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Abstract: Metallocenes represent one of the most important classes of organometallics with wide
prospects for practical use in various fields of chemistry, materials science, molecular electronics,
and biomedicine. Many applications of these metal complexes are based on their ability to form
molecular ions. We report the first results concerning the changes in the molecular and electronic
structure of decamethylmanganocene, Cp*2Mn, upon ionization provided by the high-resolution
mass-analyzed threshold ionization (MATI) spectroscopy supported by DFT calculations. The precise
ionization energy of Cp*2Mn is determined as 5.349 ± 0.001 eV. The DFT modeling of the MATI
spectrum shows that the main structural deformations accompanying the detachment of an electron
consist in the elongation of the Mn-C bonds and a change in the Me out-of-plane bending angles.
Surprisingly, the DFT calculations predict that most of the reduction in electron density (ED) upon
ionization is associated with the hydrogen atoms of the substituents, despite the metal character
of the ionized orbital. However, the ED difference isosurfaces reveal a complex mechanism of the
charge redistribution involving also the carbon atoms of the molecule.

Keywords: metallocenes; ionization energy; laser spectroscopy; DFT calculations; electron density

1. Introduction

In 2022, chemists celebrate the 70th anniversary of the first publications on a unique
sandwich structure of ferrocene, Cp2Fe (Cp = η5-C5H5) [1,2]. With the discovery of this
iconic metal complex, a new era of organometallic chemistry has started. Currently, met-
allocenes are of ever-increasing interest among researchers in fundamental and applied
science, since they are relevant to the modern theories of metal–ligand bonding [3–6],
electro- and magnetochemistry [7–13], metallopolymers [14–18], biomedicine [19–22], catal-
ysis [23–25], nanoelectronics [26–32] and molecular machines [33–35]. Many applications of
metallocenes take advantage of their pronounced reducing properties, which allow for the
easy formation of stable or reactive sandwich ions [7–10,14–16,23–30,33–39]. These proper-
ties are associated with the low ionization energies, I, corresponding to the detachment of
an electron from a sandwich high occupied molecular orbital (MO) with substantial metal
d character [40–47]. Comprehensive studies of ionization processes in metallocenes are,
therefore, especially important for understanding their reactivity.

Unprecedented opportunities for studying the details of the ionization of molecules
appeared with the development of high-resolution methods using laser irradiation. Precise
measurements of ionization energies are provided by the zero kinetic energy (ZEKE) or
mass-analyzed threshold ionization (MATI) spectroscopy [48,49] using the laser excitation
of molecules to high Rydberg levels (so-called ZEKE states) which are then ionized by
an electric pulse. The ZEKE states of polyatomic molecules with high I values are usu-
ally populated by multiphoton laser excitation through intermediate vibronic levels. For
organometallics, this approach encounters experimental difficulties associated with poor
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resolution of vibronic states and fast photodissociation of the excited molecules [50,51].
However, the ZEKE states of metallocenes and related sandwich complexes with I < 6 eV
can be populated in a one-photon experiment using standard laser sources.

Nevertheless, the experimental measurement of the MATI and ZEKE spectra of sand-
wich compounds remains a nontrivial task due to the low volatility and thermal stability of
these metal complexes as well as their air and moisture sensitivity. Among metallocenes,
the MATI spectrum has so far been recorded only for Cp2Co [52]. The MATI/ZEKE
data have been obtained also for some bisarene complexes [53–65] and few mixed sand-
wiches [66]. These studies demonstrated new possibilities provided by the MATI and
ZEKE techniques for detecting substituent effects and structural changes of sandwich
molecules upon ionization [67]. In the present work, we report the first MATI spectrum
of jet-cooled decamethylmanganocene, Cp*2Mn (Cp* = η5-C5Me5). The manganocene-
methylated derivatives are of particular fundamental interest, since the introduction of the
CH3 groups to the Cp rings of Cp2Mn leads to a “switching” of the ground electronic state
from the 6A1 sextet to the 2E2 doublet [40,68–73] (we use the irreducible representations
of the D5 point group for designation of the electronic states and MOs). In contrast to
many other metallocenes, manganocene does not form stable cationic derivatives. On the
other hand, its permethylated low-spin analogue, Cp*2Mn, is readily oxidized to yield the
Cp*2Mn+ cation [11,73]. Such systems can display properties of bulk molecular ferromag-
nets [74,75]. Therefore, the details of structural and energetic changes accompanying the
ionization of Cp*2Mn attract special attention. Our combined MATI/DFT study provides
new insights into these details.

