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Abstract

Robust sampling methods are foundational to many inference problems in the phylodynamic field, yet

the impact of using contact tracing, a type of non-uniform sampling used in public health applications,

is not well understood. To investigate and quantify how this non-uniform sampling method influences

recovered phylogenetic tree structure, we developed a new simulation tool called SEEPS (Sequence

Evolution and Epidemiological Process Simulator) that allows for the simulation of contact tracing and the

resulting transmission tree, pathogen phylogeny, and corresponding virus genetic sequences. Importantly,

SEEPS takes within-host evolution into account when generating pathogen phylogenies and sequences

from transmission histories. Using SEEPS, we demonstrate that contact tracing can significantly impact

the structure of the resulting tree as described by popular tree statistics. Contact tracing generates

phylogenies that are less balanced than the underlying transmission process, less representative of the larger

epidemiological process, and affects the internal/external branch length ratios that characterize specific

epidemiological scenarios. We also examine a 2007-2008 Swedish HIV-1 outbreak and the broader 1998-

2010 European HIV-1 epidemic to highlight the differences in contact tracing and expected phylogenies.

Aided by SEEPS, we show that the Swedish outbreak was strongly influenced by contact tracing even

after downsampling, while the broader European Union epidemic showed little evidence of universal contact

tracing, agreeing with the known epidemiological information about sampling and spread. SEEPS is available

at github.com/MolEvolEpid/SEEPS.
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Introduction

The growth and prevalence of communicable diseases, in which

a human individual transmits a pathogen to another individual,

without an intermediate vector or reservoir, has led to the

development of a variety of detection and surveillance strategies.5

With the notable exception of zoonotic spillover events, each

infection can be attributed to another, older, infection. This basic

insight lead to the remarkable development of contact tracing

as a core method to efficiently identify closely related infections

(Centers for Disease Control, 1986, 1987; Giesecke et al., 1991;10

Hethcote and Yorke, 1984) resulting in significant contributions

to public health (Ramstedt et al., 1990). Indeed, while contact

tracing has been successfully used to trace many infectious

diseases, including the recent SARS-CoV-2 epidemic (Turcinovic

et al., 2022), and been evaluated in mathematical models (Müller15

and Kretzschmar, 2021; Höhna et al., 2011), there remains little

knowledge on how contact tracing may impact and interact with

genetic sequence data analyses.

Due to the non-random nature of contact tracing, one might

expect that the phylogenetic tree structure of the spreading 20

pathogen could be impacted by such sampling. That raises

fundamental questions about the nature of the data that typically

is used for phylogenetic and phylodynamic reconstruction of

pathogen epidemics: how robust are mathematical assumptions

made about the collection of data in practice, and how significant 25

are deviations from these assumptions in real data? While the

contact network that pathogens spread across can be informative

of the pathogen’s phylogeny (Giardina et al., 2017), it remains

largely unknown how sampling with contact tracing impacts the

observable phylogeny. 30

A standard form of contact tracing is “iterative contact

tracing”, in which an initial index case is interviewed to identify

contacts which may be infected. Identified contacts are tested, and
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Fig. 1: Contact tracing induces variations in phylogenetic tree structure. Panel A shows the full reconstructed HIV-1 CRF01 phylogeny of

sequences collected in Europe, with tips from Sweden in blue. Filled symbols denote 20 closely related samples identified through contact

tracing from a known injection drug user outbreak, while unfilled symbols denote additional Swedish samples. Panel B zooms in on the

bottom subtree consisting entirely of Swedish sequences. Note that the shape of this subtree is drastically different than the full tree in

panel A. To quantify the difference we downsampled 20 tips randomly (without replacement) from the tree without the Swedish subtree

taxa in panel A and the Swedish taxa in panel B 1,000,000 times each, and recorded both the Sackin’s index and internal to external

(I/E) branch length ratios in panels C and D, respectively. The blue distributions are from the Swedish subtree in panel B and the grey

distributions from the full European tree without the Swedish subtree taxa. Comparing the distributions with a Kolmogorov-Smirnov

test clearly showed very different distributions: D = 0.964, p< 10−16 for Sackin’s index and D = 0.988, p< 10−16 for the I/E branch

length ratios. Trees were inferred by maximum-likelihood under a GTR+I+G substitution model (Guindon et al., 2010). Scale bars in

panels A and B are in units of substitutions/site.

the interview process is repeated for contacts with positive test

status. From a statistical perspective, contact tracing provides35

a correlation structure to the detection process informed by the

transmission network structure. If an individual tests positive

for HIV, their contacts have a better than uniformly random

probability of being sampled. Importantly, first degree contacts

are expected to be evolutionary closer to an index case than could40

be expected from a random sample of the larger population, hence

displaying smaller genetic distances. This could consequently

impact both distributions of pairwise distances and phylogenetic

tree structures in complex ways.

