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Abstract

Microglia, the resident innate immune cells of the central nervous system (CNS), 
play an important role in brain development and homoeostasis, as well as in neu-
roinflammatory, neurodegenerative and psychiatric diseases. Studies in animal models 
have been used to determine the origin and development of microglia, and how 
these cells alter their transcriptional and phenotypic signatures during CNS pathol-
ogy. However, little is known about their human counterparts. Recent studies in 
human brain samples have harnessed the power of multiplexed single-cell technolo-
gies such as single-cell RNA sequencing (scRNA-seq) and mass cytometry (cytometry 
by time-of-flight [CyTOF]) to provide a comprehensive molecular view of human 
microglia in healthy and diseased brains. CyTOF is a powerful tool to study high-
dimensional protein expression of human microglia (huMG) at the single-cell level. 
This technology widens the possibilities of high-throughput quantification (of over 
60 targeted molecules) at a single-cell resolution. CyTOF can be combined with 
scRNA-seq for comprehensive analysis, as it allows single-cell analysis of post-
translational modifications of proteins, which provides insights into cell signalling 
dynamics in targeted cells.  In addition, imaging mass cytometry (IMC) has recently 
become commercially available, and will be useful for analysing multiple cell types 
in human brain sections. IMC leverages mass spectrometry to acquire spatial data 
of cell–cell interactions on tissue sections, using (theoretically) over 40 markers at 
the same time. In this review, we summarise recent studies of huMG using CyTOF 
and IMC analyses. The uses and limitations as well as future directions of these 
technologies are discussed.
In this review, recent studies of human microglia using mass cytometry and imaging 
mass cytometry analyses are summarized. The use and limitations as well as future 
directions of these technologies are discussed.

INTRODUCTION
The cellular network of  the human brain is highly dynamic 
and complex, yet, well-organised and controlled. Its cel-
lular dynamics traverse between segregated and integrated 
states overtime, across different cell types and regions. 
Myeloid cells of  the CNS include microglia and CNS-
associated macrophages (CAM), as well as infiltrating 
monocytes, all of  which are key players in this network. 
The origin and development of  parenchymal microglia and 
CAMs (these are meningeal, perivascular and choroid 
plexus macrophages) are well studied in the mouse CNS 
(28,29,38,47,54,71), whereas little is known about their 
human counterparts. Recently, a study using single-cell 
transcriptomic profiling has demonstrated that during early 

foetal development [gestational week (GW) 9 to 18] human 
foetal microglia are highly heterogeneous (41). By mid-
gestation (around GW13), foetal microglia display pheno-
typic profiles and functional properties of  mature microglia, 
especially the gene programmes necessary for immune-
sensing, synaptic pruning, phagocytic and tissue-supportive 
functions. These findings suggest the importance of  micro-
glia during early foetal development, possibly in response 
to environmental perturbations during pregnancy. However, 
the origin of  this cell population and a complete knowl-
edge of  its development remain to be investigated in the 
human system.

Studies in mouse models have also revealed microglia as 
important contributors to neuronal circuit formation and 
function during development, homoeostasis and disease (63). 
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They maintain brain homoeostasis by shaping and protect-
ing the structural and functional integrity of the CNS 
(47,60,73). Under disease conditions, microglia rapidly react 
to changes in their local environment and either become 
harmful to neurones or provide protection, resolving neu-
roinflammation and/or limiting neurodegeneration (63). Due 
to their wide range of phenotypes and functions, it has 
long been proposed that microglia display phenotypic and 
functional heterogeneity (26,48). However, it remains elusive 
whether the diversity of specialised microglial subsets is a 
pre-existing feature of healthy human brains, or the result 
of context-dependent phenotypic and functional changes 
over time. Additionally, it is also not well understood how 
these unique microglial subsets respond under disease condi-
tions. Understanding the mechanisms and factors that regulate 
microglial homoeostasis and function may provide avenues 
for therapeutic intervention.

Recent advances in single-cell technologies such as single-
cell RNA sequencing (scRNA-seq) have enabled characterisa-
tion of the complexity of human microglial transcriptional 
landscape (41,47,68). In the healthy adult brain, scRNA-seq 
revealed that adult microglia are commonly less heterogene-
ous, compared with microglia in developing brains (41,47). 
Mature microglia exist in a spectrum, with no obvious dis-
tinction between transcriptional states, rather than unique 
subsets with distinct transcriptional profiles (47,68). 
Homoeostatic microglia could be identified by their expres-
sion of microglial core genes such as  TMEM119,  CX3CR1, 
P2RY12 and  SLC2A5  (47,68). A rare microglial population 
was characterised by high expression of chemokine genes, 
including CCL2, CCL4 and IL1B (47,68). Furthermore, the 
distribution of the defined microglial subsets was shown to 
be region-dependent (68). Under CNS pathology, greater 
complexity of microglial subsets was observed. ScRNA-seq 
assessment of human microglia isolated from the brain biop-
sies of patients with multiple sclerosis (MS) defined microglial 
subsets which were associated with or enriched in the MS 
brain (47). MS-associated microglia downregulated microglial 
core genes TMEM119, CX3CR1, P2RY12 and SLC2A5, and 
had increased levels of expression of  MHC class II-related 
molecules, such as CD74, HLA-DRA, HLA-DRB1 and HLA-
DPB1, APOE, SPP1 and MAFB (47). Similarly, downregula-
tion of the core genes including CX3CR1  and SELPLG was 
also found in microglia from glioblastomas, determined by 
scRNA-seq (68). Glioma-associated microglia were charac-
terised by different expression levels of hypoxia-associated 
genes such as  HIF1A  and  VEGFA, the interferon-related 
gene  IFI44, SPP1, HLA-DRA, APOE or CD163  (68), which 
again demonstrated microglial heterogeneity in the diseased 
human brain.

