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Abstract: Shiga toxin-producing Escherichia coli (STEC) cause illnesses ranging from mild diarrhea
to ischemic colitis and hemolytic uremic syndrome (HUS); serogroup O157 is the most common
cause. We describe the epidemiology and transmission routes for U.S. STEC outbreaks during
2010–2017. Health departments reported 466 STEC outbreaks affecting 4769 persons; 459 outbreaks
had a serogroup identified (330 O157, 124 non-O157, 5 both). Among these, 361 (77%) had a
known transmission route: 200 foodborne (44% of O157 outbreaks, 41% of non-O157 outbreaks),
87 person-to-person (16%, 24%), 49 animal contact (11%, 9%), 20 water (4%, 5%), and 5 environmental
contamination (2%, 0%). The most common food category implicated was vegetable row crops. The
distribution of O157 and non-O157 outbreaks varied by age, sex, and severity. A significantly higher
percentage of STEC O157 than non-O157 outbreaks were transmitted by beef (p = 0.02). STEC O157
outbreaks also had significantly higher rates of hospitalization and HUS (p < 0.001).

Keywords: Shiga toxin-producing Escherichia coli (STEC); O157; non-O157; foodborne; outbre-
aks; epidemiology

1. Introduction

An estimated 265,000 Shiga toxin-producing Escherichia coli (STEC) infections occur
in the United States annually, ranging in severity from mild diarrhea to ischemic colitis
and hemolytic uremic syndrome (HUS). Infection can be fatal [1]. STEC are found in the
intestinal tract of healthy ruminants (e.g., cattle, goats) and can be transmitted to humans
through contaminated food or water, contact with an infected animal or their environment,
or directly between persons [2].

More than 100 STEC serogroups are associated with human illness; serogroup O157
is the most identified cause of STEC infection in the United States. In 2009, CDC rec-
ommended that stool specimens submitted to clinical laboratories from all patients with
acute community-acquired diarrhea be tested for Shiga toxin or its genes and simulta-
neously cultured for E. coli O157 [3]. Clinical laboratories have increasingly adopted
culture-independent tests to detect Shiga toxin genes, resulting in increased detection of
non-O157 STEC [4–8]. In 2010, the incidence of sporadic (not associated with an outbreak)
non-O157 STEC infections detected through active sentinel surveillance surpassed STEC
O157 infections and has remained higher [6,9].

Most STEC infections are not associated with known outbreaks, but data obtained
through outbreak investigations provide important information for understanding modes
of transmission and sources. Previous reports have described transmission modes and
exposures for O157 and non-O157 STEC outbreaks separately, during different time
frames [10,11]. We describe the epidemiology of both O157 and non-O157 STEC outbreaks
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during 2010–2017 and compare their features. From 2010–2017, STEC O157 outbreaks
were reported approximately twice as often as non-O157 STEC outbreaks; however, the
distribution of O157 and non-O157 outbreaks varied by age, sex, and severity whereas
transmission mode exhibited little variation.

2. Materials and Methods
2.1. Surveillance

The Centers for Disease Control and Prevention (CDC) conducts surveillance for
foodborne, waterborne, and other enteric disease outbreaks through the National Outbreak
Reporting System (NORS) web-based platform. Local, state, and territorial health depart-
ments report data on outbreaks. We analyzed reports of STEC outbreaks that occurred
during 2010–2017 [12]. We examined the primary transmission mode; number of illnesses,
hospitalizations, physician-diagnosed HUS, and deaths; patient age and sex distribution;
month and year the outbreak began; the state where exposures occurred; the outbreak
setting, food preparation setting, type of water exposures, and animal type.

