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Abstract: Iron and oxygen deficiencies are common features in pathophysiological conditions, such as
ischemia, neurological diseases, and cancer. Cellular adaptive responses to such deficiencies include
repression of mitochondrial respiration, promotion of angiogenesis, and cell cycle control. We applied
a systematic proteomics analysis to determine the global proteomic changes caused by acute hypoxia
and chronic and acute iron deficiency (ID) in hippocampal neuronal cells. Our analysis identified over
8600 proteins, revealing similar and differential effects of each treatment on activation and inhibition
of pathways regulating neuronal development. In addition, comparative analysis of ID-induced
proteomics changes in cultured cells and transcriptomic changes in the rat hippocampus identified
common altered pathways, indicating specific neuronal effects. Transcription factor enrichment and
correlation analysis identified key transcription factors that were activated in both cultured cells and
tissue by iron deficiency, including those implicated in iron regulation, such as HIF1, NFY, and NRF1.
We further identified MEF2 as a novel transcription factor whose activity was induced by ID in both
HT22 proteome and rat hippocampal transcriptome, thus linking iron deficiency to MEF2-dependent
cellular signaling pathways in neuronal development. Taken together, our study results identified
diverse signaling networks that were differentially regulated by hypoxia and ID in neuronal cells.

Keywords: oxygen sensing; hypoxia; iron deficiency; quantitative proteomics; transcriptome analysis;
neuronal cells; hippocampus

1. Introduction

Microenvironment sensing is critical in maintaining normal physiology and develop-
mental activity in mammalian cells and tissues [1–5]. Rapid adaptation to microenviron-
mental changes involves complex and diverse signaling mechanisms that serve as “sensors”
to the extracellular cues [5–7]. Oxygen is one of the key factors in the cellular microenviron-
ment that strongly affects energy homeostasis. Low oxygen availability (hypoxia) inhibits
the oxidative phosphorylation-mediated energy production and promotes neuronal cell
death, contributing to tissue injury in ischemic brain [8]. Studies in the past two decades
have established hypoxia-inducible factors (HIF1-a) as a sensor and master regulator of
cellular hypoxia-responsive pathways [9–11]. Under normoxia, hydroxylation of HIF1-a by
prolyl hydroxylases PHDs (or EGLNs) promotes its interaction with ubiquitin E3 ligase
von Hippel–Lindau (pVHL) and leads to the poly-ubiquitination and subsequent rapid
degradation of HIF1-a [12–14]. Hypoxia condition inhibits the hydroxylation and subse-
quent rapid degradation of HIF1-a, which leads to its nuclear enrichment and induction
of hypoxia-responsive genes. Recent system-wide analyses using transcriptome profiling
and protein quantification have further expanded this body of work by uncovering sub-
stantial hypoxia-induced changes in gene expression and protein abundances critical for
neuroplasticity in neuronal cells and brain tissues [15–17].
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Iron is a key co-factor for many oxygen-related enzymes and cellular processes, playing
essential roles in neuronal development [1–3,18,19]. It is required for the enzymatic activity
of dioxygenases, including prolyl hydroxylases, that hydroxylate HIF1-a and demethylases
that removes epigenetic methyl marks from histones [20]. Insufficient uptake of iron from
the cellular microenvironment leads to iron deficiency (ID) and abnormal neuronal cell
development [1,2]. As with hypoxia, ID also leads to the inhibition of HIF1-a hydroxylation
and degradation, thereby upregulating HIF1-a dependent gene expression [4,21]. However,
the effects of cellular ID on signaling networks regulating cellular physiology and home-
ostasis have not been fully determined [4,22]. System-wide analysis of ID in mammalian
cells and tissues has been largely limited to transcriptional profiling of gene expression
that revealed changes in expression of genes regulating growth arrest and DNA damage
response in developing neurons or neuroblastoma cell lines [23–26].

In the present study, we applied a global proteomic screening in combination with
stable isotopic labeling of amino acids in cell culture (SILAC) [27] to identify early changes
in cellular signaling pathways caused by hypoxia and ID in hippocampal-derived neuronal
cell line. Our deep proteomic analysis provided new insights into the hypoxia-induced
dynamics of metabolic pathways and epigenetic regulations and identified diverse signaling
networks that were differentially regulated by hypoxia and ID in neuronal cells.

2. Results
2.1. Experimental Strategy for the Quantification of the Iron and Oxygen
Starvation-Dependent Proteome

To reveal the proteome dynamics following hypoxia and iron starvation in neu-
rons, we utilized the mouse hippocampal HT22 cells for quantitative proteomic analy-
sis (Figure 1A) [28]. To optimize cellular response to hypoxia, we monitored the HIF1-a
abundance using Western blotting. Our data showed that HIF1-a level increased after
1.5 h and peaked at 12 h of hypoxic treatment (Figure 1B). Desferoxamine (DFO) is a well-
characterized, cell-permeable iron chelator. Acute and chronic ID have been successfully
induced by DFO treatment for 6 h at 100 µM concentration [21,29–31] or 24 h at 10 µM
concentration [18,21,32–34]. Six hours of hypoxia treatment produced a similar increase in
HIF1-a abundance comparing both acute and chronic ID; therefore, this was chosen as the
treatment condition for hypoxia in the global quantitative analysis.