Together, single-cell transcriptional analysis showed het-
erogeneity of human microglia during early development and 
in the adult brain. These cells show context-dependent sig-
natures in the diseased brain at the single-cell mRNA expres-
sion level. In addition to scRNA-seq assessment, single-cell 
proteomics/protein expression of human microglia has been 
successfully assessed using mass cytometry. In this review, 
we summarise recent findings on microglial heterogeneity and 
disease-associated diversity at the single-cell protein 

expression level, determined by CyTOF and IMC. We also 
discuss herein the uses and limitations of these techniques 
for future studies of human microglial function.

USE OF CYTOF IN SINGLE-CELL HUMG 
CHARACTERISATION
CyTOF enables high-dimensional protein analysis of immune 
cells by way of antibodies bound to rare heavy metal iso-
topes, which label proteins of interest on the surface, in 
the cytoplasm and in the nucleus of cells (7). In Figure  1, 
we provide a diagram showing how CyTOF works. Briefly, 
the (metal-tagged) antibody-labelled cells are passed through 
a nebuliser to create single-cell droplets, which then are 
ionised using inductively coupled plasma (ICP). The ionised 
particles are passed through a quadrupole to remove cellular 
debris from the rare heavy metal ions, and are then, quanti-
fied using TOF mass spectrometry (7). The output data 
shows which ions, and therefore, specific antibodies, were 
associated with one cell. CyTOF can be used to study post-
translational modification of proteins including protein 
phosphorylation in cell signalling (17,52), which greatly 
complements a limitation of scRNA-seq. Cell signalling 
proteins and histones undergo phosphorylation, methylation 
and acetylation as the cell responds to signals and activates 
different signalling pathways. Disruptions in histone acetyla-
tion were observed in the microglia of mice showing signs 
of depression following Bacillus Calmette–Guérin (BCG) 
vaccination (66). Single-cell immune phenotyping using 
CyTOF has been successfully combined with the analyses 
of histone modification patterns and epigenetic codes at 
the single-cell level (17). This strategy is promising in that 
it provides highly comprehensive data, which would allow 
us to better understand the complex biology of the targeted 
cells.

While CyTOF has a clear advantage in terms of panel 
breadth when compared to flow cytometry, scRNA-seq data 
are much more highly dimensional. ScRNA-seq directly 
reveals all the transcripts expressed by a cell at that moment, 
without any biases that may result from panel design, marker 
(antibody) selection and affinity/specificity of the antibodies 
used. CyTOF experiments are still practically limited to 
around 60 markers (theoretically 120 markers) (32,33,49), 
meaning that researchers must still focus in on particular 
types or functions of cells. Another considerable limitation 
of this technology is significant variation in signal intensity 
over time and across machines, which limits the application 
of CyTOF in multi-site or longitudinal studies. Nevertheless, 
normalisation methods and algorithms and the use of anchor 
samples have been developed to improve the reproducibility 
and comparability of CyTOF results across experiments and 
study sites (21,39,44,77).

USE OF IMAGING MASS CYTOMETRY 
(IMC) IN HUMG CHARACTERISATION
Recently, imaging mass cytometry (IMC) was developed by 
combining typical immunohistochemistry (IHC) techniques 
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Figure 1.  Analytical workflow for mass cytometry (CyTOF) and imaging 
mass cytometry (IMC). In IMC analysis, tissue of interest is sliced and 
slide mounted. Depending on the state of the tissue, antigen retrieval 
or deparraffinisation steps may be required. The slide is stained with a 
panel of antibodies conjugated to heavy metal isotopes. Regions of 
interest (ROI) are selected and ablated µm by µm by a UV laser. The 
tissue and associated isotopes are introduced into the mass cytometer 
and ionised by inductively coupled plasma (ICP). For CyTOF 
measurement, biopsy or autopsy samples are taken and processed 

into a single-cell suspension. Depending on the tissue and cells of 
interest, this may involve enzymatic digestion or cell enrichment. The 
single-cell suspension is stained with a cocktail of antibodies conjugated 
to heavy metal isotopes (usually up to 40), and then, the stained cells 
are passed through a nebuliser to create single-cell droplets. 
Subsequently, the droplets are ionised by ICP. The ion cloud from each 
µm (IMC) or droplet (CyTOF) is analysed using time-of-flight (TOF) mass 
spectrometry, to quantify which ions are associated with a single spot 
or droplet.
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and mass cytometry to investigate samples in solid state 
(27). In IMC analysis, several tissue types such as fresh 
frozen and formalin-fixed paraffin-embedded (FFPE) speci-
mens can be used. Samples mounted as a slice are stained 
with metal-tagged antibodies using IHC protocols with or 
without the use of antigen retrieval. Subsequently, regions 
of interest are selected from each sample and ablated with 
a UV laser at a resolution of 1  µm. The resulting ionised 
mass is then fed to a time-of-flight (TOF) mass spectrometer 
and the metal abundances for each spot are recorded 
(Figure  1). The information for each spot is then tracked 
back to the original coordinates reconstructing an ‘image’ 
from the original section, similar to what is obtained in 
fluorescence microscopy (27), with the advantage that (theo-
retically) around 40 markers can be measured simultaneously. 
Unlike CyTOF, in IMC the information acquired by the 
mass spectrometer does not correlate with a single-cell but 
with a coordinate, thus, a pre-processing single-cell segmen-
tation step is needed for each image, in order to analyse 
the single-cell data. The information obtained from each 
sample allows for morphological, spatial and network analysis 
of cell subpopulations in relation to their local environment, 
enabling a detailed description of tissue architecture in 
healthy and pathological conditions at an unprecedented 
level of dimensionality. From a technical standpoint, there 
are several differences between CyTOF and IMC, which 
may impede a direct comparison of results obtained from 
the two technologies. The first is the throughput of data 
acquisition. CyTOF uses multiplexed samples commonly 
isolated from a large brain tissue (~2–10  g), allowing higher 
throughput than IMC, which images a single 1-mm2 area 
of interest each time. Second, single cells analysed by CyTOF 
are isolated from brain tissue, thus, resulting cell popula-
tions are influenced by the isolation protocol used. IMC 
analyses cell populations without a cell isolation step and 
all cell types residing in the tissue can be analysed or detected 
with specific antibodies. Finally, there is usually no restric-
tion of combining metal-tagged antibodies in CyTOF analysis, 
whereas tissue types (frozen or FFPE) and/or an antigen-
retrieval protocol are the main factors affecting the antibodies 
compatible in one IMC panel. This restriction, in turn, 
limits the dimensionality of the IMC data (12). The advan-
tages and limitations of IMC versus other imaging techniques 
have been discussed elsewhere (27). Briefly, while some of 
the most widely used techniques can give a better resolution 
(e.g. electron microscopy, fluorescence-based IHC with con-
focal microscopic analysis), none of them can acquire such 
high number of markers simultaneously. The few other 
high-dimensional techniques have the disadvantage of either 
low resolution (MALDI) or much higher times of sample 
processing and acquisition, as in sequential immunofluores-
cence staining (SIFS). Although SIFS gives higher resolution 
and is theoretically able to acquire up to 60 markers from 
the same sample, it has disadvantages of large acquisition 
times (up to weeks in some cases), large data sets (which 
require high computational capacity) and a disturbance of 
certain antigens and/or area of interest between staining 
cycles which further hamper a quantification (78).