A motivating example to consider is the spread of HIV-45

1 circulating recombinant form 1 (CRF01) in Europe in the

late 1990’s and 2000’s (Figure 1). HIV-1 CRF01 was originally

introduced in southeast Asia from Africa (Gao et al., 1996;

McCutchan et al., 1996), and later spread from there to other

parts of the world, including several countries in Europe, on50

many occasions and still ongoing today (Hemelaar et al., 2020).

Thus, the available HIV-1 CRF01 sequences from Europe cannot

be strongly influenced by contact tracing, as they are not

closely related within Europe nor have there been cross-border

coordinated sampling efforts. In contrast, a Swedish HIV-155

CRF01 outbreak among injection drug users in 2007-2008 (Skar

et al., 2011) elicited a strong public health response resulting in

identifying further persons who had been in contact with those

infected with this HIV-1 variant, generating many closely related

sequences. Hence, part of the resulting European HIV-1 CRF01 60

phylogeny comes from strong contact tracing while the larger part

comes from essentially random sampling. The two parts of the

European HIV-1 CRF01 tree highlights the strong impact contact

tracing may have on the tree structure, affecting both topological

and branch length statistics. 65

Several simulation techniques have been proposed for

generating detailed pathogen phylogenies such as FAVITES

(Moshiri et al., 2019), BEAST2 (Bouckaert et al., 2014), or

PopART IBM (Pickles et al., 2021). These software tools facilitate

simulations of individual, contact network, and population- 70

level models and thus are able to generate phylogenies with a

broad variety of features to investigate potential epidemiological

assumptions. However, none include contact tracing or similar

sampling methods. FAVITES comes close in offering a sampling

method weighted by the number of transmission events, but 75

this method results in sampling towards more interconnected

individuals, rather than following local structures. As a result,

these simulation tools are not suitable for investigating the impact

of contact tracing on phylogenies. Since contact tracing is very

common practice, and may have strong impact on phylogenetic 80

structures (Figure 1), a new simulation software capable of
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emulating contact tracing is needed to formally include its impact

on pathogen phylogenies.

Here, we explore the impact of contact tracing on phylogenetic

tree structure. To directly address questions about the significance85

of contact tracing, we developed a new simulation suite in R

called SEEPS (Sequence Evolution and Epidemiological Process

Simulator) that allows for the simulation of contact tracing,

the resulting transmission trees, and pathogen phylogenies. By

using an agent-based model, trees can be directly simulated,90

only specifying simple rules and behaviors. Using SEEPS, we

show that both topological and distance based tree measures

are sensitive to the presence of contact tracing, demonstrating

that contact tracing can significantly impact the structure of the

resulting tree. We show that SEEPS can simulate the Swedish95

HIV-1 CRF01 outbreak and the corresponding broader EU HIV-1

CRF01 epidemics presented in Figure 1, and give a coarse estimate

of the performance of contact tracing present in these data. In

agreement with known epidemiological data, we find that the

Swedish outbreak is strongly influenced by contact tracing, while100

the broader EU epidemic shows little evidence of contact tracing.

New Approaches

Simple models for contact tracing and transmission dynamics can

be directly implemented in a computational environment using

an agent based simulation. Building off the agent-based HIV-105

1 model in (Kupperman et al., 2022), we developed SEEPS

(Sequence Evolution and Epidemiological Process Simulator), an

end-to-end modern and modular simulator for investigating the

connection between evolutionary and epidemiological mechanisms.

Written in R (R Core Team, 2022), SEEPS is a flexible110

and extensible framework for simulating phylodynamic and

evolutionary processes at a population level. SEEPS stores the

entire transmission history, allowing for models of contact tracing

to be run on top of the transmission history and directly compared.

Individuals in SEEPS are considered active if they are capable of115

generating secondary infections. SEEPS offers both high level and

low level modeling tools, enabling both coarse and fine-grained

mechanisms to be modeled.