2. Results and Discussion

Similar to other theoretical studies of metallocenes [72,76–79], our B3PW91/6-311++
G(d,p) DFT calculations show that high-energy occupied MOs of Cp*2Mn have a predomi-
nantly metal d character (Figure 1). The electronic configurations of the Cp*2Mn0 neutral
and the Cp*2Mn+ cation are . . . (dx2-y2 )1(dz2 )2(dxy)2 and . . . (dx2-y2 )1(dz2 )1(dxy)2, respectively.

These configurations correspond to the 2E2 doublet ground state of the D5 neutral and the
3E2 triplet ground state of the ion [40,71]. However, the degeneracy of MO dx2-y2 and dxy,
which would take place in the D5 point group, is actually lifted in Cp*2Mn (Figure 1) due
to the Jahn–Teller (JT) distortion.
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Figure 1. MO correlation diagram of the Cp*2Mn0 neutral and Cp*2Mn+ cation. The MO isosurfaces
are given for the wavefunction value of 0.04. Notice the different energy scales for Cp*2Mn0 (left)
and Cp*2Mn+ (right).

The ground-state 3E2 Cp*2Mn+ cation is formed by a detachment of the non-bonding
dz2 β-electron from the neutral molecule. The I value can be determined in a laser ioniza-
tion experiment by recording the photoionization efficiency (PIE) curve or, much more
accurately, by measuring the MATI spectrum.
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2.1. PIE and MATI Spectra of Cp*2Mn

The PIE curve of Cp*2Mn (Figure 2a) shows a rather sharp step in the 43,000–43,200 cm−1

region corresponding to the ionization energy of 5.33–5.36 eV, which agrees very well
with the I = 5.33 ± 0.10 eV value determined earlier from the “classical” photoelectron
spectrum [71]. The MATI spectrum of Cp*2Mn (Figure 2b) reveals a clearly defined peak
arising from a detachment of an electron from the ZEKE levels lying a few wavenumbers
below the cation ground vibronic state. The I value of 43,146 ± 8 cm−1, or 5.349 ± 0.001 eV,
corresponds to a narrow MATI signal descend range. Therefore, the MATI spectrum of
Cp*2Mn provides an extremely accurate ionization energy, the error being two orders of
magnitude smaller than that of standard photoelectron spectroscopy.
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Figure 2. The PIE (a) and MATI (b) spectra of jet-cooled Cp*2Mn. The ionization energy (I) corre-
sponds to the narrow range of the MATI signal descend.

The precise I value of Cp*2Mn obtained from the MATI spectrum provides new
accurate information on the difference between the Mn-Cp* bond dissociation energies in
the decamethylmanganocene cation and neutral [67]:

D(Cp*2Mn +) − D(Cp*2Mn 0) = I(Mn0) − I(Cp*2Mn0), (1)

where D(Cp*2Mn +/0) corresponds to the energy change in the reaction:

Cp*2Mn+/0 →Mn+/0 + 2C5Me5
•. (2)

Taking into account the known ionization energy of the manganese atom,
I(Mn0) = 4.43402 eV [80], and the I(Cp*2Mn0) value derived from our MATI spectrum we ob-
tain the dissociation energy difference (Equation (1)) as 2.085 ± 0.001 eV, or
201.2 ± 0.1 kJ mol−1. Therefore, the mean Mn-Cp* bond dissociation energy in the de-
camethylmanganocene cation, equal to 0.5 D(Cp*2Mn +), is 100.6 kJ mol−1 larger than that
in the neutral molecule. The accuracy in the determination of this difference from the MATI
data presented in this work (0.1 kJ mol−1) is much better than that obtained from the UV
photoelectron spectrum of Cp*2Mn [71] (ca. 10 kJ mol−1). As a result, the use of laser
threshold ionization spectroscopy provides new possibilities for studying fine substituent
effects in manganocenes, similar to those found for bisarene sandwich systems [67].

The MATI spectrum of Cp*2Mn (Figure 2b) reveals no lower-energy vibronic features
accompanying the strong peak with the maximum at 43,100 cm−1. Therefore, this peak
corresponds to the origin (the 000 transition between the ground vibrational states of
Cp*2Mn0 and Cp*2Mn +). Then, the vertical and adiabatic ionization energies of Cp*2Mn
coincide. A different situation holds with the MATI spectrum of Cp2Co [51], where the
vertical I value is 0.115 eV higher than the adiabatic ionization energy. This difference
can be associated with the antibonding nature of the ionized MO in Cp2Co [40,51,77].
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On the other hand, the chromium bisarene complexes with the non-bonding dz2 electron
ionized produce MATI spectra [52–56,58,64–66] showing the 000 vibronic component as the
strongest feature like Cp*2Mn. The vibrationally resolved high-resolution MATI spectra
provide much more information on the sandwich molecules than structureless “classical”
photoelectron spectra or PIE curves.