IMC has been used to study human cancer (3,15,25,27), 
diabetes (19,79), immune cell development (45,84) and human 
microglia in multiple sclerosis (12,59,65). Although results 
obtained from recent studies on human microglia using IMC 
are still limited due to small sample cohorts and the number 
of investigated markers (12,59,65), these works demonstrate 
the power of this technology to study phenotypic changes 
of microglia and their correlation with spatial location in 
diseased brain at high resolution. Nevertheless, continuing 
efforts to optimise and standardise IMC staining are needed. 
In particular, optimisation of antigen retrieval for IMC 
analysis of brain tissue is necessary to increase the number 
of investigated markers in one measurement, and thus, 
enhances dimensionality of the data per measurement.

EXPERIMENTAL DESIGN AND DATA 
ANALYSIS

Collection of human brain tissues

Commonly, human brain specimens can be obtained as 
autopsy tissues (12,13,23) or fresh biopsies, which are surgi-
cally resected, for example, from patients with refractory 
epilepsy or brain tumours (13,22,30,68). Collection of huMG 
for immune profiling study is complex and involves several 
contextual dependencies, including the specific disease context, 
biological hypotheses, types of brain specimen (fresh biopsy 
vs. autopsy), the study and control groups and sample pres-
ervation. Some of these aspects of experimental design are 
discussed in this section. In addition, in Figure 2 we provide 
a flow diagram of practical considerations often encountered 
when planning huMG collection and analysis, including 
sample processing and antibody staining.

A significant challenge in investigations of huMG in both 
healthy and diseased brains is the selection of appropriate 
control tissue. Often, biopsy tissue is used as a control. Recently, 
we have demonstrated similarities and differences in microglial 
profiles between fresh biopsy (taken from the margins of 
epileptogenic focus) and autopsy tissues (13), determined by 
CyTOF. These phenotypic differences could be explained by 
differences between live/biopsy versus post-mortem/autopsy 
tissue, or by differences between epileptic versus non-epileptic 
tissue. It has been shown that some properties of huMG 
from the epileptogenic focus and margins are comparable (83). 
Therefore, special care should be taken when the margins of 
the epileptogenic focus or brain tumours are used as ‘control’ 
brain tissues. Other factors may also affect the phenotype of 
control and study MG. It has been shown in a study  
of brain autopsies from over 100 brain donors that the pH 
of cerebrospinal fluid (CSF) rather than age or post-mortem 
delay significantly affected microglial viability and possibly 
their phenotype (53). However, these conclusions were drawn 
based on few phenotypic markers, and thus, may underestimate 
the changes induced by age and/or post-mortem delay, or 
may overestimate the effects of CSF pH. More markers need 
to be analysed to conclude anything definitive about the 
responses of microglia to changes in CSF pH. Nevertheless, 
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it is advisable to report CSF-pH of the donors at the time 
of brain autopsy.

Several other aspects of  sample collection, processing 
and storage should also be considered during experimental 
design. In vivo, spatiotemporal characterisation of  longi-
tudinal huMG studies, of  the sort which are feasibly and 
repeatedly performed on inbred animal strains (29,37,38,47), 
remain out of  question for human studies. This means 
that an ex vivo study of  huMG provides only a snapshot 
(in time and space) of  their phenotypic and functional 
complexity. High inter-individual variability is also com-
mon in human sample cohorts, which can influence the 
interpretation of  the resulting data. An experiment design 
involving several cell types and/or compartments (e.g. 
peripheral blood, cerebrospinal fluid and brain regions) 
from the same individual may increase the power of  sta-
tistical analysis (e.g. by performing paired testing), as well 

as allow validation of  antibody specificity intra-individually 
[e.g. PBMCs can be used as a negative control for P2Y12-
antibody staining (13)]. Finally, although massive cell loss 
can occur during CyTOF measurement, we have demon-
strated that it is feasible to analyse samples with a low 
cell number (103–104 cells) by using barcoding (multiplex-
ing) prior to storage (13).