An experiment in SEEPS begins by simulating a population of

infections with user-defined expected offspring generation rates.120

The population is sampled at user-defined time points, with

sampled individuals being removed from the simulation. Once

the transmission tree is sampled, SEEPS offers a module for

simulating the within-host diversity using a coalescent process

from (Lundgren et al., 2022). By modeling each infected individual125

as a host where further viral evolution can occur and offspring are

sampled from, SEEPS can explicitly convert a transmission history

into a possible phylogeny by taking the within-host evolutionary

diversification into account, often resulting in reordering the host

transmission history tree into a pathogen phylogeny.130

Both genomic sequences and phylogenetic trees are often used

to test analysis pipelines. Sequence simulation is available with a

GTR+I+Γ model using Seq-Gen (Rambaut and Grass, 1997) and

the PhyClust R package (Chen, 2011). SEEPS can export trees

in Newick format for use in other standard phylogenetic analysis135

software, such as the R package ape (Paradis and Schliep, 2019).

Distance matrix representations of the data are also available for

export, either using cophenetic distances for trees, or pairwise

evolutionary distances (such as TN93) for sequences. A general

schematic of simple workflows available in SEEPS is shown in Fig 140

2.

To study the impact of contact tracing, we implemented a

simple algorithm to describe contact tracing in SEEPS. Our model

captures the fundamental aspects of iterative contact tracing

where each positive contact is discovered with probability 0 ≤ 145

p ≤ 1, and is similar to the popular breadth-first-search algorithm

(Lee, 1961), but with the variation that the discovery of edges is

randomized with a prescribed failure probability 1− p.

Using this model, we can generate complex trees reflecting a

wide variety of scenarios. In Fig. 3AB, we show two example 150

phylogenies generated by SEEPS. Crucially, SEEPS tracks the

entire transmission history of the sampled taxa because it is

needed for the proper modeling of the resulting phylogeny, as it

informs all intermediate transmission bottlenecks that impact the

diversification of the sampled viruses. 155

In Fig 3CD, we removed the unsampled taxa from the

trees, trimmed the resulting internal branches, and collapsed

any resulting internal nodes of degree 2. The trees in Fig 3AC

were generated with a high contact tracing discovery probability,

while the trees in Fig 3BD were generated with a low contact 160

tracing discovery probability. Both scenarios were generated in

two stages: First, we simulated an outbreak as exponential growth,

and second, a constant population size. Sampled individuals were

removed from the active population to reflect that they were

either on efficient antiviral treatment or otherwise non-infectious 165

after diagnosis. The trees are visually distinct, with high contact

tracing resulting in large clusters being identified which are not

closely related to each other. In contrast, low contact tracing

identifies small clusters that are loosely related. Thus, varying

the sampling method to compare contact tracing against random 170

sampling (which is typically assumed in phylodynamic inferences)

may give very different impressions of what appeared to have

happened.

Results

Contact tracing makes trees less balanced 175

In a first set of simulation experiments, we consider the impact of

contact tracing on Sackin’s index for a collection of taxa taken at a

single time point, known as cross-sectional sampling. We simulated

1,000 outbreaks followed by a constant population size for 0 to

10 years (in one year increments), with R0 uniformly distributed 180

between 1.5 and 5. For each outbreak, we sampled either 15 or 50

taxa, with contact tracing performed at either high (p = 0.9) or

low (p = 0.1) levels. In total, we generated 22,000 transmission

trees and 22,000 phylogenies.

We found no clear correlation between Sackin’s index and R0 185

and no effect of the number of years after the outbreak phase

in which a cross-sectional sample was taken. The simulation of

the transmission history resulted in an average Sackin’s index

close to what could be predicted from a Yule model (Kirkpatrick

and Slatkin, 1993) when contact tracing performance was low 190

(Fig 4). Conversely, when contact tracing was high (p = 0.9),

the Sackin’s index became elevated above the Yule expectation.

Further, adding the within-host diversification process (phylogeny)

increased Sackin’s index only slightly for both low and high levels

of contact tracing. In all configurations, the sampled trees include 195

a Sackin’s index close to the minimal possible value for the number

of sampled taxa (15 or 50) (Fischer, 2021).
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Fig. 2: General workflow for the SEEPS package. Purple boxes denote functionality provided by SEEPS. Blue boxes denote exportable

data. Red boxes denote trees that can be read into the R package ape. Black boxes denote internal states or data available for manipulation.

Trees based on contact tracing in a small sample do not

represent the larger epidemic

A potential concern with data generated with contact tracing200

is that it may result in missing, unconnected, or undiagnosed

persons, thus making the sample unrepresentative of the larger

population (Blum and Tran, 2010). Since we now know that

contact tracing biases trees to be more unbalanced, this raises

concern about how representative a phylogeny would be of the205

greater epidemic. Thus, we assessed how representative a second,

later in time, sample would be of an earlier sample from the same

epidemic.

