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ABSTRACT

Prognostic signatures have been proposed as clinical tools to estimate prognosis 
in hepatocellular carcinoma (HCC), which is the second most common contributor to 
cancer-related death at present globally. Autophagy-related genes play a dynamic 
and fundamental role in HCC, but knowledge of their utility as prognostic markers 
is limited. Here, we facilitated univariate and multivariate Cox proportional hazards 
regression analyses to reveal that 3 autophagy-related genes (BIRC5, FOXO1 and 
SQSTM1) were closely related to the survival of HCC. Then, we generated a prognosis 
index (PI) for predicting overall survival (OS) based on the three genes, which 
was an independent prognostic indicator for the OS of HCC (HR = 1.930, 95% CI: 
1.200–3.104, P = 0.007). The PI showed moderate performance for predicting the 
survival of HCC patients and its efficacy was validated by data from three microarrays 
(GSE10143, GSE10186 and GSE17856). Furthermore, we deeply mined the integrated 
large-scale datasets from public microarrays and immunohistochemistry to validate 
the overexpression of BIRC5 and SQSTM1 while down-regulated FOXO1 expression in 
HCC. Bioinformatic analysis offered the hypothesis that proliferative signals in high-
risk HCC patients were disturbing and thereby facilitated inferior clinical outcomes. 
Collectively, the prognostic signature we proposed is a promising biomarker for 
monitoring outcome of HCC. Nevertheless, prospective experimental studies are 
needed to validate the clinical utility. 

www.oncotarget.com                               Oncotarget, 2018, Vol. 9, (No. 25), pp: 17368-17395

INTRODUCTION

Hepatocellular carcinoma (HCC), the predominant 
primary tumor of the liver, is the second most common 
contributor to cancer-related death at present globally 
[1–3]. The considerably high mortality rate of liver 
tumor seriously threatens humanity, where 40,710 of 
the estimated new liver cancer cases in the United States 

in 2017 [4]. Although surgical resection technology or 
transplantation rapidly improved, the 5-year survival rate 
of HCC patients remains relatively low [5, 6]. The dismal 
clinical outcome of HCC is in part driven by the delay in 
diagnosis and the still-rudimentary prognosis monitoring 
[7]. Hepatocarcinogenesis is heterogeneous and contains 
a multi-step process, including genetic and epigenetic 
factors that forms its unique molecular fingerprint. 
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Therefore, extensive analyses for identifying reliable 
biomarkers with prognostic significance that target major 
oncogenes in HCC is imperative.

Autophagy is a fundamental cell-physiologic 
regulator to ensure intracellular quality control, similar 
to apoptosis, energy production and waste removal [8, 9]. 
Given the prominent functions of autophagy, it is closely 
associated with diverse human pathologies, such as immune 
disorders [10, 11], neurodegenerative diseases [12, 13] and 
cancers [14, 15]. Oftentimes, compared with their normal 
counterparts, tumor cells are metabolically reprogrammed 
when several growth-promoting pathways are disturbed 
to obtain sufficient energy or additional stimuli to master 
of their own destinies. Interestingly, autophagy probably 
is present in both cancer and in cancer prevention, as 
well as potentially contributing to the growth of cancer. 
Additionally, its roles during the course of various tumors 
progression, including HCC [16], are variable. However, 
subtle mechanisms of autophagy in HCC are perplexing 
and have not been fully understood until now [17]. For the 
dynamic and fundamental role of autophagy in HCC, the 
prognostic signatures and therapeutic targets of autophagy-
related genes could show promise for understanding 
the genetic control mechanisms of HCC and offering 
promising targets. Recently, several studies have been 
proposed to identify autophagy-related prognostic signature 
in pancreatic ductal adenocarcinoma [18] and gliomas 
[19]. However, potential autophagy-related prognostic 
biomarkers for HCC are still urgently needed.

Due to the recent advances in RNA sequencing 
(RNA-Seq) technology and several public databases, 
such as The Cancer Genome Atlas (TCGA, https://
cancergenome.nih.gov/) and Gene Expression Omnibus 
(GEO, http://www.ncbi.nlm.nih.gov/geo/), it is feasible 
to identify several genes that can predict the clinical 
outcomes of HCC patients based on the expression 
profiles. In the present study, we first extracted autophagy-
related genes from The Human Autophagy Database 
(HADb, http://www.autophagy.lu/index.html), which 
provides an informative and up-to-date list of human 
genes involved in autophagy directly or indirectly. [20] 
Additionally, we calculated and obtained a series of 
differentially expressed autophagy-related genes in HCC 
and elucidated the cellular and molecular characteristics, 
dynamic role and pathways of these genes in HCC. 
The highlight was that we placed special emphasis on 
the prognostic value of autophagy-related genes and 
constructed a specific prognosis index (PI) that accurately 
predicted the clinical outcomes of HCC patients. These 
results were evidently confirmed by comprehensive data 
sources. Through these means, we proposed the rationale 
for clinically available prognosis monitoring and new 
insights into the molecular mechanisms for HCC patients, 
with particular emphasis on autophagy.

RESULTS

Differentially expressed autophagy-related genes 
in HCC

A total of 234 genes involved directly or indirectly 
in autophagy were downloaded via the online database 
HADb. After extracting expression data of these 234 
autophagy-related genes from TCGA, 33 differentially 
expressed genes in HCC were identified (Figures 1 
and 2), which were used for further investigation on 
their prognostic value. The independent sample t-test  
demonstrated that 21 genes showed remarkably higher 
expressions than non-cancerous tissues, including BIRC5, 
CDKN2A, PEA15, TP73, HSP90AB1, RAB24, ITGA6, 
CLN3, HGS, DAPK2, BAX, BAK1, NRG2, SQSTM1, 
TMEM74, IKBKE, SPHK1, ITGB4, ITGA3, IRGM and 
NKX2-3. Conversely, 9 genes (FOS, FOXO1, DIRAS3, 
DLC1, NAMPT, JUN, CCL2, MYC and NRG1) had 
notably lower expressions than the adjacent tissues. 
(Figures 3 and 4). Due to the discrepancy in calculation, 
no statistical significance was observed in HSPB8, 
TP63 and GRID1. Subsequently, ROC analysis was 
conducted to further investigate the ability of these genes 
to distinguish cancerous tissues from the non-cancerous 
ones. The results showed that the AUC value of 24 genes 
was above 0.7 (Figures 5–6), which confirmed that these 
genes excelled at differentiating between cancerous and 
non-cancerous tissues.

