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ABSTRACT

Motivation: Peripheral membrane-targeting domain (MTD) families,
such as C1-, C2- and PH domains, play a key role in signal
transduction and membrane trafficking by dynamically translocating
their parent proteins to specific plasma membranes when changes
in lipid composition occur. It is, however, difficult to determine
the subset of domains within families displaying this property, as
sequence motifs signifying the membrane binding properties are
not well defined. For this reason, procedures based on sequence
similarity alone are often insufficient in computational identification
of MTDs within families (yielding less than 65% accuracy even with
a sequence identity of 70%).
Results: We present a machine learning protocol for determining
membrane-targeting properties achieving 85–90% accuracy in
separating binding and non-binding domains within families. Our
model is based on features from both sequence and structure,
thereby incorporation statistics obtained from the entire domain
family and domain-specific physical quantities such as surface
electrostatics. In addition, by using the enriched rules in alternating
decision tree classifiers, we are able to determine the meaning of the
assigned function labels in terms of biological mechanisms.
Conclusions: The high accuracy of the learned models and good
agreement between the rules discovered using the ADtree classifier
and mechanisms reported in the literature reflect the value of machine
learning protocols in both prediction and biological knowledge
discovery. Our protocol can thus potentially be used as a general
function annotation and knowledge mining tool for other protein
domains.
Availability: metador.bioengr.uic.edu
Contact: huilu@uic.edu

1 INTRODUCTION
Signal transduction networks formed by specific protein–protein and
protein–lipid interactions are a primary means by which the cell
transmits information from its external environment to intracellular
recipients.One vehicle driving the intracellular signal transduction
speed beyond that of simple diffusion is the selective and reversible
binding of so-called peripheral proteins to membrane surfaces within
the cell (Hurley, 2006; Pawson and Scott, 1997). By redistributing
cytosolic proteins to membranes in response to the onset of signaling
events a de facto compartmentalization of the cellular space takes
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place, allowing for greater proximity among communicating parties,
thereby facilitating interaction (Hurley and Misra, 2000). The
importance of this mode of signal transduction is underlined by the
fact that more than 10% of human protein kinases contain at least
one lipid-binding module (Hurley, 2006). The ability to identify
and understand peripheral proteins and the physical factors causing
their co-localization at membranes is thus pivotal in uncovering the
dynamics governing signaling regimens.

Peripheral proteins are most commonly scaffold proteins
containing one or more domains that associate with lipid-head
groups, thereby anchoring the entire protein structure near the lipid
surface (Cho and Stahelin, 2005; DiNitto et al., 2003; Pawson and
Scott, 1997). An increasing number of ubiquitous and structurally
distinct domains have been found to display lipid binding properties,
collectively referred to as membrane-targeting domains (MTDs).
MTDs have been identified in the following families: C1 (Cho,
2001; Sanchez-Bautista et al., 2006; Yang and Kazanietz, 2003),
C2 (Cho, 2001; Nalefski and Falke, 1996; Rizo and Sudhof, 1998),
PH (Ferguson et al., 2000; Lemmon and Ferguson, 2000), FYVE
(Fab1/YOTB/Vac1/EEA1) (Stenmark et al., 2002), PX (phox) (Xu
et al., 2001), ENTH (Epsin N-terminal homology)(Camilli et al.,
2002), and recently PDZ domains (Chen et al., 2012). Despite their
highly similar intra-family folds, not all domains in these families
possess membrane-targeting properties. In fact, a diverse array of
overlapping intra-family functions exists, spanning from protein–
protein interaction to structural support and potentially enzymatic
activity (Hurley, 2006).

Numerous experimental techniques have been used to identify
novel MTDs (Cho, 2001; DiNitto et al., 2003) revealing details
on binding mechanisms and orientation (Ball et al., 1999;
Corbalan-Garcia et al., 2003). Genome-scale identification and
characterization of MTDs does, however, remain labor intensive
and expensive. To this end in silico protocols offer a high-
throughput complement to wet-laboratory methods, allowing for
rapid characterization of thousands of domains. Membrane-binding
properties are inherently difficult to predict, as they are often not
determined by well-defined sequence motifs or a specific structural
composition. PDZ domains were, for instance, found to have
highly diverging membrane-binding behavior despite high sequence
similarity (Chen et al., 2012) and PH domains span a large range of
binding affinities though being structurally very similar (Lemmon
and Ferguson, 2000; Singh and Murray, 2003).