We simulated outbreaks under varying R0 in SEEPS to an

effective population size of 1,000 infections and sampled 50 active210

infections as soon as the effective population surpassed 900 active

infections. We let the population replace the removed infections

while simulating forward for 3, 24, or 120 months. We then drew

another 50 taxa, for a total of 100 sampled taxa. The growth rate

parameter R0 took discrete values of 1.1, 1.5, 3, 5, or 10.215

We used a parsimony score to report the number of

”transitions” that were required to render the first sample labels

into the second sample labels. Thus, this parsimony score

represents how much of the original tree structure the second

sample recovers; a smaller score would indicate a different tree 220

while a higher score a more similar tree.

We found a strong relationship between the mean parsimony

score and both contact tracing and the length of the inter-

sampling period (Fig 5 A-E). Increased contact tracing decreased

the parsimony score, indicating that the two samples represented 225

different parts of the total epidemic. R0 only weakly influenced

the relationship between parsimony scores and contact tracing

performance; R0 primarily impacted the parsimony score when

contact tracing performance was high by increasing the variance.

As Fig 5E demonstrates, setting R0 = 10 indicated that the 230

variance increased after approximately p = 0.5, while in Fig 5A

it occurred close to p = 1 when R0 was close to 1. In Fig 5A-E,

the symmetric inner 50% is shown as a shaded region to capture

the variance. Fig S2 shows additional bands to provide a more

complete picture of this effect. 235

We next investigated whether the sample size (number of taxa

investigated) at 3 months after the first sampling time influenced

the parsimony score. In Fig 5F-J, R0 was varied as before, but
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A B

C D

Fig. 3: Examples of how repeated sampling with different contact tracing levels can lead to visually distinct tree structures. Panel A (high

contact tracing) and panel B (low contact tracing) show examples of two simulations provided by SEEPS. Note that SEEPS simulates

within host diversity for all ancestors, resulting in explicit modeling of the transmission bottlenecks and the realistic population diversity.

Panels C and D show only the “observable” history that could be inferred by reconstructing the ancestral relationships between the

observed sequences. Sampled taxa are denoted by a blue circle.

we sampled between 5 and 250 taxa at each time point (from

a target population size of 1,000). The normalized parsimony240

score shows little dependence on the sample size, as long as a

“small sample” approximation remains reasonable. With as few as

five taxa, however, the lowering effect of contact tracing on the

parsimony score is diminished because the small tree size limits

its range. 245

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.11.30.567148doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.567148
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 Kupperman et al.

Transmission history Phylogeny

60

70

80

90

100

110

120

Sa
ck

in
's 

in
de

x

A 15 Sampled Taxa
Sample means
Minimal
Yule Expectation
p = 0.1
p = 0.9

Transmission history Phylogeny

300

400

500

600

700

Sa
ck

in
's 

in
de

x

B 50 Sampled Taxa

Fig. 4: Violin plots of the distribution of Sackin’s index with

low performing contact tracing (p = 0.1) and high performing

contact tracing (p = 0.9). Horizontal reference lines are added at

the minimal value of Sackin’s index (red) for a tree of the given

size, the expected value of Sackin’s index under a Yule model

(yellow), and the sample mean (black). Adding contact tracing

increases Sackin’s index, regardless of whether the transmission

history tree or the sampled phylogenetic tree is considered. In the

presence of contact tracing, the Yule model does not well describe

the distribution.

Mean internal to external branch length ratio is affected by

contact tracing

The mean internal to external (I/E) branch length ratio quantifies

the recent evolutionary relationship between sampled taxa. The

external branches are the tips of a tree, ending with the250

sampled taxa, and the internal branches connect all nodes of the

reconstructed ancestors of the sampled taxa. Hence, if the ratio is

small, then the tips are longer, suggesting that the taxa are not

recently related. If the ratio is large, then the samples are recently

more related, suggesting the possibility of an epidemiologically255

significant cluster. Previous work (Giardina et al., 2017) suggests

that the branch length ratio can be informative about possible

recent outbreaks in a population, but the impact of contact tracing

on the I/E ratio has not been evaluated.

Using the same synthetic data set we examined for Sackin’s260

index, we computed the I/E branch length ratio for each

phylogenetic tree (Figure 6). The full data used to generate this

figure is available in the supplementary materials online Fig S2.