Gene-enrichment and functional annotation for 
differentially expressed autophagy genes in HCC

 According to the gene functional annotation 
summarized by clusterProfiler package of R software, we 
obtained Gene Ontology (GO), Disease Ontology (DO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
annotations of differently expressed autophagy-related 
genes in HCC. In the biological process (BP) term of 
GO analysis, not surprisingly, we found these genes were 
significantly related to autophagy (Figure 7A; Figure 
8A–8B). In cellular component (CC), “autophagosome”, 
“integrin complex” and “protein complex involved in 
cell adhesion” were significantly enriched by these genes 
(Figure 7C; Figure 8C–8D). For molecular function (MF), 
“sequence-specific binding”, “growth factor binding” 
and “transcription factor binding” were items for these 
genes to play important roles (Figure 7E; Figure 8E–8F). 
Interestingly, DO analysis indicated that these genes were 
also mainly related to various types of tumors, such as 
neuroblastoma, colorectal and stomach cancers (Figure 
8B; Figure 9A–9B). Do analysis provided us clues that 
these genes could act as general oncogenes. We also found 
these genes enriched in several risk KEGG pathways 
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which are relevant to tumor initiation and progression 
(Figure 7D; Figure 9C–9D).

Autophagy-related prognosis index and 
clinicopathological parameters

After we removed the patients without sufficient 
survival data, a final cohort of 371 HCC patients in 

TCGA was used for prognosis evaluation. The univariate 
Cox analysis revealed that 6 genes including BIRC5, 
FOXO1, DLC1, SQSTM1, BAK1 and IKBKE had a 
prognostic value for HCC (Figure 10). Subsequently, 
multivariate Cox analysis was conducted and BIRC5, 
FOXO1 and SQSTM1 were screened as independent 
prognostic indicators for overall survival (OS) of HCC  
(Figure 11A–11C; Supplementary Table 1). 

Figure 2: Heatmaps of 33 differently expressed autophagy-related genes. Heatmap displayed the expression level of 33 
differently expressed autophagy-related genes between HCC and non-tumor tissues. The brighter nodes indicated higher gene expression 
value while the darker indicated the lower gene expression value.

Figure 1: Volcano plot of the differentially expressed autophagy-related genes between HCC and non-tumor tissues. 
Red dots indicated autophagy-related genes which were high expression in HCC and blue for low expression. This volcano plot was drawn 
by the ggplot2 package of R language. 
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Furthermore, t-test analyses indicated that the 
three genes were differentially expressed in various 
clinicopathological parameters. As shown in Table 1, 
differential BIRC5 expression was found at different tumor 
status, pathological stages, histological grades, T stages 
and vascular tumor cell types. Differential expression 
of FOXO1 was observed in different histological grades 
and vascular tumor cell types. For SQSTM1, it showed 
different expression in terms of age, gender and vascular 
tumor cell type.

Then, we generated a risk score model PI for 
predicting OS based on the three genes (Figure 12) 
using the formula: PI = (1.242 * expression level of 
BIRC5) + (–1.619 * expression level of FOXO1) + 
(2.214 * expression level of SQSTM1). Then, the PI 
significantly stratified each HCC patients into high-
risk (n = 186) or low-risk (n = 185) groups in terms 
of the OS (HR = 2.179, 95% CI: 1.537–3.089, P < 
0.001; Figure 11D). Multivariate analysis demonstrated 
a consistent HR of 1.930 (95% CI: 1.200–3.104, P = 

Figure 3: 17 differentially expressed autophagy-related genes based on TCGA databases. (A) FOS, (B) BIRC5, (C) 
CDKN2A, (D) PEA15, (E) FOXO1, (F) DIRAS3, (G)TP73, (H)HSP90AB1, (I) RAB24, (J) ITGA6, (K) DLC1, (L) NAMPT, (M) CLN3, 
(N) HGS, (O) DAPK2, (P) BAX, (Q) JUN. 
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0.007, Table 2), which verified that the PI composed of 
the three genes remained as an independent prognostic 
indicator for the OS of HCC patients. When the HCC 
patients were stratified by pathological stage, the PI 
remained a high prognostic value for stage I/II (HR = 
= 2.280, 95CI%:1.461–3.558, P < 0.001; Figure 13A) 
and stage III/IV (HR = 1.720, 95CI%:0.953–3.105, P 
= 0.072; Figure 13B). When restricted to HCC patients 
with histological grades, a higher PI was still relevant 
with patients in G1/G2 (HR = 2.121, 95CI%:1.333–
3.377, P = 0.002; Figure 13C) and G3/G4 (HR = 
2.269, 95CI%:1.273–4.044, P = 0.006; Figure 13D). 
We also assessed the expression pattern of the three 
genes between the high–and low-risk groups. The 
results of data analysis showed that a remarkably higher 
expression for BIRC5 and SQSTM1 in the high-risk 
groups, while they had lower expression for FOXO1 in 
the high-risk groups (Figure 14).