HT22 cells were cultured in SILAC-heavy (containing Lys8, Arg10) or -light (containing
Lys0, Arg0) media for more than six generations (Figure 1A). For the oxygen starvation
treatment, heavy labeled HT22 cells were incubated at 37 ◦C for 6 h in a hypoxia chamber
containing 1% O2, 94% N2, 5% CO2 while the light-labeled HT22 cells were incubated at
37 ◦C for 6 h under the normoxia condition. To induce ID, two sets of HT22 cells were
treated with DFO for 6 h (100 µM, acute ID) or 24 h (10 µM, chronic ID), respectively.
Proteins from SILAC “light” and “heavy” cells were equally mixed followed by trypsin
digestion. The tryptic peptides were further fractionated using basic high pH reverse-
phase offline HPLC to increase the proteome coverage prior to the analysis on nano-HPLC
Orbitrap Fusion mass spectrometer [35].

2.2. Dynamics of Cellular Proteome in Response to Hypoxia and Iron Deficiency

Our systematic analysis identified 8697 proteins, which annotated 4805 protein groups,
at a false discovery rate (FDR) of 1% from two biological replicates (Table S1). Quantitative
analysis showed greater than 93% of proteins exhibited no more than a 2-fold change in
response to these treatment conditions. These observations suggest that acute hypoxia or
iron deficiency caused low–moderate effects on global protein abundance (Figure 1C).

To assess the reliability of our quantitative analysis, we determined the correlation
between biological replicates. The correlation of Log2 SILAC quantification ratios between
the replicates indicated excellent reproducibility of our quantification data (Figure 1D). Our
Western blotting analysis showed that the 6 h hypoxia treatment produced a significant
increase in HIF1-a abundance in HT22 cells. To determine whether the increased HIF1-a
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abundance was sufficient to activate known HIF1-a-mediated hypoxia response pathways,
we examined the protein abundance of known HIF1-a targets. Among 40 HIF1-a targets
that were identified by LCMS in hypoxic samples, only 2 protein targets showed more than
50% increase in protein abundance, namely Hydroxy-methylglutaryl-CoA lyase (HMGCL)
(ratio 1.89) and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) (ratio
2.00) (Table S2). These data suggest that our 6-h hypoxia treatment of HT22 cells represents
an early hypoxia response.
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1.5, 3, 6, 12, and 24 h and their respective non-treated controls. Red arrow indicates HIF1A. (C) 
Protein groups count distributed by normalized H/L SILAC ratio. (D) Plots showing biological rep-
licate sample correlation after quantification of protein SILAC ratios. 
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Figure 1. Experimental design for comprehensive analysis of the global proteome. (A) Outline of
experimental workflow for comprehensive analysis of the global proteome and transcriptome. To
study the global proteome, stable isotopic labeling of amino acids in cell culture (SILAC)-labeled
HT22 cells were treated under hypoxic and iron deficient conditions. Peptides were extracted and
characterized by mass spectrometry. To study the global transcriptome, hippocampal tissue from
iron-deficient rat (P15) were extracted. mRNA was purified and characterized by a microarray study
reported previously [36]. Both datasets were processed using functional analysis tools. (B) Western
blotting of HT22 cells treated with either 100µM DFO for 6 h, 10M DFO for 24 h, or 1% oxygen for 1.5,
3, 6, 12, and 24 h and their respective non-treated controls. Red arrow indicates HIF1A. (C) Protein
groups count distributed by normalized H/L SILAC ratio. (D) Plots showing biological replicate
sample correlation after quantification of protein SILAC ratios.

2.3. Dynamics of Biological Pathways Induced by Acute Hypoxia

To functionally annotate the dynamics of cellular pathways altered by oxygen and
iron depletion, we divided the global proteome dataset into four quantiles based on the
normalized SILAC-heavy/light (treatment/control) Log2 ratios (<−1, −1 to 0, 0 to +1,
>+1). Enrichment analysis was performed separately for each quantile using Gene On-
tology (GO) [37], KEGG pathway [38], and PFAM domain databases [39]. Overrepre-
sented annotations were clustered using hierarchical clustering for comparative analysis
(Figure 2 and Table 1, Table S3).
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Figure 2. Enrichment and clustering analysis of the oxygen and iron deficiency proteome datasets
based on Gene Ontology annotations. Gene Ontology annotation classified genes based on four
categories: (A) Biological Process, (B) KEGG Pathways, (C) PFAM analysis, and (D) molecular
functions. In each category, SILAC quantification ratios of all proteins were divided into four
quantiles based on the normalized heavy/light Log2 SILAC ratios (less than −1, −1 to 0, 0 to 1, more
than 1). An enrichment test was performed using Benjamini–Hochberg adjustment. The P-values
were transformed into z-scores before hierarchical clustering analysis.

Table 1. Dynamics of protein pathways regulated by hypoxia, acute iron deficiency, and chronic iron
deficiency. Functional activity is summarized either as increased, decreased, or unchanged (blank).