While the R0 growth rate of the outbreak had some impact on the

mean I/E branch length ratio, the presence or absence of contact265

tracing amplified the effect of when sampling occurred relative to

the epidemic outbreak on the I/E branch length ratio. R0 was

influential only when it was low; epidemics at R0 > 2.5 taken at

the same time point had similar I/E branch length ratios, whereas

the I/E branch length ratios increased when R0 was R0 < 2.5. 270

Interestingly, the I/E branch length ratio was less sensitive to

contact tracing immediately after the peak of the outbreak. At low

contact tracing (p = 0.1), the I/E ratio was never able to rebound

past the initial outbreak signal. In contrast, at high contact tracing

(p = 0.9), the samples taken three years after the end of the 275

exponential growth phase had similar I/E branch length ratios

to the samples taken immediately after the peak of the outbreak.

Thereafter, the I/E branch length ratio statistic continued to grow

with time.

This suggests that some amount of contact tracing early in an 280

epidemic, enough to find a recent nearby infection, is necessary to

recover a time signal from the internal branches and indicate the

age of the outbreak.

Contact tracing can be observed in real data

Our simulations showed that contact tracing has strong effects 285

on phylogenetic tree reconstructions, and therefore on any

epidemiological inference that would be based on such trees.

To tests whether we could recover the epidemiological data of

our motivating example in the introduction, including the levels

of contact tracing in the European and Swedish partitions, we 290

attempted to use SEEPS to simulate the rather complicated

European HIV-1 CRF01 epidemic. This epidemic can be divided

into three parts: 1) the exponential outgrowth of a new form of

HIV-1 in Thailand in the early 1990’s, 2) subsequent introductions

of several genetically distant lineages into Europe, and 3) an 295

introduction from Europe (Finland) into a previously uninfected

injecting drug-user network in Sweden with an explosive outbreak.

To estimate the level of contact tracing, we simulated epidemics

in SEEPS similar to the European and Swedish outbreaks with

varying levels of contact tracing and compared the I/E branch 300

length ratios from our simulated trees to that of the real data

(Figure 1). The parameter values used to generate the simulated

data are shown in table S1. While we used different parameters

for each outbreak, we used a similar two-phase simulation for

both the European and Swedish partitions: In the first phase, 305

we started the simulation with a single infected individual and

allowed the population to grow to a small, fixed size. Once the

population reached the fixed size, we let it continue at that size

until the end of the phase. In the second phase, we increased

the effective simulated population size to our target value, and 310

allowed R0 to change. As before, the population was allowed

to grow until the end of the phase. To mimic the import to

Europe of genetically distant lineages from Thailand, we shifted

the sampling time of the European sequences forward by 18 years

to reflect the lack of available sequences along the long branches 315

that constitute the introductions into Europe. Finally, we sampled

20 individuals with varying levels of contact tracing discovery

probability according to the sample years of the EU and Swedish

outbreaks, respectively. We then calculated the I/E branch length

ratio for each simulated tree and compared the distribution against 320

the real data distribution.

To compare simulated and real I/E ratio distributions, we

computed the relative difference of means (x̄ − µ)/µ and the

Kolmogorov-Smirnov test statistic D = supx∈[0,∞] |F (x)−G(x)|
where F and G are the cumulative distribution functions for the 325

simulated and the real data, respectively. For these two fitting

statistics, we effectively randomized both the population size

and R0 parameters, resulting in 10,000 samples to approximate
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Fig. 5: Parsimony distributions are strongly related to contact tracing performance p and weakly with sample size. The strength of the

correlation is primarily dependent on R0 when contact tracing is good. In A-E, a sample of 100 taxa (pathogen sequences from 100

infected hosts) is obtained at the end of the exponential growth phase, and compared against another sample of 100 taken 3, 24, or 120

months later. The shaded region denotes the symmetric inner 50% of the data. In F-J, the experiment is repeated for the 3-month interval

between samples, however the sample size is varied. The parsimony score is normalized against the number of taxa in the sampled tree

(two times the reported sample size above). Sampled individuals are removed from the population.

the European epidemic and 320,000 samples to approximate

the Swedish outbreak at each level of contact tracing discovery330

probability p.

Both the KS statistic and the relative difference of means

suggest that the European data was generated in a situation with

negligible contact tracing, with an upper bound on the contact

tracing discovery probability of at most 10% (Figure 7). A visual335

inspection of the phylogenetic tree (Fig 1A) suggests that the

most recent common ancestor between most pairs of sequences in

Europe is not in the recent history, or that the European sample

is sparsely reported by the available sequences (from the LANL

HIV database hiv.lanl.gov). This is consistent with multiple HIV-1340

CRF01 introductions into Europe, each with limited local spread.