2.2. Vibronic Structure of the Cp*2Mn MATI Spectrum

Detailed analysis of the Cp*2Mn MATI spectrum recorded at a higher concentration of
the organometallic molecules in the supersonic jet reveals the weaker high-energy vibronic
components accompanying the origin (Figure 3a). Their assignment can be made on the
basis of the DFT modeling. The B3PW91/6-311++G(d,p) simulation (Figure 3b) gives a
MATI vibronic structure that agrees very well with the experiment. The relative positions
of the vibronic components (Table 1) correspond to the vibrational frequencies of the free
Cp*2Mn+ cation. Only two normal vibrations of Cp*2Mn+ are responsible for the MATI
features of noticeable intensity (Figure 3). They are denoted in this work as ν1 and ν2.
According to the DFT calculations, the 130 cm−1 ν1 mode corresponds to the Me out-of-
plane bend, while the 352 cm−1 ν2 vibration represents the symmetric Mn-ring stretch
without displacement of the methyl carbon nuclei. Both the ν1 and ν2 modes involve the
change of the Mn-Cring-CMe angle. The relative atomic shifts for the ν1 and ν2 vibrations are
shown in Figure 4, and the corresponding animations are presented in the Supplementary
Materials (Videos S1 and S2).
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Table 1. Relative positions (cm−1) of the vibronic components in the Cp*2Mn experimental MATI
spectrum and its DFT simulation.

Vibronic Component a MATI DFT

000 0 0
101 140 b 130
102 - 261
201 340 352

201 101 480 482
a The vibronic transitions are notated as N

v”v′ , where N is the vibration number and v” and v′ are the vibrational

quantum number in the neutral and ionic state, respectively. b Shoulder.
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Both ν1 and ν2 would be totally symmetric modes in a D5 decamethylmetallocene
molecule like closed-shell Cp*2Fe. The experimental and simulated MATI spectra of
Cp*2Mn (Figure 3) do not contain vibronic components that could be associated with the
JT distortion of the neutral or cationic species in the degenerate E2 electronic state. This
testifies for similar shifts of the Cp*2Mn0 and Cp*2Mn+ molecular geometries from the D5
point group along the JT active vibrational coordinates. The good agreement between the
experimental and simulated MATI vibronic structure (Figure 3, Table 1) shows that the
B3PW91/6-311++G(d,p) level of DFT provides reliable information about the structural
changes in Cp*2Mn upon ionization.

2.3. Changes in the Geometry of Decamethylmanganocene upon Ionization

The structural transformations accompanying ionization of Cp*2Mn can be analyzed
on the basis of the neutral and ion geometries obtained from the X-ray diffraction experi-
ments [68,74]. However, in this case the changes caused by the intramolecular effects would
be superimposed on those resulted from the intermolecular and cation–anion interactions.
The Cp*2Mn structure in the gas phase has been determined by electron diffraction [69],
but these data provide only averaged geometry of the sandwich molecule corresponding
to the high symmetry of the D5d point group. Therefore, the DFT calculations verified by
the simulation of the experimental gas-phase MATI spectrum would be preferable as a
basis for studying the fine details of the structural changes accompanying ionization of the
Cp*2Mn molecule.

The atom numbering as well as selected bond lengths and angles in one Cp*Mn
fragment are given in Figures 5 and 6. The atomic coordinates are provided in the Sup-
plementary Materials (Tables S1 and S2). The geometry of the other fragment is identical
since the molecule with a staggered conformation of the Cp* ligands possesses a center of
inversion. The optimized staggered geometry of Cp*2Mn0 is in accord with the X-ray struc-
ture [68,81] (Tables S3 and S4, see the Supplementary Materials). The calculated interatomic
distances in Cp*2Mn0 (Figure 5a) agree well with the single-crystal X-ray diffraction data [68]
(r(C-C) = 1.409–1.434 Å for the carbocycle and r(Mn-C) = 2.105–2.118 Å) and gas-phase electron
diffraction results [69] (1.440 and 2.130 Å, respectively). The DFT-based structural parame-
ters of the Cp*2Mn+ ion (Figure 5b) also correlate with the crystal structure [74], though the
experimental solid-phase parameters depend strongly on the counter ion.
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The optimized structure of the neutral Cp*2Mn molecule or the corresponding cation
is nearly symmetric relative to the MnC1C6 plane. Together with the inversion center at
the Mn atom, this means that the molecular symmetry is close to the C2h point group. The
deviation from the ideal D5d symmetry is caused by the JT distortion of the Cp*2Mn neutral
or ion in the degenerate E2 ground electronic state. The JT distortion in both Cp*2Mn0

