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Transposons are small, self-replicating DNA sequences found in every branch of life. Often, one
transposon will parasitize another, forming a tiny intracellular ecosystem. In some species these
ecosystems thrive, while in others they go extinct, yet little is known about when or why this
occurs. Here, we present a stochastic model for these ecosystems and discover a transition from
stable coexistence to population collapse when the propensity for a transposon to replicate comes
to exceed that of its parasites. Our model also predicts that replication rates should be low in
equilibrium, which appears to be true of many transposons in nature.

I. INTRODUCTION

Transposons are tiny intragenomic parasites found in
every branch of life [1–3]. In humans, they comprise
over 40% of our DNA and can contribute to a number
of diseases, such as hemophilia and cancer [4–6]. Unlike
most pathogens, transposons are rarely exchanged be-
tween hosts, passing instead from host to offspring like
any typical gene. The uniqueness, ubiquity, and sim-
plicity of the transposon makes it an ideal candidate for
biophysical modeling.

Two major fissures quarter the landscape of transpo-
son species: the Class I / Class II divide and the distinc-
tion between autonomous and non-autonomous elements.
Class I elements replicate through an RNA template,
while Class II elements replicate entirely as DNA. Au-
tonomous elements encode all the proteins necessary for
their replication, while non-autonomous elements must
steal these resources from their autonomous counterparts
in order to reproduce. It is common for transposons
of both classes to come in autonomous/non-autonomous
pairs [7–9].

The non-autonomous element parasitizes the au-
tonomous element by consuming its reproductive ma-
chinery. The autonomous element in turn parasitizes the
host cell. Researchers have thus advocated an “ecolog-
ical” view of elements cohabiting the same host species
[10, 11]. In particular, it has been suggested that the
autonomous/non-autonomous element interaction could
stabilize transposon populations, much like the preda-
tor/prey interaction stabilizes populations in the Lotka-
Volterra model [10].

Unfortunately, early models found that when au-
tonomous and non-autonomous elements cohabited a
host species, one or both of them went extinct [12–14].
Later models for Class II ecosystems found stable coex-
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istence only with the introduction of an ad hoc nonlin-
ear fitness function to prevent populations from diverging
[15, 16], a precondition unlikely to play a role in stabiliz-
ing most natural populations (see Appendix A). Of note,
however, Ref. [17] found stable populations in a simple
linear model for Class I element ecosystems. Thus, past
models disagree over the fate of transposon ecosystems.
In nature, some transposons persist stably over long

timescales, while others flare up sporadically or go extinct
[18, 19]. These two behaviors mirror the two dynamics
described in past models. One may therefore wonder,
what exactly determines the stability or instability of
transposon ecosystems?
Here, we probe this question by way of a general model

for interacting transposon strains in sexually reproducing
hosts. We derive our model from first principles based on
the life cycle of a simple Class II element known as a he-
litron. In this case, we find that ecosystems achieve a sta-
ble equilibrium only when the non-autonomous elements’
ability to obtain reproductive resources exceeds that of
the autonomous elements. This criterion divides transpo-
son populations into two phases, a coexisting phase and
a collapsing phase. We also show that transposition rates
and autonomous/non-autonomous element ratios should
be low in equilibrium, which appears to be true of many
transposons in nature.

II. MODEL DERIVATION

For concreteness, we base our model on the life cy-
cle of a simple type of transposon known as a helitron,
which uses a single transposase protein to replicate itself
(Figure 1, reviewed in Refs. [2, 20]). Upon binding to
the helitron, the transposase copies the helitron DNA se-
quence and inserts this copy elsewhere into the genome,
potentially harming the host. Autonomous helitrons pro-
duce transposase, while non-autonomous helitrons must
steal it from their autonomous counterparts. Since this
process requires only one transposase, the mean trans-
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FIG. 1: Helitron replication mechanism. (a) The
transposase binds to one end of the helitron and begins
peeling one strand. (b) The transposase excises and

circularizes the single strand of helitron DNA. The cell
repairs the missing material. (c) The helitron is

converted into double stranded form and moved to a
new location in the genome. (d) The helitron is inserted
into a new genomic location. Note that some details of
this process remain unknown. Please see Refs. [21–23]

for more details.

position rate should scale linearly with the transposase
concentration, at least up to a point.