In contrast, the subsampled Swedish data was consistent with

a significant level of contact tracing. Both the KS statistic and

relative difference of the means were indicative of a contact

tracing discovery probability of approximately p = 0.6. We345

expected that the level of contact tracing would have been very

high in this intensely followed outbreak (Skar et al., 2011).

However, two effects may have lowered the estimated contact

tracing level: 1) Not all infections in the outbreak may have been

included in the sequencing, which would affect some I/E ratios,350

and 2) subsampling the Swedish outbreak phylogeny removed

over half of the taxa in each draw, which further may have

lowered the estimated contact tracing level. Taking both effects

into consideration, our recovery of a contact tracing discovery

probability of approximately p = 0.6 indicates that a strong effort355

of contact tracing took place in the discovery of the Swedish

outbreak.

Discussion

We developed an epidemiological and evolutionary simulation

model that includes contact tracing, available as an R package 360

called SEEPS. Using SEEPS, we showed that there can be a serious

impact when pathogen sequences were collected by contact tracing

on the resulting phylogenetic tree structure. Overall, contact

tracing resulted in a phylogeny that 1) was more unbalanced,

2) was less representative of the larger epidemic, and 3) had its 365

I/E branch length ratio differently impacted depending on when

samples were taken relative to an outbreak. We then analyzed

a real data set describing a known outbreak of HIV-1 CRF01

in Sweden, derived from Europe, which in turn had derived

several lineages from Thailand. This showed that SEEPS was 370

able to simulate a fairly complicated epidemiological scenario and,

importantly, also correctly detected contact tracing as it was used

in Sweden.

Because sequence- and phylogeny-based approaches have the

potential to reveal otherwise difficult to measure details about 375

how pathogens spread, previous work has evaluated several tree

statistics related to the branching structure and the branch

lengths, such as Sackin’s index and internal to external (I/E)

branch length ratios. For example, such statistics have been used

to tune MCMC methods that explore the space of phylogenetic 380

trees. Here, we showed that both of these classes of tree
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Fig. 6: Estimated mean of the internal to external (I/E) branch

length ratios as a function of R0, stratified by number of years after

the peak. The mean trend line was estimated using a Gaussian

process model (radial basis function kernel, α = 3× 10−5, ℓ = 3)

(Pedregosa et al., 2011). The color of the trend line indicates when

sampling was performed after the epidemic exponential growth

had ended. The I/E ratio interpretation depends on both R0 and

contact tracing level.

measurements are affected by contact tracing. Thus, assuming that

sequences have been randomly collected, when in fact they were

collected as the result from contact tracing may severely mislead

analyses and conclusions from sequence- and phylogeny-based385

epidemiological inferences. One reason for that is that contact

tracing results in samples that may be less representative of the

larger epidemic.

Contact tracing is a non-random sampling strategy that

efficiently finds linked infections (Centers for Disease Control,390

1986, 1987; Giesecke et al., 1991; Hethcote and Yorke, 1984).

While previously largely ignored in sequence- and phylogeny-based

epidemiological inferences, non-uniform sampling strategies such

as contact tracing have been investigated in other contexts, such

as generalized birth and death models (Höhna et al., 2011) and395

ordinary differential equation compartment models for outbreaks

(Hyman et al., 2003). In (Höhna et al., 2011), it was shown that

characteristic rates for the branching process can be incorrectly

inferred if an incorrect sampling scheme is assumed, which agrees

with our results showing that contact tracing impacts phylogenetic400

tree structures. In (Hyman et al., 2003) it was shown that the

significance of contact tracing as a control mechanism is sensitive

to the degree of superspreading. However, those results were

based on the assumption of independence and the mechanism

of spread through mass action, which breaks down when using405

sequence- and phylogeny-based epidemiological inferences. While

contact tracing may lead to a phylogeny that does not represent
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Fig. 7: Comparison of simulated I/E branch length ratio with

subsamples taken from the European epidemic and the Swedish

outbreak. The contact tracing discovery probability p was varied

from 0 to 1. Panels A and B compare simulated data against

the European Union subsamples, while panels C and D compare

against the Swedish subsamples. The relative difference of means

is defined as (x̄− µ)/µ where x̄ is the observed sample mean and

µ is the sample mean from the associated reference distributions.

the larger epidemic - from a public health perspective, detecting

superspreaders is important because they contribute more to

overall disease spread. Contact tracing will be much more likely to 410

find superspreaders than random sampling simply because they are

more likely to be traced from any one of the people they infected.