2.2. Definitions

We defined an outbreak as ≥2 persons with a laboratory-confirmed STEC infection as-
sociated with a common exposure and no other pathogen reported. Laboratory-confirmed
cases, as well as epidemiologically linked, clinically compatible cases without laboratory
confirmation, were included in case counts. Outbreaks with a serogroup reported were
assumed to be culture-confirmed for that serogroup. A serogroup was considered a cause
of an outbreak when isolated from ≥2 persons or when isolated from a person and an
implicated food or animal. Outbreaks with multiple serogroups were included and cate-
gorized as O157, non-O157, or both. Food exposures were categorized according to the
Interagency Food Safety Analytics Collaboration (IFSAC) food categorization scheme [13].
Settings were classified as home; childcare; camp; school (includes colleges and univer-
sities); other institutions (e.g., hospital, nursing home, shelter, prison/jail); restaurant;
farm/dairy; festival/fair; petting zoo; recreational area (e.g., beach, park); and other (e.g.,
grocery store). States within the contiguous United States were categorized as “north” if
north of the 37th parallel and south if below; states with substantial segments crossing
this latitude (California and Nevada) were assessed by county; counties with substantial
segments crossing the 37th parallel were excluded from geographic analyses.

2.3. Analysis

We summarized demographic and epidemiologic findings by transmission mode,
STEC subtype, and food category [13]. Comparisons by serogroup were restricted to those
caused only by O157 or only by non-O157 serogroups. Geographic analyses included
only single state outbreaks. Changes over time were assessed using Sen’s slope. Illness
severity was assessed by calculating hospitalization (number hospitalized/total number ill),
deaths (number died/total number ill), and HUS (number physician-diagnosed HUS/total
number ill). The Kruskal–Wallis test was used to compare median outbreak size and state
outbreak rates (outbreaks with exposure in a single state/sum of state populations during
2010–2017, from U.S. Census Bureau intercensal estimates). For categorical analyses we
used chi square and Fisher’s exact tests; 2-tailed p-values < 0.05 were considered significant.
All analyses were performed using SAS v. 9.4 (code available upon request).

3. Results

Among the 466 reported STEC outbreaks affecting 4769 persons that occurred during
2010–2017, 459 had a serogroup identified: 330 (71%) were caused by O157, 123 (26%) were
caused by non-O157 serogroups, and 6 (1%) included both O157 and non-O157 serogroups
(Table 1). The most common non-O157 serogroups were O26 (45, 36%), O111 (24, 20%), and
O121 (16, 13%).



Microorganisms 2021, 9, 1529 3 of 13

Table 1. Number of Shiga toxin-producing Escherichia coli (STEC) outbreaks, by primary transmission mode and food
category, United States, 2010–2017 *.

STEC Serogroup Category Top non-O157 Serogroups

Total † O157 Non-O157 ‡ p O26 O111 O121

Transmission source No. (%) No. (%) No. (%) No. (%) No. (%) No. (%)

Food 200 (43) 146 (44) 51 (41) 0.55 18 (40) 7 (30) 8 (50)
Veg. row crops 32 (16) 24 (16) 8 (16) 0.90 3 (16) 2 (29) 0 (0)

Beef 26 (13) 24 (16) 2 (4) 0.02 1 (6) 0 (0) 0 (0)
Dairy 19 (10) 15 (10) 3 (6) 0.35 1 (6) 1 (14) 0 (0)
Fruit 8 (4) 6 (4) 2 (4) 0.95 0 (0) 1 (14) 0 (0)

Other foods § 42 (21) 29 (20) 12 (24) 0.58 1 (6) 1 (14) 5 (63)
Unknown 73 (37) 48 (32) 24 (47) 0.07 12 (66) 2 (29) 3 (37)

Person-to-person 87 (19) 54 (16) 29 (24) 0.08 14 (30) 8 (33) 3 (19)
Animal contact 49 (11) 36 (11) 11 (9) 0.53 4 (9) 3 (13) 0 (0)

Water 20 (4) 13 (4) 6 (5) 0.67 0 (0) 2 (8) 2 (13)
Other environmental 5 (1) 5 (2) 0 (0) 0.33 ¶ 0 (0) 0 (0) 0 (0)

Unknown transmission 105 (23) 76 (23) 26 (21) 0.64 9 (20) 4 (17) 3 (19)
TOTAL 466 (100) 330 (71) 123 (26) NA 45 (36) 24 (20) 16 (13)