In previous works from our laboratory, machine learning
protocols for distinguishing MTDs from a general body of cytosolic
protein domains know to have no membrane-binding activity were
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Fig. 1. Performance of a sequence-based nearest-neighbor classification
procedure. Accuracy measures for classification of membrane binding
properties for five domain families using consensus of the three nearest
neighbors for each domain. The accuracy for each family is depicted at
varying levels of maximum sequence similarity allowed between instances
in dataset for each domain family

constructed using support vector machines (SVM) (Bhardwaj et
al., 2006) and later on extended using other classifiers (Langlois
et al., 2007). By representing each domain as a numerical vector
of feature values derived from structural data, a classification
model achieving 90% accuracy in separating binding and non-
binding domains was constructed. There are, however, two issues
of this model to be addressed. First, while performing well when
separating MTDs from cytosolic protein domains of unrelated fold,
the model does not provide similar performance in separating
binding and non-binding domains within any specific family. As
we will demonstrate, intrafamily classification is in fact a very hard
problem as even highly similar domains display different membrane
binding properties. Second, the constructed SVM model does, to a
great extent, function as a ‘black-box’ classifier giving little insight
as to how the different calculated features play together in producing
the final classification of a domain’s binding properties.

In this work, we construct a series classification models for
separating membrane-binding domains from domains with other
activity within families. Our focus is on C1, C2 and PH domain
families, as domains from these three families have been found to be
key players in a number of signaling pathways. We are, however, not
merely interested in constructing models for classification, as such
models are of limited utility in explaining the predicted behavior
in a manner that leads to experimentally testable hypothesis.
Rather, we want to provide both a confident assessment of a given
binding behavior and a body of biological evidence supporting
the classification label. The goal is to go from data mining to
knowledge mining revealing the specific mechanisms responsible
for observable higher level behavior. To this end, we take advantage
of a new ensemble-based classifier, namely the alternating decision
tree (ADtree) algorithm (Freund and Mason, 1999). The ADtree
relates to other classification tree algorithms such as CART and C4.5
(Quinlan, 1986) by quantifying the relationship between features as
a combination of rules each representing a binary decision on a
feature. The ADtree is based on the boosting technique but is at the
same time a tree structure representable as a conjunction of rules all
contributing a real-valued additive evidence toward classification.

Table 1. Dataset statistics for the three domain families

Domain Binding Non-binding MaxSimilarity PFAM

C1 33 22 70% 1536
C2 63 27 70% 4666
PH 70 88 70% 4125

The final classification decision is thus determined by a committee
voting scheme based on the real values evidence presented by each
rule traversed in the tree by a given domain. This scheme makes
representation of the classifier as a spare and easily interpretable
tree structure possible, a feat recently demonstrated in studies for
identifying DNA-binding proteins and characterizing their binding
mechanisms (Langlois et al., 2007; Langlois and Lu, 2010).

The article is organized as follows: first, we give the intuition
behind the features used to represent the individual domains in
a form suitable for constructing machine learning protocols. We
then construct classification models based on SVM and ADtree to
separate intra-family binding and non-binding domains. Finally, we
analyze the individual rules used in determining membrane targeting
behavior in the three domain families, in terms of experimentally
known binding mechanisms.

2 METHODS

2.1 Dataset
Special care was taken when selecting the positive and negative examples in
the datasets used, as both the instance groups come from the same domain
family (Bhardwaj et al., 2007). After reducing the sequence identity to 70%, a
total of 303 sequences were left. Each of these instances was then examined
manually and classified as positive (binding) and negative (non-binding)
based on their functions, sub-cellular location and similarity with other
sequences. The final statistics for the three datasets used for training are
given in Table 1. As a reference, the total number of annotated domains for
each family in PFAM is also provided, to underline the ubiquitous nature
of all three families. The 70% cutoff was chosen as sequence similarity at
this level does not result in conservation of membrane-binding properties,
as illustrated in the Results section.