SEEPS includes within-host evolution that simulates diversification

under a neutral coalescent process. The within-host pathogen

diversification is important to account for because it affects 415

the observable phylogeny, which always is different from the

non-observable transmission history (Graw et al., 2012; Romero-

Severson et al., 2014; Giardina et al., 2017). However, SEEPS does

not simulate the selection of escape mutants driven by the host

immune system. Because selection also can cause an imbalance 420

in the tree structure, our simulations may be on the conservative

side of the impact contact tracing has on the global tree structure

of an epidemic. Furthermore, if superspreaders were active, the

simulations under our neutral model may show less impact of

superspreading than in real epidemics. 425

Methods that depend on analyzing distances such as HIV-

TRACE (Kosakovsky Pond et al., 2018) or machine learning

based methods such as convolutional neural network (CNN)

models (Kupperman et al., 2022) are inherently sensitive to

the distribution of pairwise distances. Contact tracing results in 430

samples that can be significantly closer than random. If clusters are

interpreted as outbreaks, then clusters discovered by non-uniform

sampling may be correctly labeled as transmission clusters, but

erroneously inferred as signs of a larger outbreak. Thus, the

performance of HIV-TRACE and the CNN model in detecting 435

outbreaks may be sensitive to how samples were collected. Hence,
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popular analytical methods and computational tools used to trace

and reconstruct epidemics need to ensure that the impact of

contact tracing is not being overlooked or misinterpreted.

Materials and Methods440

Simulations in SEEPS

We developed SEEPS to perform generative computational

experiments on HIV-1 phylodynamics, generalizing the model

and framework from (Kupperman et al., 2022). All experiments

in the present study were performed in SEEPS v0.2.0445

available at github.com/molEvolEpid/SEEPS. Code associated

with specific analyses is available at github.com/molEvolEpid/

ContactTracingForPhylogenies.

SEEPS provides a stochastic forward simulation that tracks

the transmission history of the entire simulation (including non-450

sampled individuals) and maintains a list of active individuals

that are capable of generating new offspring. We implemented an

agent-based discrete time model of transmission dynamics which

randomized the length of each infection between one and three

years, with the expected number of lifetime transmissions being455

equal to R0. Here, we used a simple biphasic rate for offspring

generations where the initial transmission rate was 20-fold higher

in the first three months of infection (Graw et al., 2012). The

simulation time step was 1 month in duration. When multiple

sampling time points were used, the simulation stopped at each,460

samples were taken and removed from the population, and then

the simulation resumed.

After prescribing the population dynamics (here, exponential

growth or constant size), samples were taken at fixed time points

through contact tracing and the transmission history for the subset465

of sampled individuals was reconstructed. We reconstructed both

1) a reduced transmission history, where unsampled tips were

removed and any internal nodes of order two were collapsed, and

2) a complete transmission history for the samples where only

pruned branches were removed. The reduced transmission history470

was converted into a transmission tree. The complete transmission

history for the sampled individuals was used to obtain a phylogeny

by simulating a (neutral) coalescent process along the transmission

history (Lundgren et al., 2022). Within-host diversity is modeled

assuming a = 5 and b = 5 as in (Romero-Severson et al.,475

2016). This process reconstructs a possible pathogen phylogeny

within the transmission tree and forces coalescence events to

occur before time 0 (Romero-Severson et al., 2014). Individuals

in the transmission history that are not sampled are simulated

where needed to ensure that the entire evolutionary history of480

the samples is correct with respect to transmission bottlenecks

and diversification level until the next transmission event. This

process can introduce additional tips into the phylogeny that do

not correspond to sampled individuals. These were removed in our

main analyses, but are available within SEEPS for inspection (as485

shown in Fig 3).

Both the transmission tree and sampled phylogeny were

exported to the R package ape (Paradis and Schliep, 2019).

Contact tracing

To study the impact of contact tracing, we developed a simple490

algorithm to describe contact tracing as follows: An initial index

case is randomly discovered in the population, and all first order

contacts (secondary infections and the source itself) are identified

by examining the transmission history. Then, each identified

contact is independently discovered at probability p ∈ [0, 1]. Hence, 495

the parameter p denotes the contact tracing discovery probability

of each contact. If p = 0, there is no contact tracing, while

p = 1 corresponds to perfect contact tracing. The discovered

individuals are added to a list of discovered individuals, and

the identify-and-probabilistically-discover process is repeated for 500

each newly discovered individual. This is repeated until there

are no discovered cases to trace, or until a maximum number

of active individuals have been identified. If the desired number

of individuals are not sampled, the process is re-started with a

new random index case and repeated until the desired number of 505

individuals have been sampled.