CELLULAR FUNCTIONS HYPOXIA ACUTE ID CHRONIC ID

TRANSCRIPTION Decrease Decrease Decrease
PROTEIN SYNTHESIS Decrease Decrease Decrease
MTORC1 SIGNALING Decrease Decrease

PROTEIN DEGRADATION
UBIQUITIN MEDIATED Decrease

ENDOPLASMIC RETICULUM-ASSOCIATED Increase
AUTOPHAGY-MEDIATED Decrease Decrease

EPIGENETIC PROCESSES
HISTONE DEACETYLASE Decrease

HISTONE ACETYLTRANSFERASE Increase Decrease
HISTONE METHYLATION Decrease Increase Increase

IRON ION REGULATION
IRON ION HOMEOSTASIS Decrease Decrease

CELLULAR METABOLISM
CHOLESTEROL BIOSYNTHESIS Decrease Decrease Decrease

FATTY ACID METABOLISM Decrease
BETA OXIDATION Increase

GLYCOLYSIS Increase Increase
ELECTRON-TRANSPORT CHAIN Decrease

PROTEIN KINASE B SIGNALING Decrease
VEGF SIGNALING Increase Increase

GLUTAMATE SECRETION Increase
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2.3.1. Metabolic Processes

Oxygen availability strongly affects the activity of the electron transport chain and ATP
production in mitochondria. However, we did not observe significant changes in protein
abundance in the oxidative phosphorylation pathway following the acute hypoxia treat-
ment; instead, our data showed significant changes in the fatty acid metabolism pathway.
Under acute hypoxia, proteins in fatty acid beta oxidation and degradation pathways were
significantly upregulated (Peroxisomal acyl-coenzyme A oxidase 1 (Acox1) and SILAC ratio
of 2.0), whereas proteins in fatty acid elongation and biosynthesis pathways (Palmitoyl-
protein thioesterase 1 (PPT1)—SILAC ratio of 0.5), as well as cholesterol and isoprenoid
metabolic processes, were downregulated (Figure 2A,B and Figure 3A, Table S3). Since
fatty acid degradation and biosynthesis processes occur in different cellular compartments
(mitochondria and cytosol, respectively), these data suggested a possible compensatory
regulation as an immediate neuronal response to hypoxia.
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Figure 3. Representative protein abundance altered by hypoxia and iron deficiency. (A) Bubble heat
map showing proteins having metabolic activity significantly changed under all treatments. Bubble
size indicates level of fold change in protein quantitation with SILAC ratio <0.66 (green) and >1.5 (red).
(B) Bubble heat map showing proteins having epigenetic and ubiquitination activity significantly
changed under all treatments. Bubble size indicates level of fold change in phosphorylation site with
SILAC ratio <0.66 (green) and >1.5 (red).

2.3.2. Protein Synthesis, Folding, and Survival Pathways

Our data also showed that acute hypoxia downregulated proteins involved in tran-
scription, protein synthesis, and folding processes (Figure 2A, Table S3). These observations
were expected given the significant decrease in ATP production under hypoxia. On the
other hand, hypoxia upregulated pathways regulate phosphatidylinositol phosphorylation,
apoptosis survival, glutathione metabolism, and cellular endocytosis (Figure 2B, Table S3).

2.3.3. Ubiquitination and Protein Degradation Pathways

The ubiquitination proteasome system plays an important role in regulating protein
homeostasis [40]. Hypoxia reduced enrichment of proteins regulating ubiquitination pro-
cesses, including enzymes possessing specific K29, K6, K11, and K27-linkage ubiquitination
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(Figures 2B and 3B, Table S3), but enriched proteins in the endoplasmic reticulum (ER)-
associated protein degradation pathway (ERAD), consistent with previous findings of
hypoxia-induced ER stress [41] (Figure 2A, Table S3).

2.3.4. Regulation of Epigenetic Pathways

Our analysis revealed that acute hypoxia reduced the abundance of proteins with
methyltransferase activity, including Histone-lysine N-methyltransferase NSD3 (WHSC1L1–
SILAC ratio of 0.5) and Histone-lysine N-methyltransferase 2D (KMT2D–SILAC ratio of
0.5) (Figure 2A,D and Figure 3B, Table S3). In contrast, hypoxia increased the abundance
of histone acetyltransferase complex including the YEATS domain-containing protein 2
(YEATS2–SILAC ratio of 1.5) and SAGA-associated factor 29 homolog (SGF29–SILAC
ratio of 2.3). These data indicated changes in epigenetic regulation mediated by oxygen-
dependent enzymatic activity.

2.3.5. Nutrient-Dependent Cellular Signaling

A central regulator of protein synthesis is the mammalian target of rapamycin mTOR [42].
In agreement with previous findings, hypoxia reduced enrichment of proteins regulating
mTOR complex 1 (TORC1, Tuberin/Tsc2–SILAC ratio of 0.5) signaling, protein kinase
B-mediated insulin signaling (Eukaryotic translation initiation factor 4E type 2 (EIF4E2)–
SILAC ratio of 0.5) [43,44], as well as lysosomal activity and autophagy (VPS13A–SILAC
ratio of 0.3, MAP1LC3B–SILAC ratio of 0.6, ATG4B–SILAC ratio of 0.5, and WDR45–SILAC
ratio of 0.5) (Figure 2A,B, Table S3).