Only a subset of the domains in the constructed datasets have an
experimentally solved structure available. For the rest of the cases (74%
of all domains), we construct homology models using the RaptorX server
(Källberg et al., 2012). For all modeling cases, we have found at least one
template with more than 30% sequence identity, thus ensuring the quality of
the modeled structure.

2.2 Classifiers and evaluation
Models were constructed using two binary classification procedures, namely
the ADtree (Freund and Mason, 1999) and SVM (Cortes and Vapnik,
1995). Both are supervised classifiers, for which a model is trained on a
labeled training dataset (training mode) and thereafter applied to predict
new examples without further parameter tuning (prediction mode). Casting
the problem in a binary classification framework, we refer to each protein
domain as an instance, with the ith instance consisting of a feature vector
xi ∈[1×n] and a label yi ∈{0,1}, with n denoting the feature count. Both
algorithms described construct a function, g(x), that minimizes the empirical
risk of misclassifying an instance, under the assumption that all instances
are drawn with respect to the same (unknown) probability distribution. In
the following, we limit ourselves to describing conceptual details of the used
algorithms, referring the reader to cited works for technical details.
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The SVM methodology facilitates the derivation of a classification
hyperplane (a hyperplane separating positive and negative cases) for non-
linear problems by working in a vector space of higher dimension than that
of the original feature space. The separating hyperplane, wx+b, can be found
by numerically solving the following quadratic optimization problem:

min
w,ξi,b

1

2
w ·w+C

∑
i

ξi Subject to

yi(φ(xi) ·w+b)≥1−ξi

ξi ≥0

Where C and ξi are cost parameters associated with misclassification, and
φ(xi) is a non-linear mapping function. Rewriting the above problem in the
dual form, the kernel-trick, specifying a function giving the inner-product of
two vectors in a higher dimensional vector space, can then be applied and
an optimal separating hyperplane can be found in this new vector space. In
this work, we tested Gaussian, Sigmoid and polynomial kernel function and
found that the Gaussian to give the best results, thus whenever SVM results
are reported, it refers to SVM using a Gaussian kernel function.

The ADtree uses the boosting methodology (Freund and Mason, 1999) in
the same manner as other successful classification schemes such as Adaboost
C4.5 (Quinlan, 1986) but has the advantage of producing models that are
easily representable as a tree with a limited number of nodes (often fewer than
20), without sacrificing predictive power. This is achieved by constructing
a tree that is a conjunction of rules which all provide an additive evidence
toward a given instance being classified as positive or negative, depending
on the evaluations of the rules (true or false). In addition to providing
the classification label, the tree score of an instance (the margin score)
can be interpreted as a measure of confidence in the classification label.
Unlike traditional tree models obtained from algorithms such as C4.5, the
classification of instances by ADtree is thus not determined by a single path
traversed in the tree but rather by a collection of paths. The tree is made up
of two types of nodes prediction nodes, represented by ellipses, and splitter
nodes, represented by rectangles. Each splitter node is associated with a
real-valued number indicating the rule condition: if the feature represented
by the node is less than or equal to the condition value for a given instance,
the prediction path will go through the left child node, otherwise the path
will go through the right child node. The final classification score produced
by the tree is found by summing the values from all the prediction nodes
reached by the instance, with the root node being the precondition of the
classifier. If the summed score is greater than zero, the instance is classified
as positive, otherwise, as negative.

We use our in-house machine learning workbench MALIBU for the
construction and validation of models, giving a uniform interface for
comparison and analysis of their performance (Langlois et al., 2007).

