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A novel 10 glycolysis-related genes
signature could predict overall survival for
clear cell renal cell carcinoma
Qianwei Xing1†, Tengyue Zeng2†, Shouyong Liu2†, Hong Cheng3, Limin Ma1* and Yi Wang1*

Abstract

Background: The role of glycolysis in tumorigenesis has received increasing attention and multiple glycolysis-
related genes (GRGs) have been proven to be associated with tumor metastasis. Hence, we aimed to construct a
prognostic signature based on GRGs for clear cell renal cell carcinoma (ccRCC) and to explore its relationships with
immune infiltration.

Methods: Clinical information and RNA-sequencing data of ccRCC were obtained from The Cancer Genome Atlas
(TCGA) and ArrayExpress datasets. Key GRGs were finally selected through univariate COX, LASSO and multivariate
COX regression analyses. External and internal verifications were further carried out to verify our established
signature.

Results: Finally, 10 GRGs including ANKZF1, CD44, CHST6, HS6ST2, IDUA, KIF20A, NDST3, PLOD2, VCAN, FBP1 were
selected out and utilized to establish a novel signature. Compared with the low-risk group, ccRCC patients in high-
risk groups showed a lower overall survival (OS) rate (P = 5.548Ee-13) and its AUCs based on our established
signature were all above 0.70. Univariate/multivariate Cox regression analyses further proved that this signature
could serve as an independent prognostic factor (all P < 0.05). Moreover, prognostic nomograms were also created
to find out the associations between the established signature, clinical factors and OS for ccRCC in both the TCGA
and ArrayExpress cohorts. All results remained consistent after external and internal verification. Besides, nine out of
21 tumor-infiltrating immune cells (TIICs) were highly related to high- and low- risk ccRCC patients stratified by our
established signature.

Conclusions: A novel signature based on 10 prognostic GRGs was successfully established and verified externally
and internally for predicting OS of ccRCC, helping clinicians better and more intuitively predict patients’ survival.
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Background
Renal cell carcinoma (RCC) incidence is second only to
bladder cancer and there will be 73,750 newly estimated
cases and 14,830 estimated death in the United States,

2020 [1]. Therein, clear cell RCC (ccRCC) accounts for
approximately 70–80% of the pathological subtype of
RCC. Due to the insensitivity of radiotherapy or chemo-
therapy in RCC, its therapy is mainly surgical treatment.
At present, survival rates of metastatic kidney cancer are
still low. Its two-year survival is lower than 20%, and
about one-third of patients are found to have tumor me-
tastasis when diagnosed [2, 3]. Therefore, further under-
standing of their molecular mechanisms and
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development of effective early screening and diagnosis
methods are essential for improving the treatment effect
and life quality for these patients.
In recent years, there have been more and more

researches on the metabolic changes of tumor cells.
Warburg effect is the most common and widely
studied metabolic change in cancer cells, that is, in
the presence of oxygen, malignant tumor cells have
an inherent tendency to incompletely oxidize glucose
[4]. Studies have revealed that many tumors have en-
hanced glucose uptake in adjacent tissues, and high
glucose uptake rates are simultaneously present with
suppressed glucose oxidation [4]. Glucose is con-
verted into lactic acid during glycolysis, and cancer
cells obtain maximum energy in this way. This
phenomenon is ubiquitous in tumors [5], and this
metabolic change is particularly noticeable in kidney
cancer [6].
Accumulating evidence have reported that

glycolysis-related genes (GRGs) are differently
expressed in various malignant cancers and play im-
portant roles in tumorigenesis and progress. For ex-
ample, studies have presented that about 90% of
patients with sporadic ccRCC have mutations of VHL
gene [7]. When this gene is deleted, HIF-α accumu-
lates, and genes such as VEGF, PDGF, TGF-α, and
MMP are activated to participate in neovasculariza-
tion formation, cell proliferation, infiltration and dis-
tant metastasis promote the development of tumors
[8]. One of the key enzymes of glycolysis, hexokinase
2 (HK2), has turned out to be abnormally expressed
in ccRCC and can promote cell proliferation and in-
vasion [9]. Multiple genes, such as FBP1, PLOD2,
VCAN, and CD44 have been demonstrated to partici-
pate in epithelial-mesenchymal transition (EMT) pro-
motion of tumor metastasis [10–13]. More and more
researches on the relationships between glycolysis and
tumor occurrence and development have emerged.
Glycolysis roles in the progress of RCC have also
been confirmed. However, there is currently no prog-
nostic model for ccRCC based on GRGs. Hence, this
article is committed to establish a novel GRGs-related
prognostic signature and to explore its associations
with immune infiltration for predicting ccRCC pa-
tients’ overall survival (OS).