2.4. Identification of Specific Iron-Dependent Cellular Pathways in Neuronal Cells

Comparative analysis of iron and oxygen-dependent proteome dynamics revealed a
large number of cellular pathways induced specifically by ID, including metal ion home-
ostasis, cellular metabolism, and signaling pathways (Figure 2, Table S3). Interestingly,
acute and chronic ID showed differential activation or inhibition of cellular pathways,
despite the fact that both treatments activated similar HIF1-a levels. Analysis of known
HIF1-a targets showed that while chronic ID led to a greater than 50% enrichment of at
least 11 known HIF1-a targets, acute ID did not (Table S2).

2.4.1. Metal ion Binding Proteins and Processes

Both acute and chronic ID reduced levels of proteins regulating metal ion homeostasis
and related biological processes (Figure 2A, Table S3). These included iron ion sequestration,
ferric, and ferrous iron incorporation into metallo–sulfur clusters (ferritin-heavy chain
(FTH1)–SILAC ratios of 0.29 and 0.45; ferritin (FTL1)–SILAC ratios of 0.32 and 0.44 for acute
and chronic ID, respectively). Analysis of molecular functions and PFAM domains showed
that proteins with Fe ion binding and iron–sulfur cluster binding, including those with
cytochrome b5-like heme-binding motif, were significantly reduced. These observations
are consistent with prior findings, suggesting that loss of iron increased the instability of
iron-binding proteins and iron-containing protein complexes (Figure 2D, Table S3) [45,46].

2.4.2. Effects of Iron Deficiency on Regulation of Cellular Metabolism

As with hypoxia, ID significantly lowered enrichment of proteins regulating choles-
terol and isoprenoid metabolic processes (Figure 2A, Table S3). Chronic ID upregu-
lated the abundance of proteins involved in the hypoxia response pathways and re-
duced mitochondria respiratory chain complex in the oxidative phosphorylation path-
way (Figure 2A, Table S3). Both acute and chronic ID induced enrichment of proteins in
the glycolysis-related pathways including pentose–phosphate shunt, glyceraldehyde-3-
phosphate, and glucose 6-phosphate metabolic processes (Figures 2A and 3A, Table S3).
Unlike hypoxia, acute ID had little effect while chronic ID moderately increased the abun-
dance of proteins in the fatty acid degradation processes (Figures 2B and 3A, Table S3).
CORUM complex enrichment analysis of proteins with greater than 50% reduction by
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chronic ID revealed significantly reduced abundance of the mitochondria electron transport
chain complex I (p < 1.2 × 10−7, Figure 4A) and Parvulin-associated pre-RNP complex
(p < 7.9 × 10−7, Figure 4B). These findings suggested that chronic ID strongly suppressed
mitochondria-mediated oxidative phosphorylation activity and ribosome-mediated protein
synthesis in neuronal cells.
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Figure 4. A schematic representation of protein complex interaction networks. Chronic iron deficiency
treatment of HT22 cells significantly downregulated mitochondrial respiration chain complex I (A)
and Parvulin-associated pre-RNP complex (B). The node color represented the log2 SILAC ratio of
treatment (heavy labeling) vs. control (light labeling).

2.4.3. Iron-Dependent Regulation of Neuronal Signaling

Both acute and chronic ID caused a significant upregulation of proteins in the vascular
endothelial growth factor (VEGF) receptor signaling pathway, which was not upregulated
by the acute hypoxia treatment (Figure 2A, Table S3). In addition, chronic but not acute
ID significantly upregulated proteins involved in glutamate release, a major neuronal
excitatory pathway (Figure 2A, Table S3). Analysis of KEGG pathways showed that
neurological disease related pathways including Huntington, Parkinson, and Alzheimer
diseases were significantly inhibited by chronic ID (Figure 2B, Table S3).

2.5. Transcriptome Analysis of the Rat Hippocampus in Response to Iron Deficiency

To correlate the changes in proteome dynamics in iron-deficient HT22 cells with the
gene expression changes in iron-deficient rat hippocampus, we compared the proteome
to the hippocampal transcriptome of iron-deficient rats (P15), which identified 428 up-
regulated and 255 downregulated genes (p < 0.05, Figure 5A). Bioinformatics analysis of
the upregulated genes showed that ID led to higher activities of diverse biological pro-
cesses in rat hippocampal tissues including astrocyte differentiation, glycolysis, oxidative
stress-induced neuron intrinsic apoptotic signaling, transition metal ion homeostasis, and
response to hypoxia (Figure S1A). Cellular compartment analysis confirmed the neuronal
specific effect with upregulated genes significantly enriched in myelin sheath and axon
(Figure S1B). KEGG pathway analysis showed that 2-Oxocarboxylic acid metabolism, Gly-
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colysis, and Biosynthesis of amino acids pathways were significantly enriched among
upregulated genes in the iron-deficient rat hippocampus.
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Among the differentially expressed genes from transcriptome profiling, 140 upregu-
lated genes were also quantified in our SILAC-based quantitative proteomics analysis of
HT22 cells with chronic iron deficiency treatment. a total of 80 of the 140 upregulated genes
showed a higher protein abundance (57%) in our quantitative analysis of proteome dynam-
ics in iron-deficient cells compared to iron-sufficient controls (Figure 5B), demonstrating a
moderate correlation between protein dynamic in the iron-deficient HT22 neuronal cells
and the transcriptome of the iron-deficient rat hippocampus. The Metascape-based func-
tional enrichment analysis of the genes with an increased expression in both tissue and
HT22 cells induced by ID showed enrichment in a number of biological processes including
glycolysis, regulation of protein complex assembly, and cellular response to chemical stress
(Figure 5C).