Tree statistics

As phylogenetic trees are complex objects, there are many

statistics, indexes, and measures that have been proposed for

analyzing trees (Fischer et al., 2021). In this work, we focused 510

on some of the most popular statistics that have been widely used

to analyze phylogenetic trees and that we expect to be influenced

by contact tracing, including both topological and branch length

effects. We considered Sackin’s index (Sackin, 1972; Shao and

Sokal, 1990) using the R package treebalance (Fischer et al., 515

2021) to assess topological effects, and the internal/external (I/E)

branch length ratio to assess branch length effects.

Sackin’s index measures the imbalance of a tree. It is maximized

in a caterpillar (ladder-like) topology, while being minimized in a

fully balanced tree. In the absence of contact tracing, i.e., with 520

uniform random sampling, we expect the Sackin’s index to be

low, because then the topology would be informed by random

ancestral relationships during the initial exponential growth phase.

In the presence of contact tracing, we expect to primarily recover

recent information about the transmission history related to 525

epidemiologically significant clusters. While such clusters also are

linked together by ancestral relationships, if the contact tracing

is good, we expect the majority of the tree to reflect recent

transmission events.

We used parsimony to assess how representative a sample of 530

taxa is of a larger epidemic. We did this by sampling twice in an

epidemic and compared how representative the second sample was

of the phylogeny obtained from the first sample. The taxa of the

first sample were labeled “A” and the taxa of the second sample

“B”. Given the phylogeny of both “A” and “B” labeled taxa, we 535

calculated the number of A → B transitions, i.e., the parsimony

score of label transitions. We computed the parsimony score

using the R package phangorn (Schliep, 2011), and the process

was repeated 200 times for each combination of R0, time point,

sample size, and contact tracing discovery probability p. If uniform 540

random sampling was performed, we expect the parsimony score

to be high, because the taxa are drawn from the entire epidemic,

i.e., the entire phylogeny, independently or nearly independently.

If contact tracing was performed, we expect each group of taxa

to contain more cluster-like relationships, which would be more 545

informative about local spread but not the entire epidemic. Thus,

because more taxa are closely related when contact tracing has

occurred, fewer “A” → “B” transitions are required, so the

resulting tree would have a lower parsimony score.

The I/E ratio is informative of the recent evolutionary 550

relationship between taxa as well as the overall tree structure

(Giardina et al., 2017). In the absence of contact tracing, we expect
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the ratio to be low, as many external branches will connect the

taxa back to an ancestral event in the outbreak phase. In contrast,

if there is contact tracing, we expect the ratio to be high as the555

most recent common ancestor between two taxa in an identified

cluster will be much more recent.

HIV-1 CRF01 European sequence data

Data from the European HIV-1 CRF01 epidemic was extracted

from the LANL HIV database (hiv.lanl.gov). GenBank accession560

numbers for all sequences used in this study are available at

github.com/molEvolEpid/ContactTracingForPhylogenies.

The data consisted of 34 env V3 region sequences (approx. 300

nt) from an intravenous drug user (IDU) outbreak in Stockholm,

Sweden, in 2006-2007 (Skar et al., 2011) and 155 corresponding565

European sequences from 2003-2007 (including 23 additional

Swedish sequences not involved in the IDU outbreak and 132

sequences from 12 other countries). The entire European HIV-

1 CRF01 tree was reconstructed using PhyML v3 under a

GTR+I+G model by both NNI and SPR search (Guindon et al.,570

2010).

Using SEEPS, we simulated 110,000 and 3,520,000 sequences

for the EU and Swedish outbreaks respectively with varying levels

of contact tracing. Sampling dates were selected by sampling the

distribution of sample years that the true sequences were taken575

from. We then computed the tree statistics for each simulated

outbreak. To compare the simulated sample distributions against

the bootstrap statistic distributions computed from the real data,

we used the two-sample Kolmogorov-Smirnov test and the relative

difference of means. As these simulations were large, we refrained580

from reporting a p-value, but instead reported the test statistic

as evidence for how close the simulated distribution were to the

real data as the contact tracing parameter was varied. For both

test statistics, a value closer to zero implies that the simulated

distribution was closer to the real data.585
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