One of the major factors limiting research on human 
microglia is their susceptibility to cryopreservation damage 
and environmental changes. For example, cryogenic storage 
using freezing medium containing 10% of dimethyl sulph-
oxide (DMSO) significantly affected cell recovery, phenotypes 
and RNA quality (53). Therefore, the phenotypic charac-
terisation of huMG has long relied on low-dimensional, 
immunohistochemical analysis of post-mortem brain tissue 
[commonly formalin-fixed paraffin-embedded (FFPE)] or 
fluorescence-flow cytometric analysis of freshly isolated or 

Figure 2.  Characterisation of huMG using mass cytometry. Donor (for 
brain autopsies) and/or patient (for biopsy tissues) cohorts including the 
control group are selected depending on accessibility, ethics and the 
experimental questions to be investigated. HuMG and other immune 
cells (optional) of interest can be isolated from different brain regions/
compartments. At least 104 cells per aliquot is recommended. A cell 
isolation strategy is chosen based on tissue types and cell type 
abundance and/or vulnerability (e.g. to enzymatic digestion). To minimise 
the contamination of isolated huMG fraction by remaining myelin and 
cell debris, an additional step of cell enrichment such as the 

fluorescence- or magnetic-activated cell sorting can be included. 
Isolated cells can be either analysed directly or cryopreserved as either 
live or fixed cells. In the case of immediate analysis, a workflow/protocol 
for sample normalisation is required. Live/dead fixable staining can be 
performed prior to cell fixation (optional) and cryopreservation. To 
reduce inter-run and technical variation, samples can be barcoded, 
pooled, stained and acquired as a single sample. It is advisable to 
include anchor samples to facilitate the data normalisation, and negative 
and positive control cells to enable the validation of antibody affinity and 
specificity.

Donor/Patient cohort

- Brain regions 
- Multiple cell types 
- Multiple compartments

Acquisition and data analysis
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- Accessibility and ethics
- Experimental questions
- Disease-specific context
- Control group
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Sample processing
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ex vivo cultures of huMG (50,51,53,55,61). Limitations of 
these approaches include the phenotypic changes induced 
by in vitro culture condition (30), the high autofluorescent 
background of post-mortem tissue and the restrictions in 
the number of markers that can be simultaneously investi-
gated at the same time (commonly less than 20). Alternatively, 
to minimise freeze-thaw-dependent changes in their pheno-
typic and/or functional states the isolated huMG may be 
fixed prior to cryopreservation (34). However, this strategy 
can reduce accessibility of some epitopes for antibody stain-
ing, thus, validation is required before starting the sample 
collection. We have recently validated a protocol for long-
term cryopreservation of isolated huMG and circulating 
immune cells from peripheral blood and CSF using Proteomic 
Stabiliser PROT1 (Smart Tube Inc.) (11–13), which has 
previously been used in a study of mouse microglia (2). 
Using our established protocols for cryopreservation and 
barcoding, immune cells from different compartments could 
be barcoded (multiplexed), pooled and fixed prior to cryo-
preservation, which allows simultaneous storage and analysis 
of different cell types from different compartments. Of note, 
some antibody clones may stain cells under these conditions 
better than the others, for example, we could better detect 
the CD14 epitope of the PROT1-fixed cells with the clone 
RMO52 than the clone M5E2 (own unpublished data).

Single-cell isolation

One of the major challenges in studying huMG (or the 
other CNS-resident cells such as astrocytes or CAMs) is 
the isolation of targeted tissue-resident cells from brain tis-
sues. It is crucial to obtain sufficient cell numbers and to 
prevent significant phenotypic and/or transcriptional devia-
tion from the in vivo microglial signature, and this can be 
more challenging when isolating tissue-resident cells, as 
opposed to those in the circulation. It has been reported 
for both mouse and human microglia that shortly after 
isolation (hours) or culture, microglia downregulated their 
unique signature and also altered their functional phenotype 
(9,30). Treating microglial cultures with the transforming 
growth factor β1 (TGF-β1) has been shown to provide mod-
est effects in promoting an in vivo pattern of microglial 
transcriptional landscape (30). However, molecule(s) that 
could restore full in vivo homoeostatic and functional prop-
erties of huMG remain to be identified, and it should be 
kept in mind that these may interfere with additional phe-
notypic characteristics of huMG.

In general, huMG single-cell suspensions can be obtained 
from brain tissues using an isolation protocol involving either 
enzymatic digestion (usually a collagenase/DNase solution) 
(11–13,22,50,53,57) or mechanical dissociation (23,30,57,68). 
Although it has been demonstrated that enzymatic dissocia-
tion (especially trypsinisation) greatly affected some CNS-
resident cells such as protoplasmic astrocytes (16), this strategy 
had little effect on microglia and did not influence the 
specificity of the antibody staining (13,57). In our experi-
ence, to achieve sufficient cell numbers and retain cellular 
heterogeneity for CyTOF analysis, an enzymatic digestion 
is required for the isolation of huMG from some brain 

regions such as the subventricular zone, and for the isola-
tion of CAMs such as perivascular macrophages and choroid 
plexus macrophages (13). After obtaining a single-cell sus-
pension, isolated cells are separated from myelin and cell 
debris using Percoll density gradient centrifugation. However, 
since TOF mass spectrometry is more sensitive to cell debris/
clumps (compared to flow cytometry), and a fraction of 
Percoll pre-isolated cells is often still contaminated by the 
presence of remaining myelin and cell debris, a step of cell 
enrichment such as the magnetic-activated cell sorting 
(MACS®) or fluorescence-activated cell sorting (FACSTM or 
flow cytometry) can be included following Percoll pre-isolation 
(11–13). When analysing cells using CyTOF, it is also criti-
cal to control cell viability and integrity before and during 
CyTOF measurement, which also means before and after 
cryopreservation. In CyTOF analyses, cell viability can be 
assessed through covalent binding of the platinum-containing 
chemotherapy drug cisplatin (20) or the palladium-based 
covalent reagent dichloro-(ethylenediamine) palladium (35). 
These compounds preferentially label nonviable, membrane-
compromised (dead) cells. Together with the use of metal-
containing intercalators (58), which label cellular DNA 
content, live and dead cells can be distinguished. In addition, 
apoptotic markers such as cleaved caspase-3 and cleaved poly 
(ADP-ribose)  polymerase (cPARP) can be used to confirm 
cellular integrity.