and Cp*2Mn+ includes mainly: (1) a slippage of the Cp* ligands leading to a shift of the
Mn atom projection on the ring plane from the ring centroid and to different Mn-C bond
lengths; (2) an in-plane ring deformation (a contraction of the C1-C2 and C1-C5 bonds, an
elongation of the C3-C4 bond); (3) unequal bending of the methyl groups away from the
metal atom (the C8 and C9 atoms lie at the longest distance from the ring plane). The first
and the second trend were also revealed by the X-ray study [68].

It should be noticed that the JT distortion of Cp*2Mn0 differs from that in Cp2Co0

where the Cp rings become non-planar [51,82]. This difference arises from the different
nature of the single-occupied MO in these sandwich molecules. In Cp*2Mn0, the unpaired
electron occupies MO dx2-y2 belonging to the e2 set in a non-distorted molecule. In Cp2Co0,
the single-occupied MO is derived from the Co 3dxz or 3dyz and Cp π(e1) wavefunctions.

The structural transformation of Cp*2Mn0 upon ionization consists mainly in length-
ening the Mn-Cp* distances and changing the Me bending angles (Table 2). As a result
of the electron detachment, the distance between the ligand ring planes increases by
0.048 Å, from 3.494 Å to 3.542 Å. This increase in the ligand–ligand distance exceeds that
computed earlier for (η6-C6H6)2Cr (0.038 Å [66]). The symmetry of the Cp*2Mn0 neutral
and Cp*2Mn+ ion is the same, so only totally symmetric vibrations ν1 and ν2 corresponding
to the Me bend and Mn-Cp* stretch, respectively, are excited in the MATI experiment. In
contrast to decamethylmanganocene, ionization of cobaltocene leads to the highly symmet-
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ric closed-shell Cp2Co+ ion. Accordingly, the MATI spectrum of Cp2Co reveals the e2 and
e1 vibrational modes which are active in the JT effect and pseudo-JT effect occurring in the
neutral molecule [51,83]. The ionized MO of Cp*2Mn0 represents an almost “pure” 3dz2

orbital of the Mn atom (Figure 1). However, the electron density (ED) analysis reveals a
much more complex charge redistribution upon ionization of decamethylmanganocene
than would be expected from the simple subtraction of the dz2 ED.

Table 2. Calculated changes in selected bond lengths and atom-plane(ring) distances ∆r (Å) as well
as angles ∆φ (◦) upon ionization of Cp*2Mn0.

Distance ∆r Angle ∆φ

C1-C2 0.004 Mn-centroid(ring)-C1 −0.1
C2-C3 0.002 Mn-centroid(ring)-C2 0.0
C3-C4 0.002 Mn-centroid(ring)-C3 0.1
Mn-C1 0.019 Mn-C1-C6 0.1
Mn-C2 0.022 Mn-C2-C7 −0.3
Mn-C3 0.024 Mn-C3-C8 −0.7

C6-plane(ring) 0.009 centroid(ring)-C1-C6 −0.3
C7-plane(ring) 0.001 centroid(ring)-C2-C7 −0.1
C8-plane(ring) −0.012 centroid(ring)-C3-C8 0.6
Mn-plane(ring) 0.024