2.6. Transcriptional Factor Activity Enrichment Analysis in Iron-Deficient Rat Brain Tissue and
Neuronal Cell Line

The upregulated genes induced by iron-deficiency in the rat hippocampus were ana-
lyzed with a web-based gene set enrichment analysis (GSEA) [47] using the transcription
factor target functional database. These in silico analyses uncovered 45 gene sets corre-
sponding to 34 transcription factors (TFs) that were enriched by the upregulated genes
(Figure 6A and Table S4). Nine of these TFs showed similar enrichment in both hippocam-
pal transcriptome and HT22 cell proteome, including transcription factors that were known
to associate with iron metabolism such as hypoxia-inducible factor 1 (HIF1), nuclear tran-
scription factor Y (NFY), and nuclear respiratory factor 1 (NRF1) (Figure 6B). The activation
of HIF1 in response to ID in both neuronal cells and tissues was expected as it is the master
regulator of cellular metabolic sensing pathway upon microenvironmental stresses, such as
hypoxia and iron deficiency [9–11]. NFY binds to the human ferritin promoter to activate
the expression of ferritin, the major protein for iron storage in blood [48]. Upregulation
of NFY activity upon chronic ID would promote intracellular iron storage as a potential
compensatory mechanism. NRF1 activation is dependent on the production of reactive
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oxygen species (ROS) under hypoxia. Accordingly, ID might facilitate its activity to induce
ROS production. NRF1 stimulates the expression of HO-1, ferritin, and the metallothionines
1 and 2 (MT1, MT2) [49,50], as well as iron sulfur-containing succinate dehydrogenase
(SDH2) [51].
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Among these TFs, myocyte enhancer factor 2 (MEF2) showed a strong enrichment in
both hippocampal transcriptome and HT22 proteome. MEF2 is a transcription factor family
that includes MEF2A, B, C, and D in human and involves in cell differentiation, migration,
and metabolism [52]. To further understand the pathway regulated by MEF2 in brain tissue,
we extracted MEF2-targeted genes in the transcriptome and performed pathway enrichment
analysis. We found that these MEF2 downstream targets might involve in diverse neuronal
developmental processes including lamellipodium organization, response to nerve growth
factor, WNT signaling, and forebrain development (Figure 6C). These data demonstrated
that iron deficiency in neuronal cells may regulate diverse signaling and developmental
pathways in brain development through the activation of MEF2 transcription factor.

3. Discussion

Iron is an essential nutrient in mammalian cells and widely involved in diverse
metabolic processes in neurons [31]. Iron level in tissues is maintained by dietary uptake
of iron in the ferrous ion state and transported into the cell through divalent metal cation
transporter 1 (DMT1) [53]. Under the regulation of hepcidin, iron is excreted into the
plasma and transported via transferrin proteins into the neuronal cells. Iron deficiency is
a nutritional stress that strongly affects the development of neurons. Previous studies by
us and others have shown that early childhood iron deficiency, often due to malnutrition,
led to profound neurological abnormalities in human that involve widespread changes in
gene expression and epigenetics profiles, which cannot be reversed by subsequent iron sup-
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plementation [3,36,54,55]. System-wide discovery of early response cellular pathways and
networks altered by iron deficiency in neurons will offer biochemical bases and potential
therapeutic insights for the future development of translational strategies to mitigate the
adverse physiological effects of neuronal iron deficiency.

ID has long been linked to oxygen deprivation due to the similar activation of HIF1-a
pathways; yet, little is known on the similarities and differences between iron deficiency
and hypoxia-induced changes in cellular proteome. Our recent global phosphoproteomics
study revealed differential phosphorylation pathways caused by iron deficiency and hy-
poxia [21]. In this study, we performed global quantitative analysis of proteome to assess
the comprehensive effects of hypoxia and acute and chronic iron deficiency on neuronal
proteome dynamics. This study revealed early dynamics in cellular metabolism, signal-
ing, and epigenetic regulation in response to these microenvironment challenges. The
treatment conditions were designed so that HIF1-a was enriched at the same level under
all conditions, thereby allowing our analyses to distinguish specifically the oxygen- and
iron-dependent cellular pathways that were both dependent and independent of HIF1-a
stabilization under each treatment.