Antibody panel

Compared to scRNA-seq data, CyTOF data are much less 
high-dimensional and affected by the markers included in 
one measurement. Antibody panel design is crucial for cell 
subset identification and/or exclusion and for direct com-
parisons between studies. Recently, we have demonstrated 
the similarities and differences in clusters/subsets identified 
in the same sample using different antibody panels (10–13,85). 
An overlap of a set of phenotypic-defining markers (often 
designated as TYPE markers) between experiments can be 
used to facilitate the comparison of cell clusters/subsets 
between experiments (12). Although over 400 metal- 
conjugated antibodies for CyTOF and more than 100 anti-
bodies for IMC are commercially available from Fluidigm 
(www.fluid​igm.com), antibodies recognising most of the 
huMG-related markers including P2Y12, TMEM119, Clec7a, 
TREM2, EMR1 and GPR56 are not available as metal-
tagged format. However, metal conjugation of antibodies 
can be easily performed using, for example, a commercially 
available Maxpar® antibody labelling kit (www.fluid​igm.com) 
or previously published protocols (36). Selected antibodies 
should be then assigned to available channels according to 
the expected abundance of the targeted protein and the 
signal delivered to the detector. For the optimal delivery 
of metals to the detector, the ion optics within the CyTOF 
instrument is tuned in the 153–176  Da range. While signal 
spillover in CyTOF is much less compared with fluorescence-
based flow cytometry, natural isotopic impurity (m  +  1, 
m  +  2, etc.) and/or the oxidation of elements during meas-
urement (m  +  16) should, however, be considered in panel 
design. More details on panel design for a CyTOF study 

http://www.fluidigm.com
http://www.fluidigm.com
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are described elsewhere [(43,74), see also Maxpar Panel 
Designer, www.fluid​igm.com].

HuMG subset identification and analysis

Prior to data analysis, CyTOF data must undergo some 
pre-processing steps (Figure  3). Many CyTOF experiments 
take advantage of the Palladium-based mass tag barcodes 
for sample multiplexing (86). The de-barcoding step can be 

done using available platforms such as FlowJo (www.flowjo.
com) or Cytobank (www.cytob​ank.org). Although the use 
of metal-labelled antibodies drastically reduced channel 
crosstalk as compared with the use of fluorophores in flow 
cytometry, signal spillovers can still occur between channels, 
thus, signal compensation is required to enable the correct 
interpretation of the data. Signal spillovers can be com-
pensated using the CATALYST package (18) in R (64). 
Prior to data visualisation, we normally apply the arcsinh 

Figure 3.  Data analysis workflow for IMC and CyTOF.  Schematic 
representation of IMC and CyTOF data analysis. After acquisition, raw 
data must undergo some pre-processing steps, these include single-cell 
segmentation (IMC), sample de-barcoding (CyTOF) and signal spillover 
compensation and arcsinh transformation (IMC and CyTOF). Then, 

visualisation of the data can be done using different algorithms such as 
tSNE, UMAP and FDL or using high-dimensional image visualisation in 
IMC. Finally, unsupervised clustering can be performed and the results 
plotted back into reduced dimensionality plots and phenotypic 
heatmaps. 

Step Processing and analysis

Isotope quantification

Acquisition

Single-cell segmentation
(IMC)

De-barcoding
(CyTOF)

Signal compensation
(IMC & CyTOF)

Pre-processing

Unsupervised clustering
and 

visualisation Image visualisation
(IMC)

Dimensionality reduction plots
(IMC & CyTOF)

tSNE UMAP FDL

FlowSOM/ConcensusClusterPlus
X-Shift (VorteX: https://github.com/nolanlab/vortex)

Phenograph 

http://www.fluidigm.com
http://www.flowjo.com
http://www.flowjo.com
http://www.cytobank.org
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(hyperbolic inverse sine) with cofactor five transformation 
to account for deceptive effects of low protein expression 
signals and facilitate distinction between positive and nega-
tive populations (10–13). The pre-processed data can be 
then visualised into an interpretable reduced-dimensional 
space using, for example, the t-stochastic neighbour embed-
ding (tSNE) algorithm (4,75) and the uniform manifold 
approximation and projection (UMAP) (6) or a multilevel 
layout algorithm such as the force-directed layout (FDL) 
available in VorteX (https://github.com/nolan​lab/vortex) (67). 
To further identify different cell states/subsets as well as to 
take analysis-related variability of CyTOF data between 
studied groups into account, several algorithms for cluster-
ing analysis have been developed.

Unsupervised clustering is well suited for exploratory 
studies of tissues in which the immune populations of inter-
est have been poorly defined. These clustering methods have 
been developed to cluster cells into subsets based on the 
expression of the proteins studied, with minimal guidance 
from the researcher. Unsupervised clustering has been shown 
to reliably separate well-studied populations of cells from 
each other, but the real value of this technique lies in its 
ability to identify novel, often rare populations that are 
missed due to the biases and conventions of biaxial gating 
(10–13). Nonetheless, unlike the clustering analysis of data 
obtained from scRNA-seq, clustering CyTOF data are 
dependent on the pre-selection of proteins analysed in one 
panel (which is usually limited to around 40), thus, iden-
tification of cell populations largely relies on panel design. 
Also, in our opinion, the identified huMG clusters remain 
descriptive and could possibly be interpreted as distinct 
microglial subsets or transient cell states. Further functional 
analysis and/or cellular spatial resolution of each identified 
cluster are essential. In this current review, we describe two 
exploratory meta-clustering analyses that we commonly used 
in our laboratory: FlowSOM/Consensus-ClusterPlus (56,76,81) 
and VorteX (67).