Methods
Data collection and identification of differentially
expressed GRGs
Clinical information and RNA-sequencing FPKM
values of 539 ccRCC tumor samples and 72 normal
tissues were obtained from The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/) dataset, with a
mixture of different histologic types of ccRCC

included in this study. All raw data were pre-
processed by normalization, log 2 transformation and
excluding average count values of genes < 1. Differen-
tially expressed GRGs were identified by the “Limma”
package, in setting the cut-off values of |log2 fold
change |>1 and false discovery rate (FDR) < 0.05. In
addition, the E-MTAB-1980 dataset from the
ArrayExpress database (https ://www.ebi .ac .uk/
arrayexpress/) including 99 ccRCC tumor samples
were served as an external verification cohort.

Gene ontology (GO) and Kyoto encyclopedia of genes
and genome (KEGG) pathway enrichment analyses
Through the enrichment of GO and KEGG pathway en-
richment analyses, differently expressed GRGs’ biological
functions were comprehensively evaluated. Therein, GO
analysis terms included molecular functions (MF), cellu-
lar components (CC) and biological processes (BP). All
functional annotation and pathway enrichment analyses
were conducted using the R package of “clusterProfiler”.

Protein-protein interaction (PPI) network and related
module screening
In order to evaluate the PPI network, we submitted
these differentially expressed GRGs to the online tool
STRING (http://www.string-db.org/) and visualized the
PPI network by Cytoscape 3.7.0 software. By means of
the Molecular Complex Detection (MCODE) plug-in,
we screened out the top three hub modules identified
from the PPI network with the cut-off criteria of a node
degree > 3, a combined score > 0.9 and P < 0.05.

Prognostic model construction and validation
We utilized data in the TCGA database as the train-
ing queue and the data in the ArrayExpress database
as the external verification queue. Univariate Cox re-
gression was performed to analyze associations be-
tween differently expressed GRGs and OS for ccRCC
in the TCGA database, and 40 candidate genes were
selected. The least absolute contraction and selection
operator (LASSO) method was used to improve ac-
curacy and to select out the optimal gene combin-
ation. Finally, 10 genes were screened out by
multivariate Cox regression analysis to establish a sig-
nature. According to the genes’ expression levels and
their regression coefficients, a risk signature is estab-
lished. The riskscore formula for each ccRCC patient
was displayed as following:

Riskscore ¼
Xn

i¼1
expi�βi:

Therein, β represented the regression coefficient and
exp. was the genes’ expression levels. Taking the median
riskScore in the TCGA training database as the
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threshold, the eligible ccRCC patients were classified
into a high-risk and a low-risk group, and Kaplan-Meier
survival curve was drawn to show the prognosis differ-
ence between the two groups of patients. Besides, our
established signature was carefully evaluated in three
validations sets including the external validation dataset
(ArrayExpress), the internal validation dataset 1 (test 1)
as well as the internal validation dataset 2 (test 2).

Univariate/multivariate cox regression analyses and
nomogram construction
Univariate and multivariate Cox regression analyses
were applied to evaluate whether our established sig-
nature and various clinical parameters could be
served as an independent prognostic factor for
ccRCC. Six clinical factors and riskscore were utilized
to establish the prognostic nomogram, evaluating the
ccRCC patients’ 1-, 3- and 5-year OS. C-index and
the area under the curve (AUC) were calculated to
assess nomogram accuracy. Calibration charts were
applied to intuitively assess nomogram prognostic
ability. In addition, the prognosis nomogram was also
verified in external validation cohort from ArrayEx-
press database.

Verification of the GRGs’ protein expression in HPA
database and survival analysis in Kaplan-Meier plotter
website
By means of the Human Protein Atlas (HPA) dataset
(http://www.proteinatlas.org/), we validated the 10 hub
GRGs’ protein expression levels in ccRCC by immuno-
histochemical staining. Kaplan–Meier plotter website
(http://kmplot.com/analysis/) was also applied to assess
the prognosis of these 10 hub GRGs in ccRCC by sur-
vival analysis.

Estimation of tumor-infiltrating immune cells (TIICs)
The TIICs expression levels in all ccRCC samples
were calculated by the “limma” package of R soft-
ware. Then, algorithm with LM22 gene signature
and 1000 permutations were calculated to find
whether these TIICs are highly related to high- and
low- groups stratified by our established signature
[14]. P-value below 0.05 above mentioned was set as
threshold.