Our pathway enrichment and clustering analysis showed some similarity between hy-
poxia and ID treatments in neuronal cells. In metabolism, both hypoxia and ID reduced the
abundances of proteins involved in cholesterol metabolism and increased the abundances
of proteins involved in fatty acid beta oxidation. In protein homeostasis, both hypoxia and
ID significantly lowered the abundances of proteins involved in transcriptional activity,
protein synthesis, and autophagy-mediated protein degradation pathways. In cellular
signaling, both hypoxia and chronic iron deficiency led to the significant downregulation of
mTORC1 signaling. As both hypoxia and ID led to the activation of HIF1-a protein through
PHD-HIF1-a axis, potentially the similar effects between hypoxia and ID were mediated by
the PHD-HIF1-a pathway. On the other hand, our analysis also revealed distinct biological
processes that responded differently to hypoxia and iron deficiency. For example, in energy
metabolism, chronic iron deficiency had a profound effect on classical hypoxia response
pathways, including the upregulation of glycolysis pathways and the downregulation of
electron transport chain in the oxidative phosphorylation pathway, while acute hypoxia
treatment did not have a significant impact on the oxidative phosphorylation pathway, but
had a stronger effect on the activation of fatty acid beta oxidation in neuronal cells. In pro-
tein homeostasis, only hypoxia treatment strongly affected the polyubiquitination pathway
by reducing linkage-specific ubiquitination and upregulating the ERAD-mediated protein
degradation pathway. In epigenetic regulation, iron deficiency and hypoxia regulated
histone acetylation through a different mechanism. Iron deficiency (acute iron deficiency
in particular) led to a decrease in the abundance of acetylation enzymes, including both
histone deacetylases and acetyltransferases, while acute hypoxia significantly increased the
abundances of members in histone acetyltransferase complexes, without strongly affecting
the abundances of enzymes in the histone acetylation pathway. Hypoxia and chronic
iron deficiency decreased the abundances of site-specific histone methylation pathways
including H3K4, K9, K27, and K36, as well as DNA methylation. In iron ion regulation,
both chronic and acute iron deficiency, but not hypoxia, led to the significant decrease
in protein abundances involved in iron homeostasis and sequestration. Finally, in cell
signaling, hypoxia, but not iron deficiency, significantly downregulated protein kinase
B signaling, while iron deficiency, but not hypoxia, significantly upregulated the VEGF
signaling pathway. Since all treatment conditions activated HIF1-a, the differential effects
between hypoxia and ID treatments were likely driven by iron-dependent mechanisms
unrelated to HIF1-a.

Mitochondria complex I is an essential component of the electron transport chain with
eight iron–sulfur clusters. Reduced complex I activity in neurons is an underlying etiology
for many neurological diseases, such as Parkinson disease and Alzheimer disease, and the
normal function of complex I, is essential for neuronal development and neural stem cell
differentiation [56–58]. The decreased complex I activity may also contribute to increased
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oxidative stress and protein damage in neurons [57]. Our CORUM complex enrichment
analysis showed that chronic iron deficiency, but not acute iron deficiency or acute hypoxia,
led to a significant downregulation of many members of mitochondrial complex I and
thereby inhibited its activity. The ID-induced loss of complex I activity in neuron likely
increases oxidative stress to proteins and lipids, compromising neuronal development.

The moderate congruency between HT22 proteome and P15 rat hippocampal tran-
scriptome indicates a major effect of ID on neurons. The difference between these datasets
was likely stemmed from non-neuronal effects of the whole hippocampal tissue. It is
noteworthy that a common outcome of both datasets was the higher activity of HIF1, NFY,
and NRF1, which are known to regulate cellular iron homeostasis [4,48–51]. Interestingly,
we also identified MEF2 as a novel transcription factor induced by iron deficiency. While
MEF2 is a well-known key transcription factor in myoblast differentiation and muscle
formation [59], MEF2 activity can be also seen in specific excitatory synapses and play a
critical role in neuronal development [60]. MEF2 activity is regulated by protein kinase
A signaling pathway [61], which is hyperactivated in chronic iron deficiency [21]. There-
fore, it is likely that iron deficiency in neurons modifies excitatory synaptic function by
inducing MEF2 activity through protein kinase A signaling. Our study suggests a new iron
deficiency-induced regulatory pathway that may contribute to the abnormal development
in iron-deficient hippocampus.

Collectively, this study revealed distinct neuronal transcriptome and proteome re-
sponses to the hypoxia- or ID-induced stresses and confirmed that in vitro cell-based system
can represent a good model to dissect the mechanisms by which iron availability alters
gene regulation and protein dynamics in neuronal cells.

4. Materials and Methods
4.1. The P15 Rat Hippocampal Transcriptome

The P15 rat hippocampal transcriptome from our prior study [36] was re-analyzed
using more advanced molecular tool kits in order to perform parallel analyses and to
integrate with the proteomic data from HT22 neuronal cells. Total RNA from 15 rat
hippocampi were processed for this study—iron deficient (N = 6) and iron sufficient
(N = 9). Changes in gene expression between iron-deficient (experiment) and iron-sufficient
(control) samples were determined using p-value < 0.05 adjusted for multiple comparison
(Benjamini–Hochberg correction).