2.4. Charge Density Redistribution after Electron Detachment from Cp*2Mn0

The ED difference (EDD) isosurfaces (Figure 7) corresponding to the ED change on
going from Cp*2Mn0 to Cp*2Mn+ at the geometry of the neutral (the vertical ionization)
reveal areas of both a decrease and an increase in the ED. The ED gain near the metal is the
result of charge transfer from the Cp* ligands to the Mn atom during ED relaxation after
ionization. The 0.005 a.u. EDD isosurface (Figure 7a) shows the ED loss arising from the
detachment of the Mn dz2 electron and from the consequent transfer of the ligand π-electron
density to the Mn atom. The largest area of the positive EDD visualizes the acquisition
of ED by the metal atom through the Mn(dxz,yz)/Cp(π) e1-occupied orbital. A smaller
ED shift from C(Me) to C(ring) along the C-C σ-bonds is also observed (Figure 7a). The
0.003 a.u. and 0.001 EDD isosurfaces (Figure 7b) reveal an additional ED loss by the H
atoms of the Me groups accompanied by a ED increase near C(Me) around the C-H bonds.
The positive EDD region appears inside the carbocycles near the C-C σ-bonds.
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The inhomogeneous ED redistribution upon ionization of decamethylmanganocene
leads to nontrivial changes in the atomic charges. They were calculated in this work by
integration of the ED over the atomic basins within the frames of the Quantum Theory of
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Atoms in Molecules (QTAIM) [84,85]. Due to the transfer of the ED from the ligands to the
metal, after the removal of the dz2 electron, the Mn charge increases by only 0.198 a.u. on
going from Cp*2Mn0 to Cp*2Mn+ (Table 3). Correspondingly, each Cp* ligand becomes less
negative by 0.401 a.u. However, the carbon charges change very little (Table 3). Moreover,
the C atoms of both carbocycles and methyl groups become more negative upon ionization
of Cp*2Mn0. The total change in the C(ring) and C(Me) charges in the molecule is −0.044
and −0.037 a.u., respectively. The loss of the ED by the ligands is provided, therefore,
entirely by the hydrogen atoms of the methyl groups. Indeed, the total increase of the H
positive charges is 0.883 a.u. It is worth mentioning that the larger charge shift (0.044 a.u.)
corresponds to the H atoms oriented away from the metal (Table 3). This agrees well with
the EDD isosurfaces (Figure 7b,c) which demonstrate, however, that, despite the decisive
role of H atoms in the total loss of the ED by the ligands during Cp*2Mn0 ionization, carbon
atoms are also involved in the ED redistribution mechanism. The loss of the π-electron
density by the carbocyles, which transfer a negative charge to the metal, is compensated by
the ED gain through the C(ring)-C(Me) σ-bonds.

Table 3. Charges q (a.u.) on selected atoms a and fragments in the optimized Cp*2Mn0 neutral and
Cp*2Mn+ cation and their change upon ionization ∆q.

Atom or Fragment q (Neutral) q (Cation) ∆q

Mn 0.874 1.072 0.198
C1 −0.103 −0.105 −0.002
C2 −0.114 −0.118 −0.004
C3 −0.123 −0.129 −0.006
C6 0.000 −0.003 −0.003
C7 0.003 −0.001 −0.004
C8 0.005 0.001 −0.004

H(C6) b 0.006 0.050 0.044
H(C6) c 0.005 0.028 0.023
H(C6) c 0.006 0.029 0.023
H(C7) b 0.009 0.053 0.044
H(C7) c 0.007 0.029 0.022
H(C7) c 0.008 0.031 0.023
H(C8) b 0.012 0.056 0.044
H(C8) c 0.009 0.031 0.022
H(C8) c 0.010 0.032 0.022
Me(C6) 0.023 0.108 0.085
Me(C7) 0.027 0.112 0.085
Me(C8) 0.032 0.116 0.084

Cp* −0.437 −0.036 0.401
a See the text and Figures 5 and 6 for the atom numbering; the carbon atoms of the methyl groups are indicated in
parentheses. b The H atoms oriented away from the metal. c The H atoms oriented towards the metal.