We measure the performance of the constructed classification models
using the following metrics: accuracy (Acc) defined as the ratio of true
prediction to the total number of prediction, sensitivity (Sen) defined as
the probability that a true example is classified as true and specificity
(Spe) defined as the probability that a negative example is classified as
negative. The classification result of an instance in a binary classification
can be fall into four categories: true positive (TP), false positive (FP),
true negative (TN) and false negative (FN). Using these counts, the three
metrics are approximated by: Acc= (TP+TN)/(TP+TN+FP+FN), Sen=
TP/(TP+FN) and Spe=TN/(TN+FP)

Further, we use the area under the receiving operator characteristic curve
(AUC ROC). AUC ROC is defined as the area under the (1-specificity,
sensitivity)-curve, with each point corresponding to a specific threshold
for class separation; a value of 1 performs perfect over the entire range
of threshold values, with a random classifier having an AUC value of 0.5.

To provide a benchmark for the expected performance we use n-fold cross
validation (n-CV). In n-CV, one randomly divides the original dataset into n
equally sized bins, each classifier is then trained n times using n−1 subsets.
The omitted subset in each round is used for estimating the evaluation metrics

of interest, the average of which is thus based on evaluation over all instances.
For this work, 20-CV was used.

2.3 Features
The association with membranes is known to be driven by a combination
of general lipid binding mechanisms and the binding of key residues with
specific lipid head groups. The general association mechanisms are modeled
by quantifying the chemical and physical properties of the domain structure
as a collection of ‘patches’ on the solvent exposed surface (SES). A patch
is a well-defined area of a given property on the surface, i.e. an area of all
positive electrostatic potential or a region of conserved hydrophobicity; here,
we use the area of five largest patches in each category. Further, the surface
propensities of the 20 amino acids are included as features for a total of 35
structural features. The steps of patch growing detailed below are outlined in
(Källberg and Lu, 2009). The basic idea is as follows: First, the surface
is defined as a collection of neighboring triangles; second, a numerical
representation of the quantity of interest is associated with each triangle
and finally the patches that are most highly correlated with the function of
the structure are defined.

Assume that each triangle on the surface is associated with a numerical
value corresponding to the quantity that forms the basis for patch growing.
We will denote this value for a triangle t by t.val and the distance between
the centroids of triangles t1 and t2 by dist(t1,t2). Furthermore, t.neigh will
denote the neighbor triangles of t, meaning those that share an edge with
t, and t.included will be a boolean flag indicating whether a given triangle
has been included in a patch. The collection of patches is then found by
repeating the following recursive procedure until all surface triangles have
been included in a patch: choose a random triangle that has not yet been
included in a patch and extend the patch by adding neighbor triangles that
satisfy |t1.val−t2.val|<C, where C is a constant.

To do the patch growing, we need to assign values from
the quantity of interest to each triangle on the SES. In this
work, we use three quantities: (i) the electrostatic potential obtained
from solving the Poisson-Boltzmann (PB) equation usingAPBS (Baker et al.,
2001). The spatial potential values are mapped onto the surface by taking a
weighted average of the eight discrete data points closest to the point 1Afrom
the triangle surface in the direction of its normal vector. (ii) hydrophobicity
values are assigned to the surface based on the Kyte–Doolittle value of the
amino acid that gave rise to the triangle of interest (Kyte and Doolittle,
1982) and (iii) hydrogen-bonding is mapped to the surface by determining if
an atom is capable of forming a hydrogen bond, indicated by setting t.val=1.

In addition to the patch-growing procedure, features solely based on
statistics from the full collection of domain sequences are used. A score for
each domain sequence is obtained by its similarity to other sequences in the
dataset, this is done using a recursive functional classification (RFC) matrix
inspired by Park et al. (2008). A multiple sequence alignment of all domain
sequences (both binding and non-binding) is created using a Hidden Markov
Model profile (for the C1, C2 and PH domain, the PFAM models PF00130,
PF00168 and PF00169 were used, respectively). On the basis of alignment,
we calculate the probability of observing amino acid a at location i in the
alignment. Denoting the probability for binding and non-binding cases by
Pa,i,+ and Pa,i,−, respectively, each entry in the the RFC matrix is given by:

RFCa,i = log

(
Pa,i,+
Pa,i,−

)

Thus a positive/negative entry in the matrix indicates that the presence of
amino acid a at location i is evidence toward the domain being membrane
binding/non-binding. We can summarize the evidence for a giving domain
sequence S as being binding in the following score:

RFC score(S) =
∑
si∈S

RFCsi,i

For the sequence features, we do, however, choose to decompose the
RFC matrix into a series of residue subsequence features of length 3–
6, to be able to more specifically pin point the exact local variation that
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Table 2. Performance comparison of models for C1, C2 and PH domain
families, bolded values indicate the best performing classifier, details on
validation metrics are given in the Methods section

Family Algorithm Acc. Sen. Spe. AUC ROC

ADTree 0.891 0.939 0.818 0.887
C1 SVM 0.907 0.909 0.909 0.957

Seq Sim 0.57 0.43 0.78 —
ADTree 0.856 0.889 0.778 0.879

C2 SVM 0.792 0.838 0.7 0.878
Seq Sim 0.63 0.61 0.7 —
ADTree 0.861 0.824 0.853 0.905

PH SVM 0.867 0.843 0.886 0.939
Seq Sim 0.64 0.64 0.62 —

was evidence for classification. Rather than using all possible rules, we
include the 25 rules that provide the greatest degree of discriminatory
power in the training set. The rule locations are selected through an initial
bootstrap generation of several RFC matrices and a ranking of the rules
that have the highest potential RFC score. The subsequence rules are
thus intended to complement general membrane-binding mechanisms by
identifying subsets of residues that correlate with specific-binding modes.
In general, the quantifying local environment conservation has been shown
to be of great utility in identifying remote similarity properties. Recently,
procedures focusing on local environment have been used with great success
in the identification of DNA-binding protein domains (Langlois and Lu,
2010) and in more general purpose protocols for remote homology detection
(Biegert and Soding, 2009).

3 RESULTS
The contribution of this work is 2-fold. First, we show that machine
learning models based on the sequence and structure features
introduced below perform significantly better than procedures based
on sequence homology in separating MTDs from non-MTDs within
families. Second, we demonstrate how ADtree models not only
perform comparable to a SVM-based models but also present us with
specific evidence for the classification label allowing us to interpret
the model within the context of current experimental observations.

To further illustrate the difficulty of the current classification
task of intrafamily separation, a simple unsupervised classification
scheme aimed at predicting the membrane-binding behavior of a
domain based on the binding behavior of closely related homologs
is fashioned. A sequence is predicted to be binding or non-binding
from the majority vote decision of its three closest related sequence
neighbor [as defined from a BLAST search (Altschul et al., 1990)].
Figure 1 depicts the prediction accuracy for the procedure as a
function of varying levels of the maximum sequence similarity
allowed between domains in the dataset. It is evident that even at
maximum sequence similarity levels as high as 85%, accuracies
of no more than 75% can be achieved for any family, indicating
the need for more sophisticated procedures to confidently identify
MTDs within families.

3.1 Overall classifier performance
Table 2 compares the performance of SVM, ADtree and the
sequence-based nearest neighbor protocol for three domain families.
In all families, the two structure-based machine learning protocols
perform significantly better domain separation than the sequence

based nearest neighbor procedure at the 70% sequence identity level.
For C1 domains both SVM and ADtree improve on the accuracy of
the sequence-based method by more than 30% points, with both
achieving accuracy rates in the 90% range. The SVM protocol does,
however, have a 6% better AUC ROC than the ADtree due to a better
balance between sensitivity and specificity, making it the strongest
classifier for this family.

Inspecting the models constructed for C2 and PH domains, we
again observe a far better performance of the machine learning
methods over the sequence homology-based classifier, with accuracy
improvements of 22% points for both families. Comparing the
SVM and ADtree models for the C2 domain families, a similar
performance over the entire specificity range is observed as the AUC
ROC of the two models is almost identical, although the ADtree
achieves a higher accuracy when comparing the points of best class
separation for the two classifiers. For the PH domain family, we
again observe the two classifiers performing comparable, with a
small advantage to the SVM algorithm of 3% points as measured
by AUC ROC. In sum, the results show that for the problem at hand
the ADtree models perform comparable or only slightly worse than
SVM, indicating almost no loss in performance when using a model
that has the feat of human interpretability.