* Bold font indicates statistical significance at p < 0.05; † Includes 6 outbreaks caused by both O157 and non-O157 (3 food: 1 dairy, 1 other
foods, 1 food unknown; 1 person-to-person; 1 animal contact; 1 unknown) and 7 outbreaks of unknown serogroup (3 person-to-person,
1 animal contact, 1 water, 2 unknown); ‡ Includes the following serogroups O26 (45 outbreaks), O111 (24), O121 (16), O103 (12), O145 (9),
O45 (7), O5 (3), multiple (3), O71 (1), O118 (1), O186 (1), and unknown (1); § Other foods include game (4 outbreaks), grains-beans (3),
sprouts (3), seeded vegetables (2), nuts-seeds (2), other meat (2), herbs (1), fish (1), crustaceans (1), and outbreaks not attributed to a single
food category (23). Outbreaks not attributed to a single food category could not be assigned to one of the 24 aggregate food categories,
which includes outbreaks due to complex foods for which the contaminated ingredient was not determined (e.g., pico de gallo, sandwich,
sausage), those with ill-defined implicated foods (e.g., buffet, appetizer), and those due to more than one food category; ¶ Fisher’s exact.

There were 3353 illnesses reported for STEC O157 outbreaks and 1047 for non-O157.
The median number of illnesses per outbreak was five for both O157 (range 2–105) and non-
O157 (range 2–56). STEC O157 caused significantly higher percentages of hospitalization
and HUS than non-O157 (p < 0.001) (Table 2). The numbers of O157 and non-O157 STEC
outbreaks were stable during 2010–2017 (Figure 1).
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Table 2. Characteristics of Shiga toxin-producing Escherichia coli outbreaks, by primary transmission mode and food category, United States, 2010–2017.

Transmission Mode
and Source

Illnesses
No. (Median Size)

Hospitalizations
No. (%)

HUS *
No. (%)

Deaths
No. (%)

All STEC † O157 Non-O157 All STEC † O157 Non-O157 All STEC † O157 Non-O157 ALL STEC † O157 Non-O157

Food 2853 (7.5) 2017 (8) 567 (6) 776 (27) § 597 (30) # 139 (25) 137 (5) ¶ 112 (6) ** 7 (1) 12 (0.4) 11 (0.5) 1 (0.2)
Veg. row crops 738 (15.5) 613 (15) 125 (16) 223 (30) 183 (30) 40 (32) 31 (4) 27 (4) 4 (3) 2 (0.3) 2 (0.3) 0 (0)
Beef 211 (7.5) 200 (8) 11 (6) 60 (28) 57 (29) 3 (27) 2 (1) ¶ 2 (1) 0 (0) 1 (0.5) 1 (0.5) 0 (0)
Dairy 148 (5) 119 (4) 15 (6) 57 (39) § 49 (41) # 1 (7) 19 (13) § 16 (13) 0 (0) 0 NA 0 (0) 0 (0)
Fruit 106 (6.5) 89 (7) 17 (9) 24 (23) 23 (26) 1 (6) 3 (3) 3 (3) 0 (0) 2 (1.9) § 2 (2.2) 0 (0)
Other foods ‡ 738 (10.5) 507 (12) 220 (13) 195 (26) 144 (28) 47 (21) 33 (4) 30 (6) # 3 (1) 1 (0.1) 0 (0) 1 (0.5)
Unknown 912 (4) 489 (4) 179 (4) 217 (24) 141 (29) 47 (26) 49 (5) 34 (7) ** 0 (0) 6 (0.4) 6 (1) 0 (0)

Person-to-person 587 (5) 293 (4) 269 (6) 70 (12) ¶ 68 (23) ** 1 (0.4) 36 (6) 36 (12) ** 0 (0) 3 (0.5) 3 (1) 0 (0)
Animal contact 509 (4) 387 (4) 68 (4) 100 (20) ¶ 81 (21) 12 (18) 48 (9) § 44 (11) # 1 (2) 3 (0.6) 3 (0.8) 0 (0)
Water 218 (6.5) 181 (8) 31 (5) 46 (21) 42 (23) 4 (13) 21 (10) § 19 (11) 2 (7) 1 (0.5) 1 (0.6) 0 (0)
Other environmental 86 (6) 86 (6) 0 NA 13 (15) ¶ 13 (15) NA 5 (6) 5 (6) NA 0 (0) 0 (0) NA
Unknown
transmission 516 (3) 389 (3) 112 (4) 158 (31) § 138 (36) ** 16 (14) 56 (11) § 46 (12) 8 (7) 5 (1) 4 (1) 1 (0.9)