There are four processes for which any model of trans-
poson populations must account:

1. Sex

2. Transposition

3. Transpositional toxicity

4. Transposon loss

In the sections that follow, we derive the effects of each
of these four processes on the distribution of transposons
in our host species. We will take the host population
to be infinite until Section IIID, wherein we analyze fi-
nite size effects. For simplicity, we assume that mating is
random and indiscriminate among members of the host
population. We also assume that mating occurs much
more frequently than the per-element rate of transposi-
tion, which appears to be true for many real-life trans-
posons in equilibrium [24–29]. The effects of toxicity and
loss are also assumed to be small, as is typically the case
in nature [30–33].

We define a strain i to be a population of transposons
with a defined set of parameters αi, ωi, and ri that
characterize its propensity to replicate, to produce trans-
posase, and to be lost from the genome, respectively. We
analyze ecosystems of many interacting strains, but we
do not consider events wherein one strain mutates into
another.

We shall conclude this section by deriving an equation
for the complete dynamics of transposon populations in

our model. Let us therefore begin by computing the effect
of each of these subprocesses on the mean transposon
count.

A. Sex

Let ϕi be a random variable denoting the number of
elements of strain i in a randomly chosen host. So long
as the population is in linkage equilibrium, which occurs
whenever mating is random, frequent, and indiscriminate
among hosts, ϕi will be Poissonian [14]. It follows that we
may compute the entire evolution of the transposon dis-
tribution simply by accounting for changes in the mean
λi = ⟨ϕi⟩. Random mating has no effect on λi, so let us
move on to processes which do.

B. Transposition

We assume that each strain i in this ecosystem repli-
cates at a rate proportional to αi and produces trans-
posase at a rate ωi. The sum

∑
j ωjϕj quantifies the

total amount of transposase being produced within the
cell, and acts as a background field stimulating the
replication of transposons. For simplicity, and because
the half-life of a transposase is typically much smaller
than the replicative timescale [34–36], we imagine that
the transposase production rate and the cellular trans-
posase concentration are proportional. The probabil-
ity of replication for a strain i will thus be given by
δpi

δt = αiϕi

∑
j ωjϕjR (

∑
k αkϕk), where we have intro-

duced the functional response R to account for the re-
duction in transposition that occurs when elements must
compete for a limited amount of transposase.

In our model, we take the functional response R to be
Holling’s type II, R(x) = a

b+cx , although the precise form
of this function is not important. What matters is that
it decays like 1

x , which should be true of any model, since
at some point the replication rate must be bounded by
the availability of free transposase or another resource.
Without loss of generality, we may absorb the constants
a, b, c into αi and ωi, to get R(x) = 1

1+x . Let us now
proceed to calculate the change in the mean transposon
count λi:
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(
dλi

dt

)
trans

= αi

〈
ϕi

∑
j ωjϕj

1 +
∑

k αkϕk

〉
(1)

= αiλi

〈
ωi

1 +
∑

k αkϕk + αi
+
∑
j

ωjλj

1 +
∑

k αkϕk + αi + αj

〉
(2)

=
αiλi

(
ωi +

∑
j ωjλj

)
1 +

∑
k αkλk

(
1 +O

(
maxl αl∑
m αmλm

))
(3)

∼ αiλi(ωi +Ω)

1 +A
(4)

where we have defined A =
∑

k αkλk, Ω =
∑

k ωkλk,
and assumed αj ≪

∑
k αkϕk ∀j, which is true when the

total transposon activity eclipses the activity of any sin-
gle element in the cell. The brackets ⟨ ⟩ denote the Pois-
son expectation value, and we have employed the formula
⟨ϕif(ϕi)⟩ = λi⟨f(ϕi + 1)⟩ to obtain Equation (2). Note
that the approximation (4) is valid because 1

1+A ∼ 1
A

for large A, and because we expect the mean number of
helitrons per host to be large [37–40]. We shall use this
approximation with abandon throughout our analysis.

C. Transpositional toxicity

In the process of replication, a transposon may kill its
host with some probability q. The probability of repli-

cation for a single strain is δpi

δt =
αiϕi

∑
j ωjϕj∑

k αkϕk
; thus,

the probability that the host is killed in this scenario

is δpdeath

δt = q
∑

i αiϕi
∑

j ωjϕj∑
k αkϕk

.