Though not presented here, we have experimented with machine
learning protocols relying solely on sequence-derived features.
Although these protocols did show better performance than the
nearest neighbor homology-based procedure used as bench mark
above, they never achieved accuracies higher than 75%, which is
significantly less than what was achieved by using both sequence-
and structure-based features.

3.2 Knowledge mining
Here, we use the ADTree model to discover the rules that distinguish
binding and non-binding domains. A graphical representation of the
ADtree model constructed for the C1 domain family is depicted
in Figure 2, yellow and blue splitter nodes signify structure and
sequence-based feature rules, respectively. Sequence-based rules are
divided into positive and negative patterns indicating subsequences
in the domain family alignment for which there is a high/low
RFC score for binding/non-binding sequences. Feature names are
followed by a number in parenthesis indicating the order in which
the rules are added to the model, a measure that can be interpreted
as an importance ranking of the rules. The fact that top-ranked rules
are a mix of sequence and structure-based features, indicates that
both groups are adding orthogonal predictive power to the model, a
feat also observed in the tree models for C2 and PH domains (not
shown). In the following subsections, we will interpret key rules in
the three classification models in terms of their biological meaning
in driving reversible membrane binding; the importance of ranking
is used when referring to specific rules in each model.

3.2.1 C1 model C1 domains are cystine-rich modules of
approximately 50 amino acids in length, first discovered in protein
kinase C (PKC) and subsequently found in signaling families such as
chimaerins, RasGRPs and diacyglycerol kinases (Colon-Gonzalez
and Kazanietz, 2006).

The sequence of the known binding case PKCδ-C1a is used
in Figure 3 for illustrating key rules learned for the entire C1-
family. Membrane binding of C1 domains is known to be driven
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Fig. 2. The ADtree model constructed for the C1 domain family. A single rule is represented by two elliptical prediction nodes and a rectangular splitter
nodes. Each splitter node is associated with a real valued number indicating the rule condition, if the condition is true/false the path traversed by an instance
will go through the left/right child node and accumulate the score in this node toward the overall classification of a domain. Splitter nodes colored in blue
stem from sequence feature, whereas yellow ones stem from structure features

by specific binding of diacylglycerol (DAG) and phorbol esters in
the membrane, as well as the association of key residue with the
membrane surface and coordinated binding of Zn2+, these features
are highlighted in the PKC sequence both. Rules 2 and 3 overlap
with the second group of membrane and DAG-binding residues
indicating that two different kinds of function conservation appear
here: one associated with membrane binding and one associated with
other activity. NegRule1 is observed to be high scoring if residues
11 and 13 are not aromatic, correlating well with the experimental
evidence for binding, as interfacial penetration of the lipid bilayer
has been found to be driven by aromatic residues (Langlois et al.,
2007; Stahelin et al., 2003).

In addition to the conservation of specific sequence groups, two
global structure mechanisms are also discovered by the C1 tree.
Rules 4 and 6 indicate that if the cumulative size of the five largest
electrostatic patches and the size of the largest hydrophobic patch are
greater than specific threshold values, it is indicative of membrane
binding. This observation correlates well with the fact that certain C1
domains are known to deeply penetrate the hydrophobic membrane
core on binding, an interaction that is only energetically favorable
if non-polar surface-residue exists. Similarly, a somewhat positively
charged surface is necessary for the initial recruitment of the domain
to anionic lipid surfaces (Hurley, 2006). The two mechanisms are
illustrated in the lower part of Figure 3 by structure data from
a binding and a non-binding C1 case, with electrostatic positive
and negative isosurfaces superimposed and hydrophobic residues
highlight in yellow. For the binding-case, there is a large well-
defined bulk of positive electrostatics and a cluster of hydrophobic
residues, whereas the non-binding only display sporadic regions of
positive charge.