Validation of PI as an effective prognostic factor

The online bioinformatics tool SurvExpress 
provides the differences in mRNA expression levels to 
draw Kaplan–Meier curves and to classify risk groups. 
Groups with low and high expression are represented 
by green and red, respectively. SurvExpress contained 
two datasets with OS data (GSE10143, N =  162 and 
GSE10186, N =  112) and 1 dataset with recurrence free 
survival (RFS; GSE17856, N = 95) data. We first exhibited 
the expression pattern of these 3 genes (Figure 15A, 
16A, 17A) and clinical information of patients included 
in datasets (Figure 15B, 16B, 17B). And then, similar to 
from the strategy of TCGA data dealing, patients in the 
three datasets from GEO were stratified into high- or low-
risk groups by PI signature (Figures 15C–15D, 16C–16D, 
17C–17D). For GSE10143 cohort, patients in high-risk 
group had inferior OS than patients in low-risk group  

Figure 4: Another 16 differentially expressed autophagy-related genes based on TCGA databases. (A) BAK1, (B) NRG2, 
(C) SQSTM1, (D) TMEM74, (E) IKBKE, (F) CCL2, (G) SPHK1, (H) MYC, (I) ITGB4, (J) NRG1, (K) HSPB8, (L) ITGA3, (M) IRGM, 
(N) NIKX2-3, (O) TP63, (P) GRID1. 
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(HR = 1.95, 95% CI = 0.95–2.65, P = 0.075; Figure 
15E–15F). For GSE10186 cohort, patients in high-risk 
group also had inferior OS than patients in low-risk group 
(HR = 2.07, 95% CI = 0.99–4.32, P = 0.053; Figure 
16E–16F). In the GSE17856 cohort, PI could function as 
an indicator for the RFS of HCC patients. (HR = 2.12, 
95% CI = 1.01–4.41, P = 0.046; Figure 17E–17F). These 
findings provided a valuable message that combination of 
these three genes could act as an indicator of prognosis 
monitoring with moderate degree.

Expression profiling of identified prognostic 
genes

After searching and selecting HCC-related datasets 
in the GEO, a total of 34 GEO datasets were used to 
identify the expression pattern of BIRC5, FOXO1 and 
SQSTM1. The characteristics of included datasets were 
shown in Table 3. After integrating the TCGA data and 
these datasets by using Standardized Mean Difference 
(SMD), we found that the BIRC5 expression level was 

Figure 5: Receiver operating characteristic curves of 17 differentially expressed autophagy-related genes expression 
for the differentiation of HCC from non-tumor tissues based on TCGA. (A) FOS, (B) BIRC5, (C) CDKN2A, (D) PEA15, (E) 
FOXO1, (F) DIRAS3, (G)TP73, (H)HSP90AB1, (I) RAB24, (J) ITGA6, (K) DLC1, (L) NAMPT, (M) CLN3, (N) HGS, (O) DAPK2, (P) 
BAX, (Q) JUN. 
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significantly increased in the tumor group (SMD = 1.52, 
95% CI: 1.23–1.83, P < 0.001; Figure 18) when using the 
random-effects model. And FOXO1 was validated to be 
lower in HCC (SMD = –1.04, 95% CI: –1.32–(–0.76), P < 
0.001; Figure 19) when using the random-effects model. 
For SQSTM1, its expression level was significantly 
upregulated in tumor group (SMD = 1.19, 95% CI: 
1.00–1.37, P < 0.001; Figure 20). Moreover, remarkable 
overexpression of BIRC5 and SQSTM1 and opposite 
expression of FOXO1 protein in HCC was confirmed by 
Proteinatlas (Figure 21).

Identification of clinical significances by in-house 
immunohistochemistry

BIRC5, FOXO1 and SQSTM1 protein expression 
level were detected by immunohistochemistry (IHC) in 
302 HCC tissues and in 41 non-tumor tissues. For BIRC5, 

97 samples (32.12%) were assigned to the positive group 
and 205 cases (67.88%) were assigned to the negative 
group according to the immunoreactive score (IRS) of the 
tissue samples (Figure 22C–22D). In non-tumor tissues, 2 
samples (4.9%) were exhibited positive BIRC5 expression, 
and 39 (95.12%) were negative (Figure 22A–22B). HCC 
and non-tumor tissues exerted statistical difference in 
BIRC5 protein expression (P < 0.001). Similarly, the IHC 
results of SQSTM1 also confirmed its higher expression 
in HCC tissues. A total of 152 (50.33%) HCC tissues were 
positive while 150 (49.67%) samples were negative (Figure 
22K–22L). The positive rate was significantly higher than 
non-tumor tissues (P = 0.001), which showed low positive 
rate (9/41, 21.95%) (Figure 22I–22J). The data of IHC 
analysis demonstrated that positive FOXO1 expression 
was detected in 190 of 302 HCC tissues (62.91%) (Figure 
22G–22H), whereas 29 of 41 non-tumor tissues (70.73%) 
showed high FOXO1 expression (Figure 22E–22F). 

Figure 6: Receiver operating characteristic curves of another 16 differentially expressed autophagy-related genes 
expression for the differentiation of HCC from non-tumor tissues based on TCGA. (A) BAK1, (B) NRG2, (C) SQSTM1, 
(D) TMEM74, (E) IKBKE, (F) CCL2, (G) SPHK1, (H) MYC, (I) ITGB4, (J) NRG1, (K) HSPB8, (L) ITGA3, (M) IRGM, (N) NIKX2-3, 
(O) TP63, (P) GRID1. 
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Although there was no significant difference, which may 
be owed to the limited samples, FOXO1 still showed a high 
positive rate in non-tumor tissues.

The correlations between these genes expression 
and clinicopathological features of HCC are presented in  
Table 4. We observed significant positive correlations 
between BIRC5 expression and age (P = 0.019) and the 
pathologic T stage (P = 0.017). Up-regulated SQSTM1 
also showed notable relationship with advanced pathologic 

T stage (P = 0.029). And lower FOXO1 expression was 
significantly related to advanced TNM stage (P = 0.002).