Statistical analysis
R software 3.6.3 was utilized to calculate all statistical
analyses. Survival curves were drawn by the Kaplan-
Meier method with log-rank test. Univariate COX,
LASSO and multivariate COX regression analyses
were utilized to calculate the regression coefficient
and to establish a signature. All statistical tests are

bilateral. P-value below 0.05 was regarded to be sta-
tistically significant.

Results
Identification of differently expressed GRGs
The workflow of our study was presented in Supple-
ment Figure S1. A total of 611 patients were ex-
tracted from the TCGA database, containing 539
renal cancer samples and 72 normal specimens with a
mixture of different histologic types of ccRCC in-
cluded in this study. The R package of “Limma” was
applied to discover differentially expressed mRNAs
(DE-mRNAs) with a thresholds of |log 2 (FC)| > 1 as
well as FDR less than 0.05, 113 differently expressed
GRGs were screened from the GRG list, including 44
down-regulated and 69 up-regulated GRGs. Their ex-
pression heatmap and volcano plot were shown in
Fig. 1a-b.

Functional annotation and pathway enrichment
Results of GO and KEGG analyses presented that
differently expressed GRGs were remarkably enriched
in the biological processes (BP) analysis associated
with carbohydrate catabolic process, pyruvate meta-
bolic process, glycolytic process, hexose metabolic
process, ATP generation from ADP, pyridine nucleo-
tide metabolic process, glucose metabolic process,
pyridine−containing compound metabolic process,
nicotinamide nucleotide metabolic process pyruvate
biosynthetic process. Through the molecular function
(MF) analysis, they were significantly enriched in ox-
idoreductase activity, monosaccharide binding, coen-
zyme binding, carbohydrate phosphatase activity,
organic acid binding, sugar−phosphatase activity car-
boxylic acid binding, oxidoreductase activity, NAD
or NADP as acceptor, carbohydrate kinase activity,
vitamin binding. Concerning the cellular component
(CC), differently expressed GRGs were notably
enriched in lysosomal lumen, Golgi lumen, oxidore-
ductase complex, vacuolar lumen, mitochondrial
matrix, proteinaceous extracellular matrix, endoplas-
mic reticulum lumen, extracellular matrix. KEGG
pathway analysis is significantly enriched in HIF-1
signaling pathway, Glycolysis/Gluconeogenesis, Car-
bon metabolism, Glucagon signaling pathway, Pyru-
vate metabolism, Fructose and mannose metabolism,
Tyrosine metabolism, AMPK signaling pathway, Bio-
synthesis of amino acids, Galactose metabolism, In-
sulin signaling pathway, suggesting that these
prognostic genes are indeed associated with glycoly-
sis (Fig. 1c-d).
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PPI network integration and the top 3 key modules selection
In order to further study their roles of differentially
expressed GRGs in RCC, we used the STRING data-
base to reveal the relationships between differentially
expressed GRGs and visualized by Cytoscape soft-
ware (Fig. 2a). We also used Cytoscape’s MODE tool
to process the co-expression network and to identify
the top three key modules in the PPI network (Fig.
2b-d).

Construction a prognostic model
To construct a prognostic model, univariate regres-
sion analysis was done to find out 40 candidate GRGs
(Fig. 3a). The LASSO Cox regression model was ap-
plied to avoid overfitting of the model (Fig. 3b-c). Fi-
nally, 10 genes were screened out by multivariate Cox
regression analysis to establish a signature (Fig. 3d
and Table 1). The riskscores of each patient were
shown as following:

Fig. 1 The differentially expressed GRGs identified in ccRCC. a Heatmap; b Volcano plot. The red nodes represent the up-regulated genes Green nodes
represent the down-regulated genes (P value < 0.05 and |log2(FC)| > 1); c GO enrichment of differently expressed GRGs; d KEGG pathway analysis of
differently expressed GRGs
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Riskscore ¼ 0:0280� Exp ANKZF1ð Þ
þ 0:0054� Exp CD44ð Þ
þ 0:3550� Exp CHST6ð Þ
þ 0:4116� Exp HS6ST2ð Þ
þ 0:1155� Exp IDUAð Þ
þ 0:1080� Exp KIF20Að Þ
þ −1:274� Exp NDST3ð Þ
þ 0:0052� Exp PLOD2ð Þ
þ 0:0059� Exp VCANð Þ
þ −0:011� Exp FBP1ð Þ:

Validation the expression and prognosis of key GRGs
Based on our established glycolysis signature, 539 ccRCC
cases were subdivided into a high-risk and a low-risk
group, accordingly to the median riskscore. Kaplan-
Meier survival analysis indicated that ccRCC patients in
low-risk groups could have a markedly longer OS than
patients in high-risk groups (P = 5.548e− 13, Fig. 4a).
The signature showed superior predictive veracity of pa-
tients’ OS with the 1-, 3- and 5-year AUC values of
0.724, 0.716 and 0.741, separately (Fig. 4b-d, Table 2).
Besides, the riskscore for each sample was also calcu-
lated and ranked and the heatmap showed the

expression value of ten significant GRGs between high-
and low-risk groups. As the risk score increased, ccRCC
patients would have a shorter survival time and more
dead events (Fig. 4i). Three validation datasets contain-
ing the external validation dataset, the internal validation
dataset 1 as well as the internal validation dataset 2 were
used to verify the risk score signature had similar pre-
dictive values in different populations. Survival analysis
showed that all three testing cohorts had similar out-
comes (Fig. 4e Fig. 5a and e). The 1-, 3- and 5-year AUC
values of OS in three testing cohorts were all above 0.70,
also showed a favorable predictive ability (Figs. 4f-h, Fig.
5, Table 2). The expression heatmap of ten hub GRGs,
survival status and risk score of signature of ccRCC pa-
tients were displayed in Fig. 5.

Determination of the GRGs risk model as an independent
prognostic factor
Univariate and multivariate Cox regression analyses were
applied to evaluate whether our established signature
and various clinical parameters could be served as an in-
dependent prognostic factor for ccRCC. In the TCGA
cohort, univariate analysis showed the glycolysis signa-
ture, age, grade, stage, T and M were all remarkably re-
lated to OS (all P < 0.001). Multivariate analysis

Fig. 2 Protein–protein interaction network and its top 3 key modules. a Protein–protein interaction network of differentially expressed GRGs. b-c
The top three key modules from PPI network
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Fig. 3 Construction a prognostic signature using univariate Cox regression analysis, LASSO analysis and multivariate Cox regression analysis. a Risk
ratio forest plot showed the prognostic value of 40 candidate genes screened out by univariate Cox regression. b-c LASSO coefficients profiles of
20 GRGs; The partial likelihood deviance plot displayed the minimum number corresponds to the covariates utilized for multivariate Cox analysis.
d Risk ratio forest plot showed the prognostic value of 10 prognostic genes screened out by multivariate Cox regression

Table 1 Coefficients and HR of the 10 key prognostic GRGs

gene coef HR HR.95 L HR.95H p-value

ANKZF1 0.02801704 1.02841321 1.0008025 1.05678565 0.0436188

CD44 0.00539614 1.00541073 1.00198434 1.00884883 0.00194757

CHST6 0.35495268 1.42611317 0.97559469 2.08467593 0.06689023

HS6ST2 0.4115756 1.50919379 1.15040925 1.97987446 0.0029622

IDUA 0.11551555 1.12245197 1.06029044 1.18825784 7.07E-05

KIF20A 0.10802281 1.11407316 1.05755908 1.17360724 4.76E-05

NDST3 −1.2741372 0.27967216 0.07967676 0.98167295 0.04671924

PLOD2 0.00521398 1.0052276 1.0009296 1.00954405 0.01707989

VCAN 0.00589737 1.0059148 0.99937923 1.0124931 0.07618717

FBP1 − 0.0106882 0.98936868 0.97935727 0.99948242 0.03942413
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Fig. 4 Evaluation and external verification of six RBPs established signature; a Kaplan-Meier survival curves for low- and high-risk subgroups
stratified by riskscore signature in the training dataset (TCGA). b-d ROC curves for forecasting 1-year, 3-year and 5-year OS based on risk score in
the TCGA training dataset. e Kaplan-Meier survival curves for low- and high-risk subgroups stratified by riskscore signature in the external
validation dataset (ArrayExpress); f-h ROC curves for forecasting 1-year, 3-year and 5-year OS based on risk score in the external validation dataset
(ArrayExpress); i-j Expression heat map, risk score distribution, and survival status in the training dataset (TCGA) and the external validation
dataset (ArrayExpress)

Table 2 External and internal verification datasets of 1-year, 3-year, 5-year ROC

Dataset 1-year ROC 3-year ROC 5-year ROC

The whole training dataset (TCGA) 0.751 0.723 0.748

The external validation dataset (ArrayExpress) 0.740 0.737 0.760

The internal validation dataset 1 (test 1) 0.739 0.738 0.752

The internal validation dataset 2 (test 2) 0.737 0.700 0.746
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indicated that the glycolysis signature, age, grade and
stage were all marked correlated with OS (all P < 0.01).
Therefore, the prognostic glycolysis signature con-
structed by the TCGA training set was an independent
prognostic factor for ccRCC (Fig. 6, Table 3).