TOTAL 4769 (5) 3353 (5) 1047 (5) 1163 (24) 939 (28)** 172 (16) 303 (6) 262 (8) ** 18 (2) 24 (0.5) 22 (0.7) 2 (0.2)

* HUS, hemolytic uremic syndrome;†Includes 6 outbreaks caused by both O157 and non-O157 (3 food: 1 dairy, 1 other foods, 1 food unknown; 1 person-to-person; 1 animal contact; 1 unknown) and 7 outbreaks
of unknown serogroup (3 person-to-person, 1 animal contact, 1 water, 2 unknown); ‡ Other foods include game (4 outbreaks), grains-beans (3), sprouts (3), seeded vegetables (2), nuts-seeds (2), other meat (2),
herbs (1), fish (1), crustaceans (1), and outbreaks not attributed to a single food category (23). Outbreaks not attributed to a single food category could not be assigned to one of the 24 aggregate food categories,
which includes outbreaks due to complex foods for which the contaminated ingredient was not determined (e.g., pico de gallo, sandwich, sausage), those with ill-defined implicated foods (e.g., buffet, appetizer),
and those due to more than one food category; § p < 0.05; higher than the comparison group, which was all transmission modes combined or all other assigned food categories combined; ¶ p < 0.05; lower than
the comparison group, which was all transmission modes combined or all other assigned food categories combined; # p < 0.05; ** p < 0.001.
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Transmission modes were foodborne (43%), person-to-person (19%), animal contact
(11%), waterborne (4%), environmental contamination (1%), and unknown (23%) (Table 1).
There were no significant differences in the percentage of O157 and non-O157 outbreaks by
transmission mode: foodborne (44% O157, 41% non-O157; p = 0.55), person-to-person (16%,
24%; p = 0.08), animal contact (11%, 9%; p = 0.53), water (4%, 5%; p = 0.67), environmental
contamination (2%, 0%; p = 0.17), and unknown (23%, 21%; p = 0.64) (Table 1). Foodborne
disease outbreaks caused the most illnesses (2853, 60%), hospitalizations (776, 67%), HUS
cases (137, 45%), and deaths (12, 50%) (Table 2). This was true for O157 outbreaks for
illnesses (2017, 60%), hospitalizations (597, 64%), HUS cases (112, 43%), and deaths (11,
50%), and for non-O157 outbreaks for illnesses (567, 54%), hospitalizations (139, 81%), and
deaths (1, 50%) (Table 2).

The median outbreak size differed by transmission mode and food category. Food-
borne outbreaks had a significantly greater median size compared with other modes (7.5
vs. 4.0 primary cases, p < 0.001); outbreaks with an unknown transmission mode had a
significantly lower median outbreak size compared with other modes (3.0 vs. 6.0, p < 0.001).
Median outbreak size was significantly larger for vegetable row crop outbreaks (15.5 vs.
8, p < 0.001) and significantly lower for beef outbreaks (7.5 vs. 10, p = 0.018) and dairy
outbreaks (5 vs. 11, p = 0.005) compared with all other implicated foods. Outbreaks with
an unknown food vehicle had a significantly lower outbreak size than outbreaks with an
implicated food (3 vs. 6, p < 0.001).