3. Materials and Methods
3.1. PIE and MATI Experiments

Decamethylmanganocene was purchased from Alfa Aesar and purified by sublimation
in the PIE and MATI experiments. All manipulations with the air- and moisture-sensitive
compound were carried out under an inert atmosphere in a glovebox. The MATI setup was
described earlier [64,86]. The Cp*2Mn sample was placed into a stainless steel tube heated
up to 170–180 ◦C. The sublimed vapor-phase organometallics diluted with helium (1.5 bar)
was expanded into an evacuated chamber using a heated pulsed valve. The molecular beam
selected by a skimmer was directed into a high-vacuum (10−8 Torr) ionization chamber
where the Cp*2Mn neutrals were excited (MATI) or ionized (PIE) by the UV laser radiation.
Tunable laser pulses in the 225–235 nm region were formed when doubling the dye-laser
frequency (Lambda-Physik, Scanmate UV) by the BBO-I crystal. The Nd:YAG laser (Quanta-
Ray PRO-190-10) was used for the pumping of the dye laser. The laser wavelengths were
calibrated with a wavemeter (Coherent, WaveMaster). In the PIE experiment, the molecular
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ions formed by ionization of Cp*2Mn were detected by a microchannel plate particle
detector of the time-of-flight mass spectrometer. The photoionization mass spectrum
revealed an intense molecular ion signal at m/z = 325 a.u. (C20H30Mn+). The ion signal
at variable laser wavelengths was collected and analyzed. In the MATI experiment, the
neutrals were excited by a UV laser pulse to the long-lived ZEKE states. To remove the
prompt ions, a pulsed electric field of ~1 V/cm was switched on about 20 ns after the
laser pulses. Then, another pulse of the +200 V/cm electric field was applied with a 11 µs
delay to ionize the ZEKE-state molecules. The obtained Cp*2Mn+ ions were detected and
analyzed like those in the PIE measurements.

3.2. DFT Calculations and Electron Density Analysis

The geometries of the neutral and cationic decamethylmanganocene were optimized
at the B3PW91/6-311++G(d,p) level of DFT. The combination of the hybrid B3PW91 func-
tional [87,88] and triple-ζ split valence basis set 6-311++G(d,p) including diffuse and
polarization functions on hydrogen and the heavy atoms [89,90] demonstrated earlier good
performance when modeling the MATI spectra of bisarene complexes [64,65] and mixed
sandwiches [66]. The experimental X-ray structure [68] was used as a starting geometry
in the optimization procedure. Harmonic vibrational frequencies were calculated and the
results were used to compute the Franck-Condon factors and produce the model MATI
spectra. No imaginary frequencies were found. The calculations were carried out with
the Gaussian 16 program package [91]. The QT AIM analysis of the ED distribution was
performed with the AIM ALL suite [92]. The atomic charges were obtained by integration
of ED over the atomic basins using the Promega1 algorithm [93]. The EDD isosurfaces were
built as a result of the neutral ED subtraction from the ion ED at the ground-state geometry
using the Multiwfn code [94].

4. Conclusions

The high-resolution MATI spectroscopy provides unprecedented accuracy in determi-
nation of the ionization energy of decamethylmanganocene. The I value of 43,146± 8 cm−1,
or 5.349 ± 0.001 eV is obtained on the basis of the Cp*2Mn MATI spectrum. The adiabatic
and vertical ionization energies of Cp*2Mn coincide. The precise I value makes it possible
to determine with high accuracy the difference between the Mn-Cp* mean bond energies in
the Cp*2Mn+ cation and Cp*2Mn0 neutral (100.6± 0.1 kJ mol−1). The bond strengthening in
the cation can be associated with a weaker repulsion between the less negative Cp* ligands
and stronger Mn-Cp* covalent interactions that resulted from the increase in the dxz,yz
electron density. The B3PW91/6-311++G(d,p) model of the MATI vibronic structure agrees
very well with the experiment. Although the geometry of both Cp*2Mn0 and Cp*2Mn+ is
distorted because of the JT effect, only the symmetric Cp*-Mn-Cp* stretching vibration and
Mn-C(ring)-C(Me) bending mode are detected in the MATI structure. Correspondingly, the
main structural deformations accompanying the electron detachment include an elongation
of the Mn-C bonds and changes in the Me out-of-plane bending angle. Interestingly, atomic
charge calculations using the QTAIM method predict that the largest part of the reduction
in ED during ionization is associated with substituent hydrogen atoms, despite the metallic
nature of the ionized orbital. The ED difference isosurfaces reveal, however, a complex
mechanism of the charge redistribution involving also the carbon atoms of the molecule.
Thus, DFT-assisted MATI spectroscopy represents a powerful instrument that unveils the
details of the structural and electronic transformations accompanying ionization of the
permethylated metallocene molecule.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196226/s1, Table S1: Atomic coordinates of the
optimized Cp*2Mn0 molecule; Table S2: Atomic coordinates of the optimized Cp*2Mn+ cation;
Table S3: Calculated and experimental selected bond lengths in the Cp*2Mn0 molecule; Table S4:
Calculated and experimental selected bond angles in the Cp*2Mn0 molecule; Video S1: Animated ν1

https://www.mdpi.com/article/10.3390/molecules27196226/s1
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vibration of Cp*2Mn+; Video S2: Animated ν2 vibration of Cp*2Mn+. References [68,81] are cited in
the supplementary materials.
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