Molecular pathways disturbed between high- 
and low-risk groups

 Gene Set Enrichment Analysis was computed to pick 
up the molecular pathways disturbed between the high- 
and low-risk groups. According to the results of the GSEA 

Figure 7: Dot plot of functional enrichment analyses. (A) Biological process; (B) Disease ontology; (C) Cellular component; (D) 
Kyoto Encyclopedia of Genes and Genomes; (E) Molecular function.
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Figure 8: Gene ontology analysis of the differentially expressed genes. Circle plot displaying a circular dendrogram of the 
clustering of the expression profiles. The inner ring shows the color-coded logFC, the outer ring the assigned biological process (A), cellular 
component (C) and molecular function (E) terms. Cluster displaying these genes are linked via ribbons to their assigned biological process 
(B), cellular component (D) and molecular function (F) terms. Blue-to-red coding next to the selected genes indicates logFC.  
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analysis, genes co-expressed in the high-risk group were 
significantly enriched in the biological pathways associated 
with the E2F targets, MYC targets and G2M checkpoint 
(Figure 23). 

DISCUSSION

HCC patients are at risk for frequently returning 
cancer and high mortality, even after complete surgical 

debulking. Reliable molecular biomarkers for HCC 
prognosis prediction are hence significant for selecting 
patients who might be sensitive to additional targeted 
therapy. Using RNA-Seq technology, several novel 
prognostic indicators based on gene expression profiles 
have been proposed. Nevertheless, most studies only 
focused on a signal biomarker, which may not yield 
sufficient results that are inherently unpredictable and 
risky. In the present study, we constructed a novel 

Figure 9: Disease Ontology (DO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the differentially 
expressed genes. Circle plot displaying a circular dendrogram of the clustering of the expression profiles. The inner ring shows the 
color-coded logFC, the outer ring the assigned DO (A) and KEGG (C) terms. Cluster displaying these genes are linked via ribbons to their 
assigned DO (B) and KEGG (D) terms. Blue-to-red coding next to the selected genes indicates logFC. 
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prognostic model based on the expression levels of 
autophagy-related genes. Furthermore, the prognostic 
signature was effectively validated against multiple 
distinct datasets.

In recent years, elaborate molecular research for 
autophagy in tumors has proposed profound changes in 
our understanding of tumor management. Katheder NS 

et al. [21] discovered that malignant tumor cells induced 
autophagy of the surrounding normal cells in the tumor 
microenvironment and then release amino acids that are 
absorbed to support tumor growth. The precise mechanism 
of autophagy in HCC is elusive and changes frequently 
[22]. Unbalanced autophagy could disturb various 
vital signaling pathways such as PI3K/AKT/mTOR  

Figure 10: Forrest plots of hazard ratios of survival associated autophagy-related genes in HCC. The order is arranged in 
terms of P values. 

Table 1: Relationships between three genes expression and clinical parameters in TCGA

Parameters N BIRC5 expression value FOXO1 expression value SQSTM1 expression value