3.1. Sources

A food was implicated in 127 (64%) foodborne outbreaks, most commonly vegetable
row crops (25%), beef (20%), dairy (15%), and fruit (6%) (Table 1). Thirty of the 32 vegetable
row crop outbreaks were associated with leafy greens, most commonly romaine (7 out-
breaks) and spinach (5). A higher proportion of foodborne outbreaks of O157 (24/146, 16%)
than non-O157 (2/51, 4%) were associated with beef (p = 0.02) (Table 1). Most beef out-
breaks (22, 85%) were associated with ground beef. All 19 dairy outbreaks were associated
with unpasteurized products, usually fluid milk (16, 84%). The non-O157 serogroups that
caused the most outbreaks associated with single food categories were O26 (6 outbreaks),
O111 (4), and O145 (4) (Figure 2).
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Among the 33 outbreaks associated with animal contact, an animal type was impli-
cated in 65% (23) of O157 outbreaks and 82% (9) of non-O157 outbreaks, and a ruminant
was an implicated animal type in all but one outbreak (which implicated a pig). Among
outbreaks involving a ruminant, 66% involved goats, 63% cattle, and 22% sheep.

Of the 20 waterborne outbreaks, 13 (65%) were O157; of these, 10 were associated with
recreational water (7 untreated, 3 treated) and 3 with drinking water. Non-O157 STEC
caused 5 untreated and 1 treated recreational water outbreaks.

3.2. Severity

Outbreaks were associated with 1163 hospitalizations, 303 cases of HUS, and 24 deaths
(Table 2). STEC O157 caused significantly higher rates of hospitalization and HUS than
non-O157 STEC (p < 0.001) (Table 2). Hospitalization rates differed for outbreaks across
transmission modes and food categories. Foodborne (27% vs. 20%, p < 0.001) and unknown
transmission mode (31% vs. 24%, p < 0.001) outbreaks had significantly higher hospitaliza-
tion rates than the other modes. Dairy outbreaks had a significantly higher hospitalization
rate than other outbreaks with identified foods (39% vs. 28%, p = 0.007). Compared with
other transmission modes combined, animal contact (20% vs. 25%, p = 0.008), environmen-
tal (15% vs. 25%, p = 0.04), and person-to-person (12% vs. 26%, p < 0.001) outbreaks had
significantly lower hospitalization rates (Table 2).

HUS rates differed among transmission modes and food categories. Compared with
other modes, the rate of HUS was significantly higher for animal contact (9% vs. 6%,
p = 0.003), waterborne (10% vs, 6%, p = 0.042), and unknown transmission mode outbreaks
(11% vs. 6%, p < 0.001) and significantly lower for foodborne outbreaks (5% vs. 9%,
p < 0.001). Compared with all other identified foods, the rate of HUS was significantly
higher for dairy outbreaks (13% vs. 4%, p < 0.001), lower for beef outbreaks (1% vs. 5%,
p = 0.008), and not significantly different for other identified foods. The death rate was
significantly higher for fruit outbreaks compared with all other identified foods (1.9% vs.
0.22%, p = 0.038) (Table 2).

STEC O157 outbreaks had significantly higher hospitalization rates than non-O157
STEC outbreaks for person-to-person, foodborne, and unknown transmission modes
(Table 2). HUS rates were significantly higher in O157 than non-O157 outbreaks for food-
borne, person-to-person, and animal contact transmission modes. No significant differences
in death rates were found between O157 and non-O157 outbreaks.

Median hospitalization and HUS rates for O157 and non-O157 outbreaks also differed
by food category (Table 2). Among outbreaks associated with dairy, STEC O157 had
significantly higher hospitalization rates than non-O157 outbreaks.

3.3. Demographic Characteristics

Patient age ranges were available for 4421 (93%) of outbreak-associated illnesses:
the highest proportion of illnesses occurred among persons 5–19 (35%). The age group
distributions varied by transmission mode. The age group with the highest proportion
of persons in person-to-person outbreaks was children < 5 years old (379; 66%). Persons
5–19 years old made up the highest proportion in animal contact (226, 46%) and waterborne
outbreaks (116, 67%). For foodborne outbreaks, the age group with the highest proportion
was persons 20–49 years old (1039, 40%).