FlowSOM (76) and ConsensusClusterPlus (81) are among 
the fastest and best-rated clustering algorithms and are part 
of common CyTOF workflows (56) adapted to the R envi-
ronment (64). FlowSOM applies the principles of self- 
organising maps (SOM), in which maps are specific types 
of artificial neural networks, consisting of a grid of nodes 
(or points in the multidimensional space), assigning each 
data point to the node that is its nearest neighbour. In the 
workflow established by Nowicka et al. (56), FlowSOM 
combines all cells from all samples and organises them in 
an initial grid of 100 nodes. These first 100 nodes are then 
used by ConsensusClusterPlus to create subsequent meta-
clusters, which facilitates readability and biological interpreta-
tion of the clusters. The selection of the correct number 
of clusters is not automatic and it is recommended to either 
cluster the data according to an expected number of cell 
types (useful, for instance, when analysing peripheral blood 
cells) or to apply the ‘elbow’ criterion (explained in the 
VorteX description below). Overclustering approaches, in 
which the number of clusters selected is higher than expected, 
may, on the one hand, be useful for exploratory studies 
(detecting of a rare cell population). On the other hand, 

this approach may result in fragmenting the biologically bona 
fide subsets and reducing cluster reproducibility between runs. 
In our CyTOF studies (10–12), we applied this strategy to 
explore rare cell populations and/or cell states in disease 
conditions, which may have remained uncovered otherwise.

VorteX is an open-access platform which uses an unsu-
pervised clustering algorithm, X-shift, to cluster data points 
according to the variables (markers) that were analysed (67). 
X-shift uses k-nearest neighbours density estimation (kNN-
DE) to assign cluster centroids to areas with a high density 
of data points, and then, the remaining data points are 
connected to their nearest centroids. k represents the number 
of nearest neighbours which are considered during cluster-
ing, meaning that the k-value is inversely related to the 
number of clusters. A low k-value will result in better reso-
lution of small or similar clusters, but these clusters will 
be more susceptible to stochastic variation. Validating the 
number of clusters which best reflects the structure of a 
data set is an important part of any clustering analysis. 
The number of clusters is determined by finding the point 
(known as the elbow point) where increasing the number 
of clusters does not explain any more of the variation in 
the data. This point can be calculated by plotting cluster 
number over k, and using line-plus-exponent regression (67). 
VorteX has several in-built visualisation tools for analysis. 
The force-directed layout (FDL) is used to plot every data 
point in the data set (or 1000 randomly sampled events 
from a cluster with >1000 points), and information about 
marker expression, cluster ID or sample origin can be over-
laid. Cells will exert an attractive force on other cells of 
a similar phenotype, and a repulsive force on those with 
a different phenotype, meaning that similar clusters will be 
grouped together. This method of visualisation differs from 
other visualisation tools which use dimensionality-reduction, 
because the full dimensionality of the data is considered 
during plotting. The attractive and repulsive forces mean 
that the data points are much less evenly distributed than 
in a tSNE plot. Another analysis tool available on VorteX 
is the divisive marker tree (DMT). This is a hierarchical 
classification tree which uses binary division to split clusters 
from the central node containing all the clusters. The DMT 
shows the markers which distinguish one cluster from another, 
to give an indication of cluster phenotype (67). The main 
limitation of VorteX is the amount of computing power 
required to cluster data sets of over one million cells. For 
large cohorts of data, or samples with many cells either 
down-sampling or a computer with a large amount of 
random-access memory (RAM) is necessary.

In the case of IMC data analysis a segmentation step 
is necessary to access single-cell information. IMC raw data 
(.mcd files) can be easily extracted as.tiff files or.csv files 
for further processing. In our current workflow image seg-
mentation (12) is performed on.tiff files using the pixel 
classifier Ilastik (8) in which the algorithm is trained by 
the user to distinguish different cell compartments such as 
cytoplasm, membrane and nuclei from background based 
on marker expression. Ilastik produces single-cell binary 
masks for each image that can be then fed to CellProfiler, 
(14) where one can either obtain the single cell data from 

https://github.com/nolanlab/vortex
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each sample in the form of.csv files or transfer single-cell 
masks readable by histoCAT (69). HistoCAT is an open-
source interactive computational tool specifically designed 
for IMC analysis that incorporates high-dimensional image 
visualisation and different analysis methods for cell pheno-
type characterisation (such as tSNE plots or PhenoGraph 
clustering) as well as tools for study of cell–cell interactions 
and cell complex networks. Finally, single-cell data can be 
extracted from histoCAT in.fcs files that can be analysed 
using common CyTOF workflows (as mentioned above, 
Figure  3).

One of the current limitations of CyTOF technology is 
the considerable variation between experiments, which ham-
pers longitudinal studies or studies of a large patient cohort. 
This is in part due to changes of signal intensity during 
measurement, which can be resolved by using normalisation 
beads in each measurement. In addition, variations in results/
signals may also be caused by sample preparation and/or 
in vitro stimulation prior to CyTOF acquisition, and the 
variation in antibody master mixes between experiments. 
Several steps of standardisation and normalisation are, 
therefore, required to achieve a reliable data set. These steps 
include, for example, 1) the cryopreservation of samples 
(which is technically challenging for tissue-resident cells such 
as microglia) (13); 2) the use of anchor samples, which 
allows direct estimation of batch effects between runs (72) 
but may not be feasible for some types of human cells due 
to their accessibility; and 3) premixing of antibody cocktails 
followed by cryopreservation and storage, which has been 
proven to improve signal consistency between runs (70). 
Finally, lots of efforts have been made to develop new 
pipelines for identification and normalisation of batch effects. 
One of such approaches is CytoNorm (77), which includes 
the use of anchor samples, accounting for the different 
biological settings used in the study, and an algorithm that 
corrects for batch-to-batch variability. Some studies have 
already proven the potential reproducibility of the technique, 
showing multi-site PBMC and whole-blood comparability 
(5,44). However, this workflow or the other normalisation 
protocols has never been applied to huMG studies.