M ± SD t value P value M ± SD t value P value M ± SD t value P value

Tissues
HCC 374 9.4369   ±   1.6201

21.454 <0.001
9.9104 ± 0.9773

–12.320 <0.001
14.6186 ± 1.0846

9.352 <0.001
Non-tumor 50 5.5929  ±  1.1200 11.6892 ± 0.8051 13.8585 ± 0.4160

Age
≥60 201 9.3100  ±  1.5752

–1.441 0.150
9.9202 ± 0.9826

0.349 0.727
14.7339 ± 1.1063

2.218 0.027
<60 169 9.4965  ±  0.7752 9.8846 ± 0.9731 14.4841 ± 1.0454

Gender
Male 250 9.3990  ±  1.6469

–0.430 0.667
9.9343 ± 0.9854

0.844 0.399
14.7864 ± 1.1160

4.249 <0.001
Female 121 9.4762  ±  1.5659 9.8430 ± 0.9571 14.2869 ± 0.9379

Tumor 
status

With tumor 151 9.6837  ±  1.5749
2.731 0.007

9.8336 ± 0.9601
–1.234 0.218

14.6803 ± 1.1622
1.051 0.294

Tumor free 201 9.2128  ±  1.6205 9.9643 ± 1.0012 14.5567 ± 1.0378

Histological 
grade

G3~G4 134 10.0538  ±  1.3480
6.165 <0.001

9.6820 ± 0.9752 –3.350 0.001 14.7429 ± 1.2175 1.395 0.164

G1~G2 232 9.0719  ±  1.6550 10.0340 ± 0.9643 14.5700 ± 0.9988

Pathologic 
stage

III~IV 90 9.8116  ±  1.7962
2.261 0.025

9.7568 ± 0.8773
–1.719 0.086

14.5065 ± 1.1635
–1.053 0.293

I~II 257 9.3339  ±  1.5039 9.9646 ± 1.0221 14.6466 ± 1.0582

T stage
T3–T4 93 9.8389  ±  1.7861

2.276 0.006
9.7376 ± 0.8663

–1.892 0.059
14.5563 ± 1.1834

–0.753 0.452
T1–T2 275 9.3106  ±  1.5225 9.9592 ± 1.0104 14.6545 ± 1.0534

N stage
N1-3 4 8.9554  ±  2.3328

–0.707 0.480
9.8236 ± 0.8663

–0.111 0.911
13.5898 ± 1.3395

–1.873 0.062
N0 252 9.5184  ±  1.5693 9.8771 ± 0.9552 14.6407 ± 1.1101

M stage
M1 4 9.5272  ±  0.4724

–0.058 0.957
9.5522 ± 0.4742

–0.623 0.534
14.6652 ± 0.4200

0.063 0.950
M0 266 9.5421  ±  1.6475 9.8602 ± 0.9853 14.6295 ± 1.1343

Vascular 
tumor cell 
type

Micro/
Macro 109 9.5617  ±  1.6224

1.995 0.047
9.8887 ± 0.9702

–1.210 0.227
14.7845 ± 1.1732

2.051 0.045
None 205 9.1905  ±  1.5410 10.0240 ± 0.9290 14.5311 ± 0.9965

M ± SD: Mean  ±  Std. Deviation.
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Figure 11: The correlation between prognosis index and HCC patients’ survival. (A) Kaplan–Meier (K-M) analysis 
represented that patients in higher BIRC5 group had significantly shorter overall survival (OS) time than those in lower BIRC5 group. (B) 
K-M analysis represented that patients in higher FOXO1 group had significantly longer OS time than those in lower FOXO1 group. (C) 
K-M analysis represented that patients in higher SQSTM1 group had significantly shorter OS time than those in lower SQSTM1 group. (D) 
K-M analysis represented that patients in high-risk group had significantly shorter OS time than those in low-risk group. 

Table 2: Univariate and multivariate analyses of OS in HCC patients of TCGA

Variables
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P  value Hazard ratio 
(95%CI) P value

Age (≥60/<60) 1.212 (0.854–1.720) 0.281
Gender (male/female) 0.817 (0.573–1.164) 0.262
Pathologic stage (III–IV/I–II) 2.446 (1.687–3.545) <0.001 1.492 (0.203–10.938) 0.694
Tumor (T3–T4/T1–T2) 2.537 (1.783–3.609) <0.001 1.517 (0.206–11.164) 0.682
Lymph node metastasis(yes/no) 1.999 (0.490–8.161) 0.334
Distant metastasis (yes/no) 4.033 (1.267–12.834) 0.018 1.019 (0.241–4.313) 0.979
Histologic grade (G3–G4/G1–G2) 1.119 (0.780–1.604) 0.542
Tumor status (with tumor/tumor free) 2.366 (1.623–3.447) <0.001 1.972 (1.236–3.148) 0.004
Vascular tumor cell type 
(Micro+Macro/None)

1.351 (0.892–2.047) 0.155

PI (High risk/Low risk) 2.175 (1.522–3.108) <0.001 1.930 (1.200–3.104) 0.007

PI: prognosis index.
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Figure 12: Prognosis index for HCC patients. (A) The low and high score group for the prognosis index in HCC patients; (B) The 
survival status and duration of HCC cases; (C) Heatmap of the three genes expression in HCC. The color from blue to red shows a trend 
from low expression to high expression. 



Oncotarget17381www.oncotarget.com

[23–25], ERK/MAPK [26, 27] and the Wnt/β-catenin 
[28, 29] and therefore act as an accomplice of malignant 
hepatocyte to facilitate the HCC progression. In our study, 
we first identified differentially expressed autophagy-
related genes in HCC. Subsequent several gene functional 
enrichment analyses were performed to assess biological 
process, disease or pathways influenced by these genes. 
GO functional enrichment analysis indicated that 
differentially expressed autophagy-related genes were 
enriched in autophagy and several proliferation-related 
biological processes in HCC. KEGG and DO analyzed 

revealed that dysregulated autophagy-related genes may 
also play a critical role in the various cancers, which is 
coincided with other previous studies. These findings 
suggested that autophagy could be a driver in the process 
of onset and proliferation of HCC.

Through univariate and multivariate survival 
analysis, we identified that BIRC5, FOXO1 and SQSTM1 
were significantly related with the HCC patients’ overall 
survival. BIRC5, a member of the anti-apoptosis family, 
mainly exerted its influence on HCC cells in inhibiting 
apoptosis [30], promoting proliferation [31], enhancing 

Figure 13: Patients were stratified by prognosis index (high- and low- risk). (A) Overall survival (OS) among HCC patients 
with stage I and II. (B) OS among HCC patients with stage III and IV. (C) OS among HCC patients with stage I and II. (D) OS among HCC 
patients with stage I and II.

Figure 14: Different expression of the three genes between high risk group and low risk group. (A) BIRC5, (B) FOXO1, 
(C) SQSTM1.
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resistance to radiotherapy and chemotherapy [32] and 
inducing the tumor stromal angiogenesis [33]. It has 
been reported that BIRC5 is directly correlated with 
autophagosome formation and contributed to HCC cells 
survival [34]. FOXO1 is thought to be a tumor suppressor 
that is down-regulated in HCC to exert its positive role 
in reversing the epithelial-to-mesenchymal transition 
program [35]. However, we still know relatively little 

about the autophagy-related mechanisms of FOXO1 
that control the course of tumorigenesis and tumor 
development. SQSTM1 is autophagy-adaptor gene and 
accumulates in autophagy-deficient tumors, including 
HCC. Its aberrant accumulation and phosphorylation 
have been a concern in HCC proliferation potency [36, 
37] and could represent a potential chemotherapeutic 
approach against HCC [38, 39]. Our results also evidently 

Figure 15: Evaluation of prognosis index in the survival of HCC patients in GSE10143 database. (A) A heatmap 
representation of the gene expression values. (B) Clinical information available related to risk group, prognosis index (PI) and clinical 
outcome. (C) The low and high score group for the PI in HCC patients. (D) A box plot across risk groups ordered by PI. (E) Different 
expression of the three genes between high risk group and low risk group. (F) Kaplan-Meier analysis represented that patients in high-risk 
group had shorter overall time than those in low-risk group. 
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corroborated that there are sharp upregulations of BIRC5 
and SQSTM1 in HCC while FOXO1 was significantly 
downregulated by an integrated analytic approach. We 
then developed a PI based on the expression of the three 
genes. The prognostic signature related to autophagy may 
offer broad prospects for modifying clinical management 
strategies or at least to prolong the lifespan of HCC 

patients in the precision medicine era. Due to such 
evidence, PI may also provide a better program for patients 
treated with a combination of multiply targeted agents.