The proportion of persons in non-O157 STEC outbreaks who were children < 5 years
old was higher than in STEC O157 outbreaks (29% vs. 19% O157) and the proportion who
were ≥50 years old was lower (9% vs. 17%). The age group distributions among persons
in O157 and non-O157 STEC outbreaks varied by transmission modes and food categories
(Figures 3 and 4). The largest proportion of illnesses in animal contact outbreaks was among
persons 5–19 years old (49%) for STEC O157 but was among persons 20–49 years old (40%)
for non-O157 STEC. Although the largest proportion of illnesses in foodborne outbreaks
was among persons 20–49 years old and was similar for O157 (43%) and non-O157 (42%),
the age distribution for serogroups varied by food category (Figure 4).
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More female than male patients were ill in foodborne (51%), environmental (71%), and
unknown (54%) transmission mode outbreaks than other modes (p < 0.001, p = 0.002, and
p < 0.001, respectively). Slightly more female than male patients were ill in non-O157 (59%)
than O157 outbreaks (54%, p = 0.011). For foodborne outbreaks, the proportion of females
in non-O157 outbreaks was significantly higher than O157 (64% vs. 53%, p < 0.001) and for
waterborne outbreaks this proportion was significantly lower (35% vs. 60%, p = 0.011).

3.4. Seasonality and Geography

Two-thirds of STEC outbreaks occurred during the five months from June through
October (307, 66%); however, seasonality varied by transmission mode (Figure 5). Food-
borne outbreaks occurred year-round with variable seasonality by food category. Peak
months for beef outbreaks were May–September (17, 65%); dairy outbreaks peaked in
March (4, 21%), May (3, 16%), and July–October (8, 42%), and vegetable row crops out-
breaks peaked in April (6, 19%) and October (5,16%). Most person-to-person outbreaks
occurred during May–August (53, 61%). Animal contact outbreaks peaked in August (11,
21%) and October (10, 20%). Waterborne outbreaks peaked in July (10, 50%). The seasonal
patterns by transmission mode were similar for O157 and non-O157 outbreaks, except
non-O157 foodborne outbreaks demonstrated bimodal peaks during April–June (21, 39%)
and September–November (14, 27%), and non-O157 animal contact outbreaks had bimodal
peaks during June–July (4, 36%) and September–October (4, 36%).
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Single-state outbreaks were reported in 46 states; 43 states reported O157 outbreaks
and 33 states reported non-O157 outbreaks (Figure 6). Among the 33 states that reported
non-O157 outbreaks, 30 also reported O157 outbreaks. Geographically, the median outbreak
rate for STEC was over 2.5 times higher in northern than southern U.S. states (0.20 vs. 0.07
per 1 million persons, p = 0.005) (Figure 6). This difference was observed for foodborne
and animal contact outbreaks (0.083 vs. 0.032, p = 0.04; 0.02 vs. 0.0000, p = 0.05), but not
for other transmission modes. The higher rate in northern states was true for both O157
(0.16 vs. 0.06, p = 0.03) and non-O157 (0.06 vs. 0.00, p = 0.004) outbreaks. However, when
comparing northern and southern states by transmission mode for O157 and non-O157 the
differences identified for all outbreaks were not found.

 
 

 

 
Microorganisms 2021, 9, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/microorganisms 

 
Figure 6. Single-state Shiga toxin-producing Escherichia coli outbreaks, by state, United States, 2010–2017. A) All (n = 402); B) O157 (n = 285); C) non-O157 (n = 104). Curved 
line denotes 37° N latitude. 

A 
B 

C 

Figure 6. Single-state Shiga toxin-producing Escherichia coli outbreaks, by state, United States, 2010–2017. (A) All (n = 402);
(B) O157 (n = 285); (C) non-O157 (n = 104). Curved line denotes 37◦ N latitude.

3.5. Settings

A single food preparation setting was reported for 134 (71%) outbreaks (96 O157
outbreaks; 35 non-O157). Food was most often prepared in a restaurant (61, 43%) followed
by a private home (35, 26%). The most common food preparation settings were the same
for O157 (43% restaurant, 28% home) and non-O157 (48%, 23%) outbreaks.