The result of this small change in the host population

will be a slight alteration to the ϕi distribution. LetN(ϕ⃗)
denote the number of hosts carrying ϕi transposons of

each strain i. The net effect of a change in N(ϕ⃗) on the
mean transposon count λi will be:

δλi = δ

∑
ϕ⃗ ϕiN(ϕ⃗)∑
ϕ⃗ N(ϕ⃗)

(5)

=

∑
ϕ⃗ ϕiδN∑

ϕ⃗ N
−

∑
ϕ⃗ ϕiN∑
ϕ⃗ N

∑
ϕ⃗ δN∑
ϕ⃗ N

(6)

=

〈
(ϕi − λi)

δN

N

〉
(7)

Thus, the change in λi will be:

(
dλi

dt

)
tox

= −q

〈
(ϕi − λi)

∑
j ωjϕj

∑
k αkϕk

1 +
∑

l αlϕl

〉
(8)

∼ −qλi(αiΩ+ ωiA)

1 +A
(9)

One may also wonder whether the helitron places some
fitness burden on its host even when it is not replicating.
In that case, we would take the toxicity to be propor-
tional to the number of helitrons and get dλi

dt ∝ λi. As
we shall see, such a term can simply be absorbed into the
term for transposon loss.

D. Transposon loss

Finally, we consider the effects of genetic drift and
transposon excision. Since each element has some rate
ri of decaying or being lost in each generation, the effect
on λi will be:

(
dλi

dt

)
loss

= −ri ⟨ϕi⟩ = −riλi (10)

E. Total mean change in transposon count

Having considered in detail the individual effects of
each of these processes, we may now obtain the total
mean change in transposon count:

d log λi

dt
=

αi(ωi +Ω)− qωiA

1 +A
− ri (11)

where we have replaced ∼ with = since this will serve
as our model for the rest of this paper. This equation is
valid so long as αi ≪

∑
j αjλj and q and ri are small.

III. RESULTS

A. Stable ecosystems consist of one autonomous
and one non-autonomous strain

When do transposon strains coexist in equilibrium
in our model? So long as we are not interested in
timescales, we may reparameterize our model such that
dt = (1 + A)dτ . Equation (11) then simplifies to a gen-
eralized Lotka-Volterra model:

d log λi

dτ
= αiωi − ri +

∑
j

(αiωj − qωiαj − riαj)λj (12)

If all strains are non-autonomous (ωi = 0), then there
will be no transposase production, and all elements will
go extinct. However, if ωi > 0 for all strains i, then
since q and ri are small, d log λi

dτ > αiωi, and λi will di-
verge. As λi grows, the toxicity of the transposons will
eventually lead to the collapse of the host population.
Therefore, stable populations must consist of at least one
autonomous and one non-autonomous strain.
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FIG. 2: Simulation of a stable system of 3 autonomous
and 3 non-autonomous strains, each starting at

λi(0) = 1, with t measured in arbitrary units. αi, ωi, q,
and ri were randomly chosen for each strain. In this

instance, αi = {.75, .36, .50, .51, .58, .56},
ωi = {0, 0, 0, .61, .77, .42}, q = .00076, ri = .0099. Note
that of the six initial strains, only two persist to t = ∞,

one autonomous and one non-autonomous.

We now proceed to show that, except on a measure-
zero subset of our parameter space, stable populations
will always consist of precisely one autonomous and one
non-autonomous strain. Let us consider the long-time
behavior of orbits by defining the long-time averages A =

limT→∞

∫ T
0

dτA

T and Ω = limT→∞

∫ T
0

dτΩ

T . For any stable

strain, d log λi

dτ will average to zero over the long term.
Thus:

αiωi − ri + αiΩ− (qωi + ri)A = 0 (13)

For these linear equations to yield a solution (A,Ω),
the 3d vectors (αiωi − ri, αi,−qωi − ri) must all lie on
the same 2d plane. This is not possible without fine-
tuning for n > 2 strains. It follows that stable ecosys-
tems should consist of exactly one autonomous and one
non-autonomous strain. This can be observed in simu-
lations of our model (Figure 2), wherein less fit strains
are whittled away until only one autonomous and one
non-autonomous strain remain.