Nomogram construction based on the clinical
characteristic and ten GRGs’ signature
To predict ccRCC patients’ prognosis, a prognostic
nomogram was constructed by TCGA dataset to predict

the 1-, 3- and 5-year OS for ccRCC. Severn prognostic
parameters were included in the prediction model, in-
cluding the riskScore, age, gender, grade, T, M and N
(Fig. 7a). The nomogram showed good predictive power
of 1-, 3- and 5-year OS rates for ccRCC. The 1-, 3- and
5-year AUC and their C-index were 0.836, 0.799, 0.765
and 0.781 in the TCGAs database respectively (Table 4,
Supplement Figure S2). Calibration charts (Fig. 7c)
showed that the 1-, 3- and 5-year survival rates of the
TCGA cohort predicted were in excellently consistent

Fig. 5 Internal verification of 10 GRGs based riskscore signature. a Kaplan-Meier survival curves for low- and high-risk subgroups stratified by
riskscore signature in the internal validation dataset 1; b-d ROC curves for forecasting 1-year, 3-year and 5-year OS based on risk score in the
internal validation dataset 1; e Kaplan-Meier survival curves for low- and high-risk subgroups stratified by riskscore signature in the internal
validation dataset 2; f-h ROC curves for forecasting 1-year, 3-year and 5-year OS based on risk score in the internal validation dataset 2; i-j
Expression heat map, risk score distribution, and survival status in the internal validation dataset 1 and in the internal validation dataset 2
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with actual observations. In addition, we constructed an-
other prognosis nomogram as an external verification
set to verify the previous results in ArrayExpress dataset
(Fig. 7b). Its C-index was 0.86 and the AUC values were
0.888, 0.915, and 0.902 (Table 4, Supplement Figure S2)
respectively, indicating that the nomogram also has good
predictive power for OS rates in the testing set. The cali-
bration chart shows excellent agreement between the 1-,
3- and 5-year OS predictions and actual observations of
ccRCC patients in the external testing set (Fig. 7d).

Prognostic value of 10 key GRGs and their associations
between our established signature and clinical factors
Based on the median expression, survival analyses of 10
GRGs (ANKZF1, CD44, CHST6, HS6ST2, IDUA,
KIF20A, NDST3, PLOD2, VCAN, FBP1) by Kaplan-
Meier Plotter website were displayed in Fig. 8. The cor-
relations between our established and clinical factors
were also analyzed and revealed that the established sig-
nature was firmly associated with grade (P = 0.030), stage

(P = 0.036) and staged T (P = 0.042) (Table 5, Supple-
mentary Figure S3).

Validation of the expression of 10 critical GRGs in ccRCC
from HPA database
As detailed in Supplementary Figure S4, immunohisto-
chemical staining of these 10 critical GRGs from HPA
database were utilized to verify their protein expressions.
Compared with normal kidney tissues, antibody stain-
ings for ANKZF1, CD44, IDUA, KIF20A, PLOD2, and
VCAN were high in ccRCC tumor tissues, whereas they
were low for CHST6, HS6ST2, NDST3 and FBP1.

Clinical factors stratified by the riskScore for OS
Our results indicated that our established riskScore
was capable of predicting OS in age ≤ 65, age > 65,
Female, Male, Grade 1–2, Grade 3–4, M0, N0, White,
Stage I-II, Stage III-IV, T1–2 stage, T3–4 stage (all
P < 0.01; Fig. 9).