RECENT FINDINGS ON HUMG 
HETEROGENEITY IN HEALTH AND 
DISEASES, DETERMINED BY CYTOF 
AND IMC

Regional heterogeneity

Albeit much less frequently in the literature than scRNA-
seq technology, several CyTOF and IMC studies on huMG 
and/or human brain specimens have recently demonstrated 
the power of these single-cell high-dimensional technologies 
to explore huMG phenotypes and functions in health and 
diseases (11–13,59,65,68), as summarised in Figure  4.

In-depth immune profiling by CyTOF revealed distinct 
phenotypes of huMG isolated from white (WM) and grey 
matter (GM) (68). Compared with the GM microglia, WM 

microglia expressed higher levels of HLA-DR, ApoE, CD68 
and EMR1, which were consistent with the scRNA-seq 
results (68). Simultaneously comparing the single-cell phe-
notype of post-mortem cryopreserved huMG isolated from 
different brain regions (including the subventricular zone, 
thalamus, cerebellum, temporal lobe and frontal lobe) using 
CyTOF has repeatedly confirmed microglial regional het-
erogeneity (11,13). In these studies, we deeply characterised 
protein expression profiles of single huMG using multiple 
antibody panels determining around 60 proteins of interest. 
The results showed that human microglia constituted multiple 
distinct subtypes, with different abundance of each subset 
across the brain regions analysed. HuMG subset enriched 
in the subventricular zone and thalamus showed a phenotype 
with a high expression of CD68, CD11c, CD45, CD64, 
CD195, HLA-DR and the proliferation markers cyclin A 
and cyclin B1. Interestingly, microglia clusters enriched in 
the temporal lobe and frontal lobe showed higher expres-
sion levels of CD206. Although we could not identify a 
cerebellum-specific microglia subset, the protein expression 
profile of single cerebellar microglia differed from that of 
the other regions (13). Of note, since subset identification 
by CyTOF depends very much on the antibody panel used, 
additional markers may be required to identify distinct sig-
nature of cerebellar huMG. It remains, however, to be 
investigated whether these identified sub-clusters of huMG 
enriched in respective brain regions reflect a region-specific 
function or vulnerability of huMG to ageing or CNS dis-
eases, as it was proposed in mouse models (31). Nonetheless, 
unravelling the molecular machinery that shapes and/or 
maintains microglial regional diversity will allow for better 
understanding of the nature of homoeostatic and diseased 
microglia in humans.

huMG diversity in diseased brains

In our recent study on human glioma brains, we combined 
two single-cell technologies, scRNA-seq and mass cytometry, 
to unravel signature changes of human glioma-associated 
microglia/macrophages (GAMs) (68). Results obtained from 
CyTOF consistently demonstrated phenotypic changes of 
P2Y12/TMEM119-positive microglia in glioma brain biopsies, 
which were in line with the transcriptional changes identi-
fied by scRNA-seq. GAMs exhibited unique phenotypes 
distinguishing them from microglia which were isolated from 
control biopsies (the margins of epileptogenic focus). CyTOF 
revealed that microglia in glioma lesions became activated 
and expressed higher levels of HLA-DR, TREM2, ApoE, 
CD163, CD68, CD44, CD116, IL-6, GPR56 (also known 
as ADGRG1) and a number of other proteins such as 
GLUT5 and CD64. These results reproduced the transcrip-
tomic signature of GAMs at the single-cell protein level, 
and are in line with recently published findings (22). However, 
for some molecules with low transcript levels such as CX3CR1, 
CSF1R and FCGR1A, we found no change or even an 
increase in protein expression. These differences may be 
related to post-transcriptional regulatory mechanisms or dif-
ferences in protein turnover. Our study underscores the 
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synergy of using multiple single-cell omics techniques such 
as scRNA-seq and CyTOF to elucidate the interplay of 
both transcriptomics and proteomics in the context of micro-
glia biology.

Similar to GAMs, we also detected the enrichment of 
microglia subsets that expressed higher levels of  HLA-DR, 

CD44, CD68 and CD64 in active lesion (WM) of  pro-
gressive multiple sclerosis (PMS), compared with normal 
appearing WM (NAWM) (12). Interestingly, we found in 
both brain pathologies an increased microglial expression 
of  a cell-surface glycoprotein CD44, a molecule that has 
been proposed in mouse models as a marker to distinguish 

Figure 4.  HuMG heterogeneity in health and disease determined by mass cytometry. Markers used to distinguish circulating immune cells from 
microglia, CAMs and myeloid cell-derived macrophages (MDMs), as well as markers whose expression were changed in glioma or PMS brains are 
summarised [see refs. (10–13,22,68)]. 

Lineage markers discriminating T cells, B-/plasma cells, DCs, 
neutrophils, NK cells and monocytes

CADM1, CCR2, CD1c, CD3, CD11b, CD11c, CD14, CD16, CD19, CD33, 
CD38, CD49d, CD45RA, CD56, CD64, CD66b, CD123, CD141, CX3CR1, 
HLA-DR, FcεR1,  

capillary

huMG subsets

circulating immune cells

invading myeloid-derived 
macrophages (MDMs)