B. Coexistence collapses when αa > αn

Having shown that stable orbits consist of one au-
tonomous and one non-autonomous strain, we now re-
strict our attention to the following two-strain model:

d log λa

dτ
= αa − ra + (1− q − ra)αaλa − (q + ra)αnλn

(14)

d log λn

dτ
= −rn + (αn − rnαn)λa − rnαnλn (15)

where a and n denote autonomy and non-autonomy, and
where we have taken ωa = 1, which can be done without

loss of generality by rescaling ra, rn, τ . Note that this
operation makes all of our parameters dimensionless.
The fixed point of these equations occurs at:

λ0
a =

rn(q + αa)

αn(ra + q)− αarn
(16)

∼ rnαa

αn(ra + q)− αarn
(17)

λ0
n =

1

αn

αaαn − raαn + rnαa(1− q − αa)

αn(ra + q)− αarn
(18)

∼ αa

αn(ra + q)− αarn
(19)

where we have again employed the approximation
q, ra, rn ≪ 1.
Since λa, λn > 0, this fixed point only exists when

q+ra
αa

> rn
αn

. The existence of a fixed point is our first
requirement for coexistence. We must now assess the
stability of this fixed point. It is easy to linearize our
equations about their fixed point and find the eigenval-

ues, αa −αn ±
√
(αa − αn)2 − 4

αaα2
n

rn

(
q+ra
αa

− rn
αn

)
. The

fixed point is stable when the real parts of these eigenval-
ues are all negative, which occurs if and only if αn > αa.
To summarize:

Orbits are stable iff
q + ra
αa

>
rn
αn

and αn > αa

We illustrate the transition from stable coexistence to
diverging/collapsing orbits in Figure 3. It is worth not-
ing that because autonomous elements have more poten-
tial points of failure and are more problematic for the
cell, we should expect ra > rn. We may also imagine
that the deleteriousness of the transposon is more signif-
icant than its decay rate, leading to q > ra, rn. Either of
these conditions will imply that whenever αn > αa, the
model automatically satisfies q+ra

αa
> rn

αn
. Thus for real

life transposons, αa = αn is probably the only relevant
phase boundary.

C. Low transposition rates and few autonomous
elements in equilibrium

Taking the ratio of λa and λn, we can see that au-
tonomous elements come to be greatly outnumbered by
their non-autonomous partners in equilibrium:

λ0
a

λ0
n

∼ rn (20)

As a result, the per-element transposition rate becomes
low near the fixed point:
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FIG. 3: Total transposon counts after long simulations.
At each point, λa + λn was evaluated at t = 10000, by

which time the system had usually equilibrated.
Parameters satisfied αaαn = 1, rarn = 10−4, and
q = 10−2. The dotted curves denote the phase

boundaries αa = αn and q+ra
αa

− rn
αn

.

(
d log(λa + λn)

dt

)
trans

=
λa

λa + λn

αa +A

1 +A
∼ rn (21)

Intriguingly, both of these results that naturally fall
out of our model appear to be the norm for helitrons and
other transposons in nature [2, 8, 24–29, 37, 39, 41–44].

D. Finite population effects

What happens when the number N of hosts is finite?
In this case, the randomness of events such as mating
cannot be neglected, and the evolution of λi becomes
stochastic. Our system may therefore be described by
a multidimensional Fokker-Planck equation whose drift
term comes from Equation (11) and whose diffusion term
we may compute from the variances of each of the four
subprocesses in our model.

Near the fixed point, the only non-negligible contribu-
tion to the variance comes from random mating, which
contributes a factor of σ2

i = 2λi

N per generation. As our
populations approach equilibrium, the λi distribution be-
comes approximately normal, centered about λ0

i , with
variance Σij . We may solve for Σij numerically using
the Lyapunov equation:

JΣ+ ΣJT +Q = 0 (22)

where Jij = (αiωj − (qωi + ri)αj)
λ0
i

1+A0 , Qij =
2γλ0

i

N δij ,
and γ denotes the number for generations per unit time,
which we may take to be γ = 1 without loss of generality.