Among the 82 outbreaks attributed to person-to-person transmission with a reported
setting and an identified serogroup, 62 (76%) occurred in a childcare setting (O157 60%; non-
O157 37%). A festival or fair was the most common setting for animal contact-associated
outbreaks (18, 37%), followed by a petting zoo (12, 24%). Most outbreaks at festivals and
petting zoos were O157 (87%). The majority of O157 (54%) and non-O157 (67%) waterborne
outbreaks occurred in recreational settings.

4. Discussion

During 2010–2017, STEC O157 outbreaks and illnesses were reported approximately
three times as often as non-O157 STEC outbreaks and illnesses. STEC O157 outbreaks re-
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sulted in more severe illnesses. Food was the principal mode of transmission for outbreaks
caused by both O157 and non-O157 serogroups [10,11].

More foodborne STEC outbreaks were associated with vegetable row crops than
any other food category. Although vegetable row crops and beef contributed relatively
similarly to O157 outbreaks, vegetable row crops were responsible for significantly more
non-O157 outbreaks than beef. STEC O157 was declared an adulterant in ground beef in
1996, followed by the six non-O157 serogroups in 2011. Increased regulation of produce
occurred in 2016 with the implementation of the Produce Safety Rule [14]. This regulation
establishes minimum standards for growing, harvesting, packing, and holding fruits and
vegetables meant for human consumption. Outbreaks associated with romaine lettuce in
2018 led to changes in agricultural marketing agreement guidelines intended to decrease
STEC contamination in fields [15,16]. The implementation of practices in these regulations
and guidelines could decrease the number of outbreaks associated with vegetable row
crops and other produce.

The proportion of outbreaks associated with various food types for O157 and non-
O157 were similar except for beef. It is not known why beef was the only category with
significantly more O157 than non-O157 outbreaks given that non-O157 STEC are more
commonly detected on beef carcasses [17]. One possibility is that detection of outbreaks
might be correlated with production of Shiga toxin 2 (most STEC O157 produce only Shiga
toxin 2); strains that produce only Shiga toxin 2 cause the most severe illnesses, followed by
those that produce both Shiga toxins 1 and 2, then only Shiga toxin 1 [18–20]. Shiga toxin
types were not available for these outbreaks, but Shiga toxin 1 is more common in isolates
of bovine origin [18]. It is also possible that some mixed infections might be reported as
O157 when additional testing to identify another serogroup was not attempted after O157
was identified, thus underestimating the contribution of non-O157 strains in outbreaks.

STEC O103 is the second most commonly reported non-O157 STEC causing human
illness [21] and the serogroup most commonly isolated from cattle [18,22,23]. However, it
caused only 3% of STEC outbreaks in our analysis. This could be because about 95% of
O103 isolates from U.S. residents produce only Shiga toxin 1 [24,25].

Foodborne outbreaks were larger than those caused by other transmission modes. The
wide distribution of food might explain this difference. Contaminated food can cross state
borders, resulting in many cases occurring over a short period before the outbreak can be
detected, due to intrinsic lags in surveillance systems. These cases can prompt rigorous
investigations in multiple jurisdictions, resulting in many confirmed, epidemiologically-
linked cases. Whereas beef is also widely distributed, the larger size of vegetable row
crop outbreaks could be the result of these foods often being consumed raw, unlike beef.
Therefore, more people may be exposed to STEC by consuming vegetables raw. Like beef
and vegetable row crops, dairy can be distributed across multiple states. However, most
dairy outbreaks were from unpasteurized milk which is prohibited by federal law from
being distributed across state lines, thereby limiting exposures.

The variation in the age and sex distribution of STEC outbreaks overall and by
serogroup category is likely a reflection of general differences in behavior (health seeking,
hand washing, recreation, etc.) and food choices. For example, more person-to-person out-
breaks occur among young children than adults and more STEC O157 dairy outbreaks occur
among children than adults. These findings are consistent with previous reports [10,11].