Fig. 6 Independent prognostic factor evaluation. a Univariate cox regression analysis of the training dataset (TCGA). b Multivariate cox regression
analysis of the training dataset (TCGA)

Table 3 Univariate and multivariate Cox regression analysis of external and internal verification datasets for overall survival (OS) in
TCGA training dataset

id Univariate Cox regression analysis Multivariate Cox regression analysis

HR HR.95 L HR.95H pvalue HR HR.95 L HR.95H p value

age 1.030913 1.017301 1.044707 7.14E-06 1.032813 1.01749 1.048366 2.30E-05

gender 0.939895 0.682968 1.293475 0.703594 0.9303 0.669431 1.292828 0.666978

race 1.175718 0.705799 1.958508 0.534112 1.127239 0.642321 1.978247 0.676404

grade 1.971561 1.640971 2.368751 4.20E-13 1.403862 1.126968 1.74879 0.002475

stage 1.880446 1.664529 2.12437 3.38E-24 1.615246 1.154106 2.260642 0.00518

T 2.043146 1.72421 2.421079 1.57E-16 1.150896 0.874324 1.514955 0.316239

M 2.135679 1.688608 2.701115 2.42E-10 0.987786 0.536484 1.81873 0.968524

N 0.862088 0.737405 1.007852 0.062627 0.85109 0.723966 1.000537 0.050765

riskScore 1.031719 1.021717 1.041819 3.33E-10 1.021333 1.010815 1.03196 6.42E-05
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Associations between TIICs and our established signature
for ccRCC
As displayed in Fig. 10a-i, nine out of 21 TIICs (T cells
CD4 memory activated, Plasma cells, T cells gamma
delta, T cells regulatory (Tregs), Macrophages M0,
Monocytes, Macrophages M1, Mast cells resting, Den-
dritic cells resting) were highly associated with high- and
low- risk ccRCC patients stratified by our established
riskScore (all P < 0.05). As detailed in Fig. 10j, radar
chart showed the relationships of 21 TIICs between

Fig. 7 Nomogram to predict the 1-, 3-, and 5-year OS of ccRCC patients in TCGA and ArrayExpress databases; a-b Nomogram for predicting
probabilities of patients with ccRCC with 1-, 3-, 5-year OS in the TCGA and ArrayExpress databases respectively; c Calibration plot of the
nomogram for agreement test between 1-,3- and 5-year OS prediction and actual outcome in the TCGA training cohort. d Calibration plot of the
nomogram for agreement test between 1-,3- and 5-year OS prediction and actual outcome in external validation dataset (ArrayExpress)

Table 4 1-year, 3-year, 5-year ROC and C-index of nomogram
for in the training dataset (TCGA) and the external validation
dataset (ArrayExpress)

1-year ROC 3-year ROC 5-year ROC C-index

TCGA cohort 0.836 0.799 0.765 0.781

ArrayExpress cohort 0.888 0.915 0.902 0.868
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high-risk and low-risk ccRCC patients and nine out of
these 21 TIICs were statistically significant (all P < 0.05).

Discussion
According to GLOBOCAN statistics, there were ap-
proximately 403,262 new cases of kidney cancers and
175,098 death worldwide in 2018 [15]. Of all human ma-
lignancies, kidney cancer accounted for about 2–3% [2].
At present, few studies had focused on the expression

pattern of GRGs and their roles in predicting ccRCC
survival. Hence, we identified differentially expressed
GRGs between tumor samples and normal tissues based
on TCGA raw data to construct a PPI network and to
perform GO and KEGG pathway enrichment analysis. In
addition, we also conducted univariate COX, LASSO
and multivariate COX regression analyses to establish a
signature for predicting the ccRCC patients’ prognosis
based on 10 prognostic-related GRGs and further

Fig. 8 Survival analyses of 10 GRGs by Kaplan-Meier Plotter website; a ANKZF1; b CD44; c CHST6; d FBP1; e HS6ST2; f IDUA; g KIF20A; h NDST3; i
PLOD2; j VCAN

Table 5 Clinical correlation analysis between 10 prognostic GRGs, riskscore and clinical features

id age gender race grade stage T M N

ANKZF1 −0.511
(0.610)

0.375 (0.708) 5.65 (0.059) −2.764 (0.006) −3.114 (0.002) −2.766 (0.006) −3.05 (0.003) −0.075
(0.940)

CD44 −0.342
(0.733)

−2.495
(0.013)

4.916 (0.086) −2.216 (0.027) − 2.172 (0.031) − 2.268 (0.024) −1.832 (0.070) 0.795 (0.427)

CHST6 −1.198
(0.233)

−0.024 (0.981) 5.346 (0.069) −1.743 (0.082) −1.794 (0.074) −1.872 (0.063) 0.193 (0.847) 0.581 (0.561)

HS6ST2 −0.236
(0.814)

1.4 (0.163) 1.036 (0.596) 0.206 (0.837) −0.313 (0.755) −0.593 (0.554) − 0.12 (0.905) −0.394
(0.694)

IDUA −0.556
(0.579)

1.105 (0.270) 13.523 (0.001) −4.243 (2.673e-
05)