4.2. Quantitative Proteomics Analysis
4.2.1. Cell Culture

HT22 mouse hippocampal neuronal cells (A gift from Dr. Schubert, Salk Institute,
La Jolla, CA, USA) were maintained in Dulbecco’s modified Eagle’s cell culture medium
(DMEM) (Gibco, Waltham, MA, USA) containing 1% penicillin–streptomycin (Corning,
Glendale, AZ, USA) and 10% fetal bovine serum (FBS) (Sigma, St. Louis, MO, USA).
Cells were incubated in a humidified cell culture incubator set at 37 ◦C and 5% CO2. To
accomplish SILAC labeling, HT22 cells were cultured in DMEM for stable isotope labeling
in cell culture (SILAC) (Thermo, Waltham, MA, USA). DMEM media for heavy SILAC
labeling was supplemented with 10% dialyzed FBS (Gibco), 1% penicillin–streptomycin,
25 mg/500 mL proline, and 13C6

15N4-l-arginine and 13C6
15N2-l-lysine. DMEM media for

light SILAC labeling was supplemented with 10% dialyzed FBS (Gibco), 1% penicillin–
streptomycin, 25 mg/500 mL proline, and 50 mg/500 mL l-arginine and l-lysine. HT22
cells were labeled in SILAC media for over 6 generations before treatment. To study iron
deficiency, deferoxamine (Sigma-Aldrich, St. Louis, MO, USA) was solubilized in DMSO.
Heavy SILAC labeled HT22 cells were treated either for 6 h with 100 µM deferoxamine for
acute iron deficiency or 24 h with 10 µM deferoxamine. Light SILAC labeled untreated
control cells were prepared with a final DMSO vehicle concentration of 0.7%. To study
hypoxia, heavy SILAC-labeled HT22 cells were incubated in a hypoxia chamber (1% O2,
94% N2, 5% CO2) set at 37 ◦C for 6 h. Light SILAC-labeled HT22 cells were prepared as a
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normoxia control by incubation in a humidified incubator (18% O2, 77% N2, 5% CO2) set at
37 ◦C for 6 h.

4.2.2. Cell Lysis

Following treatment, HT22 cells were washed two times with cold PBS (Gibco, Life
technologies). Cells were directly lysed on the plate with boiling lysis buffer composed of
6 M guanidinium hydrochloride (GnHCl), 100 mM Tris at pH 8.5, phosphatase inhibitor,
and protease inhibitor. Cell lysate was collected, boiled for 10 min, solubilized by micro tip
sonication, and processed by high-speed centrifugation for 10 min.

4.2.3. Peptide Preparation

HT22 cell lysate protein concentration was measured by Bradford assay (Thermo,
Waltham, MA, USA). The heavy and light SILAC labeled lysates were mixed together
in a 1:1 (w/w) ratio. Proteins were reduced with tris(2-carboxyethyl)phosphine (TCEP)
(5 mM), alkylated with iodoacetamide (5 mM), and blocked with cysteine (5 mM). Lysate
was diluted to 1M GuHCl with 50 mM Tris, pH 8.5 and the pH was adjusted to pH 8.0
with 5 mM ammonium bicarbonate. Proteins were digested into peptides using Trypsin
(Promega, Madison, WI, USA) using a 1:50 (w/w) enzyme/protein ratio overnight at
37 ◦C and again using a 1:100 (w/w) ratio for 2 h at 37 ◦C. The peptide sample was
centrifuged for 10 min at 2000 rpm and concentrated with a Sep-Pak C18 cartridge (Waters,
Milford, MA, USA). Peptides were extracted from the Sep-Pack cartridge using 1.2 mL
80% acetonitrile (ACN). The peptides were concentrated by vacuum centrifugation before
storage at −80 ◦C.

4.2.4. Offline High pH Reverse-Phase HPLC Fractionation

Up to 2 mg of peptides were solubilized in 10mM ammonia formate (pH 8.0). Peptides
were fractionated using an Agilent 1100 HPLC (Agilent, Santa Clara, CA, USA). Peptides
were loaded onto a Waters XBridge peptide BEH C18 column (3.5 µm, 4.6 × 150 mm) and
separated using high pH reverse-phase chromatography. Buffer A was composed of 10 mM
ammonia formate in water at pH 10.0 and buffer B was composed of 10 mM ammonia
formate in 90% ACN at pH 10.0. Peptides were separated using a flow rate of 1 mL/min
and a linear gradient of 3% B–35% B for 45 min, 35% B–95% B for 8 min, 95% B–3% B for
2 min and equilibrated at 3% B for 5 additional min. Fractions of 1 min were collected
across the entire gradient and concatenated into a total of 4 fractions. Separated peptides
were lyophilized and desalted with C18 spin columns (Thermo Scientific).

4.2.5. LC-MS/MS Acquisition

Peptides were solubilized with 0.1% formic acid in water (v/v) and processed by
an Orbitrap Fusion mass spectrometer (Thermo Scientific, Waltham, MA, USA) with an
online Proxeon Easy nLC 1000 Nano-UPLC system (Thermo Scientific, Waltham, MA, USA).
Peptides were processed on the Proxeon liquid chromatography system containing a self-
packed nano column (50 cm × 100 µm, ReproSil-Pur Basic C18, 2.5 µm, Dr. Maisch GmbH)
set at 55◦C. Buffer A was composed of 0.1% formic acid in water (v/v) and buffer B was
composed of 0.1% formic acid in acetonitrile (v/v). Peptides were separated using a flow
rate of 300 nL/min and a gradient of 5% B–22% B for 79 min, 22% B–32% B for 11 min, 32%
B–95% B for 10 min before column re-equilibration. Peptide ions were ionized by positive
polarity electrospray and precursor ions were detected by the orbitrap. The Orbitrap
acquisition parameters were set for a mass range of 380–1800 m/z and resolution of 120,000
at 200 m/z. Ions were then selected using a mass tolerance of ±25 ppm and using dynamic
exclusion (15 s). Selected ions were fragmented with high energy collisional dissociation
(HCD) set at 30%. Fragment ions were detected using the linear ion trap set with an
isolation window of 1.6 m/z.
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4.2.6. Sequence Database Searching and Data Processing