Our novel risk score model was constructed and 
displayed the ability to stratify patients in different 
pathological stages and histological grades into subgroups 
with two distinct survival outcomes. More importantly, 

Figure 16: Evaluation of prognosis index in the survival of HCC patients in GSE10186 database. (A) A heat map 
representation of the gene expression values. (B) Clinical information available related to risk group, prognosis index (PI) and clinical 
outcome. (C) The low and high score group for the PI in HCC patients. (D) A box plot across risk groups ordered by PI. (E) Different 
expression of the three genes between high risk group and low risk group. (F) Kaplan-Meier analysis represented that patients in high-risk 
group had shorter overall time than those in low-risk group.
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the predictive model was confirmed by GEO datasets. The 
TCGA program, other large-scale data and IHC results 
provided a comprehensive and reliable source to assess the 
molecular features which were most interrelated with the 
clinical outcomes of HCC patients. In our previous articles, 
Wang ZH et al. [40] mined RNA-Seq data of HCC patients 
form the TCGA program and managed to construct a four-

lncRNA signature, which was significantly associated 
with HCC prognosis. Similarly, Li B et al. [41] proposed a 
three-gene predictive signature BASED ON the expression 
data of three genes (UPB1, SOCS2 and RTN3). However, 
both these investigations rely on the TCGA dataset and 
were unable to validate the efficiency by USING other 
cohorts. Furthermore, we analyzed from the perspective 

Figure 17: Evaluation of prognosis index in the survival of HCC patients in GSE17856 database. (A) A heat map 
representation of the gene expression values. (B) Clinical information available related to risk group, prognosis index (PI) and clinical 
outcome. (C) The low and high score group for the PI in HCC patients. (D) A box plot across risk groups ordered by PI. (E) Different 
expression of the three genes between high risk group and low risk group. (F) Kaplan-Meier analysis represented that patients in high-risk 
group had shorter relapse free survival time than those in low-risk group.
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Table 3: General characteristics of included datasets

Dataset First author Publication 
year Country Sample 

source
Data 

source Platform
Number 
of HCC 
samples 

Number of 
non-tumor 

samples 

GSE6764 Wurmbach E 
et al. 2007 USA Tissue GEO Affymetrix GPL570 35 40

GSE10143 Hoshida Y et al. 2008 USA Tissue GEO Illumina GPL5474 80 307

GSE12941 Yamada T et al. 2010 Japan Tissue GEO Affymetrix GPL5175 10 10

GSE14321 Mas VR et al. 2009 USA Tissue GEO Affymetrix GPL571 38 77

GSE14520_1 Roessler S et al. 2010 USA Tissue GEO Affymetrix GPL571 22 21

GSE14520_2 Roessler S et al. 2010 USA Tissue GEO Affymetrix GPL3921 225 220

GSE17548 Ozturk M et al. 2013 Turkey Tissue GEO Affymetrix GPL570 17 20

GSE17967 Archer KJ et al. 2009 USA Tissue GEO Affymetrix GPL571 16 47

GSE22405 Zhang HH et al. 2014 USA Tissue GEO Affymetrix 
GPL10553 24 24

GSE25097 Zhang C et al. 2011 USA Tissue GEO Rosetta GPL10687 268 289

GSE25599 Xing J et al. 2013 China Tissue GEO Illumina GPL9052 10 10

GSE27462 Yang F et al. 2011 China Tissue GEO Arraystar GPL11269 5 5

GSE36376 Lim HY et al. 2012 South 
Korea Tissue GEO Illumina GPL10558 240 193

GSE39791 Kim J et al. 2014 USA Tissue GEO Illumina GPL10558 72 72

GSE44074 Ueda T et al. 2013 Japan Tissue GEO Kanazawa GPL13536 34 71

GSE45114 Wei L et al. 2013 China Tissue GEO CapitalBio GPL5918 24 25

GSE46408 Jeng Y et al. 2013 Taiwan Tissue GEO Agilent GPL4133 6 6

GSE46444 Chen X et al. 2014 USA Tissue GEO Illumina GPL13369 88 48

GSE49713 Wang K et al.. 2013 China Tissue GEO Arraystar GPL11269 5 5

GSE50579 Geffers R et al. 2013 Germany Tissue GEO Agilent GPL14550 67 10

GSE54236 Villa E et al. 2014 Italy Tissue GEO Agilent GPL6480 81 80

GSE54238 Yuan S et al. 2014 USA Tissue GEO Arraystar GPL16955 26 30

GSE55092 Melis M et al. 2014 USA Tissue GEO Affymetrix GPL570 49 91

GSE56140 Hoshida Y et al. 2014 USA Tissue GEO Illumina GPL18461 35 34
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of autophagy, which could offer more precise information 
in clinical management. As such, our PI model provided 
potential directions for survival estimates of HCC and 
future clinical practice may come in the foreseeable future.

Moreover, GSEA was performed to analyze the 
coordinate expression of genes between the high- and low-
risk group. The hallmarks of high-risk were distinguished 
from low-risk group, by the E2F targets, MYC targets 
and G2M checkpoint, which revealed that the prognostic 
signature might be inclined to sustain chronic proliferation. 
These hallmarks of the high-risk group fully indicated that 
the proliferative signals were relatively disturbing. Arguably, 
the ability to proliferate outside of cell cycle control is a 
fundamental trait of cancer cells [42]. Tumors are prone to 
autophagy because of the important role of autophagy in 
supplying amino acids and fatty acids to meet the needs the 
survival and proliferation needs of the cell [14].