−4.079 (5.649e-
05)

−3.349 (9.142e-
04)

−3.78 (2.389e-
04)

−0.132
(0.895)

KIF20A −0.84
(0.402)

−2.636
(0.009)

16.433 (2.701e-
04)

−5.354 (1.566e-
07)

−4.874 (1.993e-
06)

− 4.542 (9.366e-
06)

− 2.609 (0.010) − 0.112
(0.911)

NDST3 −0.454
(0.650)

− 0.447 (0.655) 0.183 (0.912) −2.118 (0.035) −1.423 (0.156) − 1.434 (0.153) − 1.32 (0.189) 2.511
(0.013)

PLOD2 0.171
(0.865)

−2.622
(0.009)

9.262 (0.010) −2.86 (0.004) −4.439 (1.319e-
05)

−4.286 (2.663e-
05)

−2.177 (0.031) 1.353 (0.177)

VCAN −0.054
(0.957)

−2.013
(0.045)

5.449 (0.066) −1.422 (0.156) −1.507 (0.133) − 1.453 (0.147) −0.316 (0.752) 0.947 (0.344)

FBP1 1.325
(0.186)

4.761 (3.75e-
06)

5.32 (0.070) 3.295 (0.001) 3.412 (7.026e-
04)

3.303 (0.001) 0.967 (0.335) 0.976 (0.330)

riskScore −1.338
(0.183)

−1.399 (0.163) 0.705 (0.703) −2.178 (0.030) − 2.111 (0.036) − 2.048 (0.042) −0.851 (0.396) −0.655
(0.513)
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explored its associations with immune infiltration. These
works may help to identify novel effective biomarkers
for ccRCC prognosis.
According to reports, there are metabolic changes in a

variety of cancers, and glycolysis is the most common
and widely studied metabolic change [16]. It was the first
time for us to identify differently expressed GRGs and
then screen out 10 prognostic-related GRGs (ANKZF1,
CD44, CHST6, HS6ST2, IDUA, KIF20A, NDST3,
PLOD2, VCAN, FBP1), based on TCGA, by univariate/
multivariate Cox regression and LASSO regression ana-
lyses. Some studies have shown that these GRGs play
important roles in the tumorigenesis and progress of
various tumors, including renal clear cell carcinoma. For
example, the expression of HS6ST2 was up-regulated in

tumors of gastric cancer, and related to the poor prog-
nosis [17]. Liep J et al. found that overexpression of
miR-145-5p and miR-141-3p could inhibit the migration
and invasion of RCC cells by influencing the HS6ST2
expression [18]. Regarding KIF20A, it was reported to be
overexpressed in various tumors such as bladder cancer,
cervical cancer, glioma, lung adenocarcinoma, ovarian
clear cell carcinoma, colorectal cancer, liver cancer,
prostate cancer, gastric cancer, etc., and often indicates a
poor prognosis and poor clinicopathological features
[19–28]. Studies had shown that KIF20A might promote
the proliferation, invasion and migration of tumor cells
by activating the JAK2/STAT3 pathway [23, 26]. Asahara
S et al. has also developed cancer vaccine reagent
KIF20–66 for the treatment of pancreatic cancer, which

Fig. 9 Clinicopathological parameters stratified by our established riskScore for OS; a age > 65; b age≤ 65; c Female; d Male; e Grade1–2; f
Grade3–4; g M0; h N0; i White; j Stage I-II; k Stage III-IV; l T1–2 stage; m T3–4 stage

Xing et al. BMC Cancer          (2021) 21:381 Page 12 of 15



has a beneficial therapeutic effect on advanced pancre-
atic cancer [29]. Epithelial mesenchymal transformation
(EMT) is one of the key steps that cause distant metasta-
sis of tumors [30]. FBP1, PLOD2, VCAN, CD44 are all
proved to relate to EMT. Studies have shown that
PLOD2 is regulated by many factors, such as HIF-1α,
TGF-β and microRNA [31]. FBP1 is a rate-limiting en-
zyme for gluconeogenesis and has recently been consid-
ered as a tumor suppressor for various cancers [32]. It is
proved that FBP1 interacts with HIF to inhibit the func-
tion of nuclear HIF, inhibit glycolysis and pentose phos-
phate pathway and inhibit the proliferation of renal
cancer cells [10]. FBP1 overexpression inhibits the prolif-
eration, migration, invasion and tumorigenesis of chol-
angiocarcinoma cells by inhibiting the Wnt/β pathway
[33]. FBP1 gene silencing could activate the MAPK path-
way and then promote cell EMT, invasion and metasta-
sis in prostate cancer [34]. Several studies have found
that PLOD2 induces epithelial-mesenchymal transition
(EMT) mainly through the PI3K / AKT signaling path-
way [11]. Mitsui Y et al. found that VCAN promotes
tumorigenesis and metastasis of ccRCC [35]. VCAN
knockdown significantly reduced the proliferation of
renal cancer cells and increased apoptosis, which is
linked to the changes of several TNF signaling related
genes such as TNFα, BID and BAK [35]. TGF-β had the
ability to enhance the invasiveness of ovarian cancer