Figure 4 illustrates a sample trajectory from our
model. We can see that even for relatively small popu-
lations (N ∼ 104), orbits converge to the expected equi-
libria, and our estimates for the fluctuation sizes are ac-
curate as well.

IV. DISCUSSION

A. Stability in Class I and instability in Class II
models

We are now in a position to understand why previous
Class II models tended towards instability. In each of
these models [12–16], the replication rates were taken to
be proportional to the transposase concentration, placing
them into the same framework analyzed herein. However,
in each of these models, the parameters αa and αn were
taken to be equal for simplicity. Unfortunately, by taking
αa = αn, past researchers placed their populations pre-
cisely on the phase boundary between coexistence and
collapse. Hence, the instability.

What can we say about the stable equilibrium found
in Ref. [17] for long and short interspersed nuclear ele-
ments (LINEs and SINEs), a common pair of autonomous
and non-autonomous Class I elements? To simplify their
model to its mean-field essence, their equations were
roughly of the form:

dλa

dt
= αaΩ− ra (23)

dλn

dt
= αnΩλa − rn (24)

These equations differ from ours in two important
ways: (a) they have no functional response, and (b) the
autonomous transposition rate is not proportional to λa.
It is the latter difference that accounts for the stabil-
ity of these equations, since the analogous transposition
parameters, αeff

a = αa

λa
and αeff

n = αn, do not have a con-
stant ratio. Therefore, if populations begin to diverge,
they will eventually reach a regime in which αeff

n > αeff
a ,

and the system will self-stabilize.

The essential difference between this model and ours
arises from the fact that in the LINE replication process,
the transposase is imagined to bind immediately to the
LINE transcript that generates it, rather than binding to
a random element in the DNA [45, 46]. This is known
as “cis-preference” and occurs in some other Class I el-
ements as well, but does not occur in Class II elements
[47, 48]. It follows that cis-binding Class I ecosystems
should be stable, while Class II ecosystems may be sta-
ble or unstable.
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FIG. 4: Simulation of a finite population of autonomous and non-autonomous elements. Parameters used:
λa(0) = λn(0) = 1, αa = 1, αn = 2, q = ra = rn = 10−2, N = 4096. (left) Dynamics of λa and λn. The infinite

population equilibrium values λ0
a and λ0

n are indicated by dashed lines, while the dotted lines denote fluctuations of
size

√
4Σaa and

√
4Σnn. (right) Orbit of λa and λn with fixed point and 4Σ ellipse.

B. Predictions of the model

Aside from the coexistence or collapse of helitron pop-
ulations, our model also makes the following two quanti-
tative predictions:

(i) That non-autonomous elements should outnumber
autonomous ones, at least in equilibrium.

(ii) That per-element transposition rates should be low
in stable populations.

Our first prediction, although counterintuitive, has
been confirmed numerous times [2, 37, 39]. Heuristic
arguments for the fitness advantage of non-autonomous
elements over autonomous ones have been given by many
previous authors (see [10] for example). If our results are
correct, then we have derived the first formula to quantify
this preponderance.

Our second prediction, that per-element transposition
rates should be low, has been verified in helitrons and
many other transposons [24–29]. One explanation for
this phenomenon could be that hosts have evolved to
suppress transposons, but if this is the case, then why
haven’t hosts been able to suppress viruses to a similar
extent? The threat posed by viruses is far greater, yet
their replication rates remain many orders of magnitude
higher. In our model, we show instead that transposons
can be kept in check by other transposons rather than by
the host.

Do these results hold for transposons other than he-
litrons? Let us consider the aforementioned case of
LINEs and SINEs, which together occupy one third of
the human genome [4]. Since active SINEs outnumber
LINEs at least ten to one, they clearly satisfy (i) [42, 44].

And since both elements transpose on the order of once
per hundred generations, amounting some 10−4 replica-
tions per active element per generation, they also satisfy
(ii) [41, 43]. Therefore, these results may be much more
universal than one may expect from this simple model.

C. Concluding remarks

Can this model explain the survival or collapse of real-
life transposon populations? This question is difficult
to answer, as the relevant parameters for natural pop-
ulations have not been measured. However, since αi is
essentially a measure of transposase affinity, one could
perform an experiment to test our αn > αa criterion in
any number of transposon species and compare the re-
sults to natural populations.