Thus, in conclusion, we assessed the gene 
expression profiles data of autophagy-related genes based 
on the TCGA database and proposed a risk score model 
which had a moderate efficacy in predicting the OS of 
HCC patients both in univariate and multivariate survival 
analysis. These results shown that the autophagy-related 
genes signature is a promising prognostic indictor and 
provided a better understanding of autophagy in HCC. 
However, prospective studies are needed to further verify 
the clinical utility as well as the biological function of the 
signature using more experiments.

METHODS

Differently expressed autophagy-related genes

We obtained autophagy-related genes via database 
HADb. RNA-seq data of autophagy-related genes 

from each individual and their clinical information was 
download from the available TCGA database, which 
containing 374 HCC and 50 adjacent non-tumor tissues. 
To test for differential expression between HCC and their 
non-tumor counterparts, the R package edgeR program 
was analyzed raw count data with the criteria of Padj < 
0.05 and the log FC>1. Then, all the data were converted 
into [log2 (data+1)] for further analysis. 

Gene functional annotation 

 To reveal the biological function and disturbing 
pathways of these differently expressed autophagy-related 
genes, we used clusterProfiler package of R software 
for GO, DO and KEGG pathways [43]. The visualize 
enrichment maps of annotation analysis results were 
drawn by R with the “ggplot2” and “GOplot” packages.

Manufacture of potential prognostic signature 
for HCC

To identify the prognostic genes, these patients 
were analyzed by univariate Cox proportional hazards 
regression methods based on expression data as well as 
the clinicopathological features obtained from TCGA. 
The procedure was analyzed by using Survival package 
in R. All statistically significant indicators were selected 
as candidates for multivariate Cox regression analysis 
and used to construct the PI score model. The coefficient 
of each prognostic genes in the risk score model was 
derived from the corresponding multivariate analysis 
of these identified indicators. All patients were divided 
into high-risk or low-risk group based on the median 
value of the PI, which was calculated according to the 
expression profiles of the autophagy-related genes and 

GSE57957 Mah W et al. 2014 Singapore Tissue GEO Illumina GPL10558 39 39

GSE59259 Udali S et al. 2015 Italy Tissue GEO NimbleGen PL18451 8 8

GSE60502 Kao KJ et al. 2015 Taiwan Tissue GEO Affymetrix GPL96 18 18

GSE62232 Zucman-Rossi 
J et al. 2014 France Tissue GEO Affymetrix GPL570 81 10

GSE64041 Makowska Z 
et al. 2016 Switzerland Tissue GEO Affymetrix GPL6244 60 65

GSE74656 Tao Y et al. 2015 China Tissue GEO Affymetrix 
GPL16043 5 5

GSE76427 Grinchuk OV 
et al. 2017 Singapore Tissue GEO Illumina GPL10558 115 52

GSE77509 Jin G et al. 2017 China Tissue GEO Illumina GPL16791 20 20

GSE82177 Wijetunga NA 
et al. 2016 USA Tissue GEO Illumina GPL11154 8 19

GSE84005 Tu X et al. 2017 China Tissue GEO Affymetrix PL5175 38 38
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the estimated regression coefficient. PI = expBIRC5*βBIRC5 
+expFOXO1*βFOXO1 +expSQSTM1 *ΒSQSTM1.

Verification of the PI via GEO datasets

The online multi-gene biomarkers validation tool 
SurvExpress (http://bioinformatica.mty.itesm.mx:8080/
Biomatec/SurvivaX.jsp) is a gene expression database 
that includes datasets collected form TCGA and GEO 
with clinical information. SurvExpress is an online 
bioinformatics tool to validate the prognostic performance 
based on a set of genes in various human cancers [44]. 
Through SurvExpress, we facilitated a Cox regression 

analysis and separated HCC patients into high- and low- 
risk groups based on three liver cancer-related datasets: 
GSE10143, GSE10186 and GSE17856. 

Validation for the expression values of genes

HCC-related microarray expression datasets were 
searched and downloaded from GEO. A computer-aided 
microarray search was performed by using the following 
search terms: (malignan* OR cancer OR tumor OR 
tumour OR neoplas* OR carcinoma) AND (hepatocellular 
OR liver OR hepatic OR HCC). The eligible datasets 
were required to match the following criteria: (1) human 

Figure 18: Forest plots for meta-analysis of evaluating BIRC5 expression between HCC and non-tumor tissues. SMD 
and associated 95% confidence interval were calculated using the random effects model.
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tissues; (2) proven diagnosis of HCC; (3) measuring the 
expression of genes included in PI in HCC and their 
normal counterparts; (4) providing at least three cases of 
HCC samples. These datasets were used to determine the 
expression pattern of the genes included in the PI model 
between HCC and non-tumor tissues. All the relevant 
data were extracted and presented as the mean  ±  SD. To 
give a comprehensive and visual display of our results, 
integrated analytic approach was implemented in the form 
of a meta-analysis. SMD was applied as the effect quantity 
to evaluate the association between the gene expression 
levels and HCC using the software STATA 12.0 software. 
SMD > 0 and its 95% CI not crossing the integer 0 
suggested that genes are significantly upregulated in HCC. 
When SMD < 0 and its 95% CI not crossing the integer 0, 

it indicated genes are significantly downregulated in HCC. 
We chose a fixed-effect model or random-effect model 
to pool the SMD across the GEO datasets depending on 
the Q statistical analysis. What’s more, we also observed 
the protein expression pattern of the three genes via The 
Human Protein Atlas detected by immunohistochemistry.