Consistent with disease surveillance of sporadic infections and previous studies, STEC
O157 outbreaks resulted in more hospitalizations and HUS than non-O157 [4,26]. This
difference is likely due to the toxin profile; unlike most non-O157 STEC, most STEC O157
strains isolated from U.S. residents produce only Shiga toxin 2. Strains that produce only
Shiga toxin 2 cause more severe illness than those that produce both Shiga toxins 1 and
2 or only Shiga toxin 1 [4,18–20,26]. Differences in toxin profile could also influence the
detection of the source of an outbreak, as persons infected with less virulent strains may
differ in medical care-seeking behaviors, therefore affecting the detection and laboratory
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confirmation of that serogroup and source. Outbreaks of more severe illnesses might also
be more rigorously investigated by public health officials.

Higher hospitalization and HUS rates attributed to different transmission modes
could also be influenced by age. For example, foodborne outbreaks were associated with
significantly more hospitalizations, and the foodborne transmission mode was the most
common mode among persons ≥ 50 years old. However, animal contact and waterborne
outbreaks had significantly higher rates of HUS in persons < 20 years and most of these
outbreaks occurred in persons < 20 years [27]. As has been noted before, person-to-person
outbreaks did not have significantly higher HUS rates despite most person-to-person
outbreaks occurring in children < 5 years [10]. This might be explained by a large proportion
of illnesses in person-to-person outbreaks being associated with non-O157 serogroups,
which had significantly lower rates of hospitalization and HUS than O157.

Our analyses identified seasonal patterns by transmission mode consistent with those
previously reported [10,28]. We found that increases in outbreaks during April and October
appear to correspond with peaks in vegetable row crop outbreaks and mark the start of
leafy green (a subcategory of vegetable row crops) harvest in different production areas [29].
Additional information on the ecology of the growing regions and variations in farming
practices is needed to further assess this observation.

The incidence of STEC O157 infection is higher in northern than southern regions of
the United States [10,30]. We found that northern regions had more O157 and non-O157
STEC outbreaks. We found similar geographic differences for foodborne and animal contact
outbreaks. These findings suggest that the distribution of STEC is likely related to ecologic
differences. However, differences in cattle production systems, the proportions of people
exposed to particular foods or environments, eating habits, and reporting biases might
have an influence.

STEC outbreak surveillance outside the United States is primarily focused on food-
borne outbreaks. Pires, et al. used outbreak data from 27 countries across three regions
during 1998–2017 to attribute STEC infections to various food categories. In their model,
the top food categories in the American and European regions were beef and produce,
whereas the top categories in the Western Pacific region were produce and dairy [31]. Our
findings were similar in that vegetable row crops, beef, dairy, and fruit were the most com-
mon food categories identified as sources of outbreaks and outbreak-associated illnesses.
However, our analysis, which encompasses the last 8 years of the Pires, et al. analysis,
indicates that produce (vegetable row crops and fruits) caused more STEC outbreaks and
outbreak-associated illnesses than beef.

This analysis has several limitations. The data we assessed are limited to investigated
and reported outbreaks and may not be representative of all STEC outbreaks. Information
on hospitalization, HUS, and death was not available for all outbreak-associated cases,
so rates may not accurately reflect the true rates for these severity indicators. Differences
identified for sex and age groups might be due to differences in the availability of sex or
age information. Smaller outbreaks, many of which had an undetermined source, had
less evidence to help determine the source or transmission mode. The ability to identify
statistically significant differences between O157 and non-O157 outbreaks for specific
sub-analyses (e.g., geographical differences based on transmission mode) was limited by
the small numbers of outbreaks within some categories. Finally, the database is dynamic,
and data may be updated at any time, even years after an outbreak, which could affect
subsequent analyses.

Most STEC outbreaks in the United States continue to be attributed to foodborne
transmission. Outbreaks are dominated by the O157 serogroup despite higher detection
of non-O157 serogroups among sporadic infections. STEC O157 outbreaks continue to
cause more severe disease than non-O157 STEC. The recent adoption of whole genome
sequencing might improve the identification and investigation of STEC outbreaks; this
could provide more detailed information on sources and virulence factors. Our analyses
found both similarities and significant differences based on the mode of transmission by



Microorganisms 2021, 9, 1529 12 of 13

food category, age, sex, and setting which can be used to target interventions to groups
at higher risk. Continued STEC outbreak surveillance is needed to identify changes in
epidemiology and to assess the effect of prevention efforts.
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