Raw mass spectrometry data was processed with MaxQuant (version 1.5.3.12) [62].
The integrated Andromeda search engine performed peptide identification using default
settings, the UniProt mouse database and a 1% false discovery rate (FDR) [63]. Additional
settings included the fixed modification of cysteine carbamidomethylation and the variable
modifications of methionine oxidation and protein N-termini acetylation. Two missed
tryptic cleavages were permitted, and the quantification multiplicity was set at three. The
median of the normalized peptide ratios was used to calculate the protein ratios. Only
quantification from either unique peptides or peptides categorized as “Occam’s razor”
were used for the median calculation.

4.3. Functional Annotation and Clustering

The protein quantification data was divided into four quantiles according to the
normalized SILAC H/L ratio to perform clustering analysis. The quantiles were generated
by dividing the data into four log2 ratio ranges: less than −1, −1 to 0, 0 to 1, and greater than
1, respectively. Statistical enrichment analysis using the hypergeometric test was performed
for each quantile with the R package GOstats [64]. Enrichment analysis was performed
using the Pfam domains, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway,
and Gene Ontology—molecular functions, biological processes, and cellular compartment.
The −log10 of the p-value enrichment outcome was calculated and normalized to calculate
the z-score. For significance, 0.05 was set as the p-value cut-off threshold and 1.2 was set as
the z-score cut-off threshold—data shared in Table S3. Each enrichment analysis category
was processed with one-way hierarchical clustering (average linking and covariance value
as the distance) of the functional annotation based on the z-score. CORUM protein complex
enrichment analysis of chronic ID regulated proteins and functional annotation enrichment
analysis of upregulated genes in Rat P15 hippocampus tissue (iron deficient/iron sufficient,
p < 0.05) in P15 gene expression microarray was performed with WebGestalt focusing on
Gene Ontology (Biological Processes, Cellular Compartment) and KEGG Pathway analysis
with FDR cutoff of 0.05 [65]. Functional annotation enrichment analysis of overlapped
genes of upregulation in both rat hippocampus tissue and chronic iron deficiency treatment
in neuronal cells was performed in Metascape with p value cutoff of 0.05 [66].

4.4. Transcription Factor Enrichment

Significantly regulated proteins from the clustering analysis were analyzed with a
Web-based Gene Set Enrichment Analysis (WebGestalt), using the transcription factor target
functional database [65].

4.5. Western Blotting

To assess cellular treatment conditions, HT22 cells were grown to 80% confluency and
incubated in a hypoxia chamber (1% O2, 94% N2, 5% CO2) set at 37 ◦C for 1.5, 3, 6, 12, 24 h.
To study iron deficiency, HT22 cells were grown to 80% confluency and treated either for
6 h with 100 µM deferoxamine for acute iron deficiency, 24 h with 10 µM deferoxamine,
and 6 h with DMSO as a vehicle control. These DFO treatments occurred in a humidified
incubator (18% O2, 77% N2, 5% CO2) set at 37 ◦C. Cells were washed with PBS and lysed
with Lysis buffer containing 150 mM NaCl, 1mM EDTA, 10 mM Tris-HCl pH 8.0, 0.1%
Triton X-100 and protease inhibitor. For Western blotting, equal amounts of protein were
loaded into each lane, separated by SDS-PAGE, transferred to PVDF membranes (Millipore,
Burlington, MA, USA), before detection using anti actin (VWR, Radnor, Massachusetts)
and anti-HIF1-a (Sigma) antibodies using the manufacturer’s instructions.

Supplementary Materials: The following supporting information can be downloaded. Figure S1:
Functional annotation enrichment analysis of genes that significantly upregulated in Rat hippocampus
tissue; Table S1: Hypoxia and DFO proteinGroups Quantitation, Identification and quantification
of proteins in HT22 cells upon acute hypoxia treatment (1% oxygen for 6 h), acute iron deficiency
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treatment (100 µM DFO for 6 h), and chronic iron deficiency treatment (10 µM DFO for 24 h),
Table S2: HIF1a targets quantitation in hypoxia and DFO, The list of known transcriptional targets
of hypoxia-inducible factor 1 alpha and corresponding quantification upon hypoxia, acute and
chronic iron deficiency treatment, Table S3: Gene Ontology Annotation for (A) Biological Process, (B)
KEGG Pathways, (C) Molecular Functions, (D) PFAM Analysis, Table S4: P15 microarray raw data,
Quantification of gene expression profiles with microarray analysis on P15 rat hippocampus tissue
upon iron deficiency diet.
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