Immunohistochemistry

Two tissue microarrays obtained from Pantomics, 
Inc. (Richmond, CA) containing a total of 302 HCC 
samples and 11 non-tumor samples were used for the 
analysis of the present study. We also collected 30 non-
tumor tissues from the First Affiliated Hospital of Guangxi 
Medical University, People’s Republic of China from 

Figure 19: Forest plots for meta-analysis of evaluating SQSTM1 expression between HCC and non-tumor tissues.  
SMD and associated 95% confidence interval were calculated using the random effects model. 
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January 2016 to November 2017. All the collected tissues 
are treated under the strict confidentiality and according to 
appropriate applicable laws that protect the confidentiality 
of personal information. IHC analysis was performed 
according to the procedure in the manufacturer’s 
instruction. The polyclonal rabbit anti-SQSTM1 primary 
antibody (1:1000 dilution; Abcam, ab207305), monoclonal 
rabbit anti-SQSTM1 primary antibody (1:300 dilution; 
Abcam, ab52857) and Rabbit anti-Survivin Monoclonal 
Antibody (1:80 dilution; ZSGB-BIO, ZA-0530) were 
used in the IHC analysis. Two pathologists (Yi-wu Dang 
and Gang Chen) independently evaluated the expression 
level via the IRS. IRS = (staining intensity) * (percentage 

of marked tumor cells). For percentage of marked tumor 
cells: 1–10% positive cells scored 1; 11–50% scored 
2; 51–80% scored 3; and >80% positive cells scored 
4. Staining intensity was scored as: negative staining 
(0), weak staining (1), moderate staining (2) and strong 
staining (3). All of the HCC samples were then divided 
into positive group (IRS ≥ 6) or negative group (IRS < 6) 
based on the IRS.

Gene set enrichment analysis

To reveal the meaning of the biological states from 
the obtained gene expression data between high- and low- 

Figure 20: Forest plots for meta-analysis of evaluating SQSTM1 expression between HCC and non-tumor tissues.  
SMD and associated 95% confidence interval were calculated using the random effects model. 
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Figure 21: Validation of the protein expression of BIRC5, FOXO1 and SQSTM1 in HCC by Immunohistochemistry 
based on proteinatlas database.  (A) IHC staining of BIRC5 in normal liver Magnification: 200um; Antibody: HPA002830. (B) IHC 
staining of BIRC5 in hepatocellular carcinoma. Magnification: 200um; Antibody: HPA002830. (C) IHC staining of FOXO1 in normal 
liver. Magnification: 200um; Antibody: CAB022326. (D) IHC staining of FOXO1 in hepatocellular carcinoma. Magnification: 200um; 
Antibody: CAB022326. (E) IHC staining of SQSTM1 in normal liver. Magnification: 200um; Antibody: CAB004587.  (F) IHC staining of 
SQSTM1 in hepatocellular carcinoma. Magnification: 200um; Antibody: CAB004587.
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Figure 22: Three protein expression in HCC and non-tumor tissues assessed by immunohistochemistry.  BIRC5 showed 
low expression in non-tumor tissue (A, B) and high expression in HCC tissue (C, D); FOXO1 showed high expression in non-tumor tissue 
(E, F) and low expression in HCC tissue (G, H); SQSTM1 showed low expression in non-tumor tissue (I, J) and high expression in HCC 
tissue (K, L). Magnification: ×100 (A, C, E, G, I, K) or ×400 (B, D, F, H, J, L).

Table 4: The relationships between prognostic genes expression and clinicopathological features in HCC in-house

Clinicopathological 
features n

BIRC5 expression Chi-
squared 

value
P-value

FOXO1 expression Chi-
squared 

value
P-value

SQSTM1 expression Chi-
squared 

value
P-value

Negative Positive Negative Positive Negative Positive

Tissues

HCC 302 205 97 13.047 0.001 112 190 0.956 0.328 150 152 11.674 0.001

Non-tumor 41 39 2 12 29 32 9

Age

<60 247 175 72 5.485 0.019 89 158 1.111 0.292 121 126 0.252 0.616

 ≥60 55 30 25 24 31 29 26

Gender

Male 256 174 82 0.006 0.938 85 171 0.246 0.620 123 133 1.769 0.184

Female 46 31 15 17 29 27 19

Pathologic stage

I–II 252 167 85 1.812 0.178 84 168 9.187 0.002 126 126 0.067 0.796

III–IV 50 38 12 28 22 24 26

T

T1–T2 191 139 52 5.709 0.017 78 113 3.257 0.071 104 87 4.752 0.029

T3–T4 111 66 45 34 77 46 65

N

N0 276 185 91 0.845 0.358 106 170 2.036 0.153 141 135 2.087 0.149

N1-N3 25 19 6 6 19 9 16

Metastasis

M0 299 203 96 - 1.000 111 188 - 0.533 149 150 - 0.498

M1 2 2 0 0 2 0 2
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risk group, a GSEA (v3.0, Broad Institute, Cambridge, 
USA) was performed. The phenotype label was set to 
high-risk versus low-risk. One thousand permutations 
were conducted to calculate for each analysis. And 
enrichment map was used for the visualization of the 
GSEA results. The false discovery rate (FDR) value and 
normalized enrichment score (NES) were used to identify 
the hallmarks significantly enriched in each phenotype.

Statistical analysis

All the statistical analyses were conducted using 
SPSS 22.0 (Chicago, IL, USA) and STATA 12.0 software 

(StataCorp, College Station, TX, USA). We used R 
software, OriginPro 2017 software (Northampton, 
Massachusetts, USA) and GraphPad Prism 5 (San Diego, 
CA, USA) for diagram drawing. Independent sample t-tests 
were used to analyze the expression patterns of genes in 
HCC and the clinicopathological parameters. The survival 
curves were plotted by Kaplan–Meier (K-M) method, and 
differences in the survival rates were assessed using the 
log-rank test. Univariate and multivariate Cox regression 
analyses were also performed to analyze the independent 
prognostic value by Survival package of R. All the 
statistical results were considered to be significant when 
the p value was less than 0.05.

Figure 23: GSEA showed significant enrichment hallmarks in high-risk versus low-risk group. (A) E2F targets, (B) MYC 
targets, and (C) G2M checkpoints.
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