In this article, we derived some simple equations for
the stability and properties of transposon ecosystems
which appear to explain the behavior of diverse trans-
poson species. In particular, we have shown how subtle
parameter changes can cause transposon populations to
diverge dramatically, which could shed light on why sim-
ilar species can have such vastly different genome sizes
[49]. Transposons are an ancient and ubiquitous part of
life on Earth, and are the most abundant elements of our
DNA. These results shed light both on the evolution of
Eukaryotes and on the dynamics of modern genomes.

All code used to generate our plots is freely available
at github.com/moyja/transposon paper
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Appendix A: On superlinear toxicities

Consider a single transposon which replicates at a rate
β and which causes the host to perish at a rate γ1. In
this case, the mean rate of change in transposon count
will be dλ

dt = (β − γ1)λ. Since such a model admits no
nonzero equilibrium, we may be inclined to introduce a
nonlinear term to the toxicity, resulting in the following
equation:

dλ

dt
= (β − γ1)λ− γ2λ

2 (A1)

This simple approach was advocated in the earliest
models for transposon population dynamics to ensure
the existence of a stable equilibrium population, and
has continued to be used in more recent studies as well
[15, 16, 50, 51]. However, in order to obtain such a term,
there must be some mechanism by which the transpo-
son toxicity compounds more than linearly in λ. Such
a mechanism can either be transposition-dependent or
transposition-independent.

The former case includes effects like insertional muta-
genesis. Conceivably perhaps, the transposition of two
elements in close succession could kill the host with high
probability, while a single transposition would not. But
as we mentioned earlier, the most abundant transposons
in the human genome replicate just once per thousand
years [41, 43]. It is therefore difficult to imagine how any
such interaction could occur.

The latter case includes effects like ectopic recombi-
nation, which was once the most popular hypothesis to
explain this phenomenon [52, 53]. In this case it is imag-
ined that the presence of transposons in the genome may
disrupt the DNA recombination machinery and lead to
fatal errors in crossing over. This view is articulated in
Ref. [13]:

“A balance between transposition and selection can be
achieved, but only if the logarithm of the fitness of an
individual with i copies of a transposable element de-
clines more than linearly with i. This selection could
arise through ectopic recombination with the transpos-
able elements acting as scattered sites of homology in the

chromosomes. The frequencies of such events will in-
crease with the square of transposable element copy num-
ber. One interesting aspect is that the selection arises
purely because these sequences are interspersed repetitive,
and not because of any transposition process that they are
undergoing.”

There is ample evidence that transposons do indeed
cause ectopic recombination, but this only implies a
nonzero contribution to γ1 [54, 55]. To gain insight
into the contribution of ectopic exchange or of any other
transposition-independent mechanism to γ2, let us con-
sider the case of transposition-incompetent elements.

Though our genomes are saturated with transposons,
the vast majority of them are no longer capable of trans-
position, having lost or damaged sequences critical to
their replication [11, 18, 38, 56–60]. If these “dead” trans-
posons posed a meaningful threat to host fitness, then we
would expect to see them quickly removed from the pop-
ulation. Their “live” cousins may also be deleterious,
but at least they have the capacity to replicate to off-
set this shortcoming, and they should therefore be fitter
and more abundant than their transposition-incompetent
counterparts.

To make this argument more mathematically precise,
let us decompose our simple model into “live” and “dead”
populations:

dλlive

dt
= (β − γ1)λlive − γ2λlive(λlive + λdead) (A2)

dλdead

dt
= −γ1λdead − γ2λdead(λlive + λdead) (A3)

If λlive ≪ λdead, we may neglect its quadratic contribu-
tion to the γ2 term, leaving us again with a linear differ-
ential equation with no equilibrium. Furthermore, since
dλdead

dt < dλlive

dt , the dead transposons will be whittled out
of the population. Thus, the transposition-independent
hypothesis is not consistent with the observed prepon-
derance of transposition-incompetent elements.

Finally in all of these models, we would expect trans-
posons to evolve to ever-increasing replication rates,
which would appear to be possible by comparison with
viral replication rates, but in nature we tend to see very
low transposon replication rates [24–29]. On all of these
grounds, we must reject the notion that nonlinear toxic-
ities are relevant to stabilizing transposon populations.
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