small number of possible values (3–5 values of each
attribute). However, the decision classes can be of different numbers. This does not mean,
however, that the MQS algorithm obtains bad results with other sets—the suggestion
described above indicates a situation where a classifier learned by MQL obtains results
with much better classification quality.

Finally, we analyzed the stability of the results obtained. We did this to determine
whether the classifiers learned by the MQS algorithm are always of similar quality. For this
purpose, we performed 30 independent runs of the algorithm and obtained 30 independent
classifiers. We performed the same tests with other stochastic algorithms (EVO-Tree and
ACDT). The obtained results clearly indicate that the proposed algorithm is the most stable
one, so it can be assumed that the classifier will always obtain similar results.

To confirm our observations, a statistical test was performed twice: the first time, for
all approaches (and all classification quality values) and the second time, after rejecting
the EVO-Tree algorithm (it obtained results with a critical difference with respect to other
algorithms). This time, the critical difference of one algorithm against all others was
not shown.

6. Conclusions

This paper deals with the construction of decision trees based on the finite set of
observations (objects). In order to address the problem, we introduced the notion of
minimum query set and made use of the genetic algorithm for suitable ordering of the
found queries. As the result of the implemented algorithm, we achieved decision trees
that perfectly match the training data set and have good classification quality on the test
set. The conducted experiments and statistical inference showed that the new proposed,
two-stage algorithm should be considered as an alternative method to classical ones (CART,
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C4.5) and other heuristic approaches in terms of accuracy, precision, recall, and F1-score
for all 11 UCI data sets.

Our method has also a few disadvantages. The most significant ones are that (i) the
first stage of our approach relies on solving a computationally intractable problem, and (ii)
for some cases, the obtained decision trees have too many nodes. In the near future, we
are planning to adapt our approach to handle continuous attributes. In order to make it
possible to reproduce our results or apply our method on new data, we share the source
code of all algorithms via the Github platform.
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