CNS-associated 
macrophages (CAMs)
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infiltrating myeloid cells (CD44+) from CNS-resident mac-
rophages/microglia (CD44−) (40). It remains to be inves-
tigated whether the discrepancy between our findings in 
human brain and the previous study in mouse brain is 
disease- or species-related. Moreover, in this study (12), 
we applied meta-clustering analysis to CyTOF data obtained 
using three different antibody panels (a total of  74 mark-
ers). These panels included overlapping TYPE markers, 
which enabled comparison of  cell subsets between experi-
ments (see also ‘Antibody panel and staining’ section). 
Using this strategy for in-depth immune phenotyping, we 
further identified microglial signatures in active lesions of 
progressive multiple sclerosis (PMS). Consistently, a cluster 
of  homoeostatic microglia was found at lower frequency 
in the active lesion, whereas the lesion-enriched microglial 
clusters showed increased expression of  proteins involved 
in phagocytic activity and microglial activation including 
CD45, CD14, CD11c, Clec7a (Dectin-1) and its co-activator 
MS4A4A, CCR2, Fc gamma receptors (CD64 and CD32), 
CD91 (LRP1 or ApoE receptor), molecules involved in 
apoptosis-regulation CD95 (Fas), the receptor tyrosine 
kinase Axl, ATP-binding cassette (ABC) transporter A7 
(ABCA7), inflammatory cytokines MIP-1β (CCL4) and 
osteopontin (OPN or SPP1), the myeloid inhibitory immu-
noreceptor SIRPα (CD172a) and its co-activator CD47 
and immune regulatory function NFAT1 (a transcription 
factor regulating T-cell function) and galanin (12). Similarly, 
previous studies in experimental autoimmune encephalo-
myelitis (EAE) and human early MS revealed some of 
these lesion-associated signatures of  microglia using single-
cell transcriptomics (47). In our study (12), we additionally 
performed IMC on the same tissue blocks to validate the 
results obtained from single-cell suspension samples. 
Although using IMC we could reproduce some phenotypic 
changes of  microglia determined by CyTOF in active 
lesions, in our opinion, a direct comparison between CyTOF 
and IMC remains technically challenging. This is mainly 
due to discrepancies between the areas of  analysis, cell 
types analysed, tissue/cell quality and the number of  com-
patible antibodies in one measurement. Even though results 
obtained from our studies are still limited and lack molecu-
lar mechanisms, it is tempting to speculate that, in diseased 
brains such as PMS and gliomas, microglia are most likely 
multi-functional. They show increased expression of  mol-
ecules involved in maintenance of  brain environment such 
as Axl (80), phospholipid transporter ABCA7 (1), HLA-DR, 
CD45, CD68 and/or the neuroprotective peptide galanin 
(82). Conversely, some microglia show increased expression 
of  inflammatory mediators such as MIP-1β and/or OPN 
(or SPP1).

In contrast, we could not detect any activation phenotype 
in microglia of donors with major depressive disorder (MDD) 
(11). Instead, CyTOF determination of 59 protein markers 
revealed enhanced expression of homoeostatic markers such 
as TMEM119 and P2Y12 of microglia in MDD brains. 
Moreover, we also detected increased microglial expression 
of CCR5, the receptor of chemokine CCL5, whose transcript 
level was found increased in cerebral cortex of MDD donors 
(24). None of the pro-inflammatory mediators analysed were 

different between MDD and control microglia. Also, the 
expression of HLA-DR and CD68 were found to be down-
regulated in the major cluster of microglia from MDD 
brains compared with controls.

CONCLUSIONS AND FUTURE 
DIRECTIONS
Application of single-cell technologies to huMG study has 
offered new insights into microglial biology during develop-
ment, homoeostasis, ageing and disease progression. As 
summarised in this review, the power of multidimensional 
single-cell mass cytometry has been demonstrated in char-
acterising huMG diversity in health and diseases. Our results 
underscore the heterogeneity and complexity of microglial 
phenotypes in human brains, and suggest potential similari-
ties and differences of huMG responses in different CNS 
disorders. Therefore, the heterogeneity of huMG phenotypes 
might need to be considered when designing novel treatment 
interventions for CNS diseases (62). However, as mentioned, 
studies performed on human specimens have several com-
mon limitations. The sample size is usually very small due 
to the logistical difficulties and time-consuming nature of 
obtaining specimens from large cohorts of adequate control 
donors or patients with comparable pathologies. Post-mortem 
brain tissue of sufficient quality for CyTOF analysis is also 
difficult to obtain. The results obtained from such studies 
usually represent only one time point and one area of inter-
est (this is especially true for biopsy samples). For some 
particular diseases or conditions such as psychiatric disorders 
or ageing, it is difficult to obtain brain tissues from non-
medicated donors, thus, it is very challenging to control 
for some cofounders such as the effects of medication on 
huMG phenotypes. Comparing the effects of medication 
on similar cell types from different compartments (e.g. blood 
monocytes, CAMs and microglia) of the same donor may 
help to identify medication-related changes in huMG. 
Together, in order to achieve reliable data sets and to enable 
a proper interpretation of the results, considerations about 
collected cell types, quality of brain tissue and isolated 
single-cells, documentation of all possible cofounders and 
neuropathological diagnosis should be considered when 
designing the huMG experiments.

Although IMC is still not widely used for studying huMG 
biology, the first few studies on huMG (12,59,65) demon-
strate the power of this technology to simultaneously char-
acterise huMG subpopulations in their original tissue 
environment and to analyse the complex cellular network 
and cell–cell dynamics between different huMG subsets or 
between huMG and other CNS cell populations. This tech-
nology is a great complement to CyTOF analysis of isolated 
single cells, by which the information about cellular network 
and cell–cell interactions remain uninvestigated. In addition, 
in contrast to scRNA-seq, differentially regulated proteins 
may not completely be captured by mass cytometry analysis 
due to a limited number of target molecules. Conversely, 
transcriptomic measurements of single cells using scRNA-
seq cannot completely discover the cell signalling pathways 
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or the epigenetic heterogeneity that may drive huMG biology 
under disease conditions. Thus, using either single-cell tech-
nology may describe only some of the molecular phenotypes 
of microglia. To unravel a complete view of huMG phe-
notypic and functional diversity, future studies may require 
a concept of single-cell multimodal omics (scMulti-omics). 
ScMulti-omics technologies enable the measurement of mul-
tiple modalities, including DNA methylation, chromatin 
accessibility, RNA and protein expression, gene perturbation 
and spatial information, from a single cell (42,46). Nevertheless,  
although such a concept may facilitate an identification of 
previously unknown subsets of huMG during both homoeo-
stasis and perturbation, characterisation of the distinct roles 
of these respective subsets remain experimentally challenging. 
Establishment of a stable in vitro huMG system is needed 
for functional analysis of huMG.
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