cells by up-regulating VCAN in fibroblasts (CAF) [36].
Up-regulated VCAN could also promote the invasion
and movement of ovarian cancer cells by up-regulating
CD44 and activating the NF-κB signaling pathway,
matrix metalloproteinase 9 and hyaluronan-mediated
movement receptors [36]. Wu et al. have shown that
CD44 + bladder cancer cells have a higher invasive abil-
ity [13].
Current research shows that clinical and pathological

features such as age and metastasis are not sufficient to
accurately evaluate cancer patients’ survival. At present,
we are looking for effective biomarkers to predict the
survival of cancer patients. However, single gene expres-
sion levels will be affected by many factors, making these
markers unreliable to be independent prognostic indica-
tors. Therefore, a statistical model composed of multiple
related genes is much more accurate in evaluating the
prognosis of tumor patients than using a single bio-
marker, so this model has been extensively used. Few
studies have concentrated on the role of glycolysis in the
prediction of ccRCC prognosis. We established a new
prognostic signature based on the expression of 10
GRGs. Based on this risk scoring model, ccRCC patients
were classified into a high-group and low-risk group. Pa-
tients with high-risk scores had significantly lower OS
compared to those with low-risk scores. In addition, we
combined the established riskscore and multiple clinical

Fig. 10 Associations between tumor-infiltrating immune cells (TIICs) and GRGs based riskscore signature in ccRCC; a Dendritic cells resting
between high- and low-risk ccRCC patients; b Macrophages M0 between high- and low-risk ccRCC patients; c Macrophages M1 between high-
and low-risk ccRCC patients; d Mast cells resting between high- and low-risk ccRCC patients; e Monocytes between high- and low-risk ccRCC
patients; f Plasma cells between high- and low-risk ccRCC patients; g T cells CD4 memory activated between high- and low-risk ccRCC patients; h
T cells gamma delta between high- and low-risk ccRCC patients; i T cells regulatory (Tregs) between high- and low-risk ccRCC patients; j Radar
chart showed the difference of immune cell infiltration abundances in ccRCC subtypes
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parameters to construct a nomogram to predict 1-, 3-,
and 5-year OS in ccRCC patients. The calibration chart
based on the TCGA database shows that the predicted
value and the observed value are very close, indicating
that the prediction performance of nomogram is very
good. Similarly, it is checked in the external verification
set and the two internal verification sets. Therefore, our
new prognosis nomogram may be better than the ori-
ginal clinical factors to help clinicians predict the sur-
vival status for ccRCC and provide specific
individualized treatment.
As far as we knew, this was the first signature to

predict the OS of ccRCC patients based on GRGs.
We successfully established a risk signature based on
GRGs and verified it in three verification sets includ-
ing one external verification data set (ArrayExpress)
and two internal verification data sets (test 1 and test
2). Our results remained stable both internally and
externally. Of course, this study also had several limi-
tations. Firstly, as a bioinformatics analysis article, our
research is retrospective and the clinical information
downloaded from the online database was incomplete
and limited. Secondly, 10 glycolysis-related genes had
not been experimentally verified and our constructed
nomogram had not been validated by our own data.
Thirdly, due to limited clinical information, we had
difficulties in comparing our established signature
with other available tools in the clinic, such as the
Heng score (IMDC).

Conclusions
Taken together, 10 GRGs including ANKZF1, CD44,
CHST6, HS6ST2, IDUA, KIF20A, NDST3, PLOD2,
VCAN, FBP1 were selected out and utilized to estab-
lish a novel signature. The GRGs based signature was
successfully established and verified externally and in-
ternally for predicting OS, helping clinicians better
and more intuitively predict ccRCC patients’ survival.
As an independent prognostic factor, our established
signature showed excellent predictive efficacy for
ccRCC and significantly associated with immune infil-
tration. Further researches were required to verify our
findings.
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