3.2.2 C2 model Most C2 domains require activation by divalent
Ca2+ ions to bind to membranes with high affinity and show low
affinity toward lipids otherwise (Cho and Stahelin, 2005; Hurley,
2006). In the majority of cases, binding of Ca2+-ions dramatically
enhances the positive electrostatic potentials around the Ca2+-
binding region that mediates the association with the anionic lipids
(termed as an electrostatic switch) (Chen et al., 2012) or induces
a conformational change that accelerates binding (Kulkarni et al.,
2002; Shao et al., 1998). As illustrated in Figure 4, the discovered

Fig. 3. Rules learned for the C1 family. The sequence for PKCδ-C1a is used
for illustrating key rules, the residue coloring used is membrane binding
(blue), DAG binding (red) and Zinc-binding (yellow). Structure models for
a binding case and non-binding case are shown, with the positive and negative
electrostatic isosurfaces color in blue and red, respectively. In addition,
hydrophobic residues are highlighted in yellow

sequence rules from the C2 domain model all overlap with Ca2+-
binding regions. Interestingly, the first negative rule also overlaps
with regions suggested to be involved in protein-protein interactions
in PKCε (Brandman et al., 2007) indicating the conservation of
functional properties other than membrane binding in this region.

Further, a number of structure rules are used in the C2 model.
Cationic residues on the surface (in corporation with Ca2+ bridging)
are important for anionic-lipid selectivity (i.e. synaptotagmin) (Cho
and Stahelin, 2005). We observe this in rules indicating a threshold
on positive surface patches and surface propensity on K. Finally,
selectivity for the lipid-head group PC in C2 domains is achieved

i435



Copyedited by: MANUSCRIPT CATEGORY: ECCB

[12:43 6/8/2012 Bioinformatics-bts409.tex] Page: i436 i431–i437

M.Källberg et al.

Fig. 4. Rules learned for the C2 family. The sequence for PLCδ1 is used for
illustrating key sequence rules, and the residue coloring used is Ca2+ binding
side chain (blue) and Ca2+-binding region (red). Further, four structure rules
from the C2 model are shown

Fig. 5. Rules learned for the PH family. The sequence for PLCδ1 is used
for illustrating key rules, and the residue coloring used is membrane binding
(blue) and PIP3/PIP2 binding (red). A structure model for a binding case is
shown with the positive and negative electrostatic isosurfaces color in blue
and red, respectively. In addition, two key structure rules are depicted

through aromatic and aliphatic surface residues (i.e. observed in
cPLA2), represented in the model as high surface propensities of
amino acids H and W being indicative of membrane binding (Cho,
2001).

3.2.3 PH model PH domains are recruited to membranes by
phosphatidylinositol lipids such as phosphatidylinositol (3,4,5)-
trisphosphate (PIP3) and phosphatidylinositol (4,5)-bisphosphate
(PIP2) and are, in example, found in βγ -subunits of heterotrimeric
G proteins (Wang et al., 1994) and PKC (Yao et al., 1994). For
the PH domain family, binding often occurs in two steps, an
initial association is driven by non-specific electrostatic interactions
followed by specific binding to anionic lipids (Hurley and Misra,
2000). Key rules from the PH family model, illustrated in Figure 5,
agree well with this overall process of membrane association. Two
structure rules both presenting minimum cutoffs on the size of
electrostatic patches are present. As observed in other families, a
large positive patch is indicative of binding. Interestingly, a smaller
negative patch is also positively associated with binding in the
case of PH domains. This apparent inconsistency that both positive
and negative charge promotes membrane binding can be explained
from the local arrangement of the electrostatic potential depicted in
Figure 5. Here, we see that the negative region is on the opposite
side of the membrane associating surfaces, thus the repulsion of this
side to a negatively charged membrane can help correctly position
the domain relative to the membrane, a mechanism previously
hypothesized (Hurley, 2006).

In addition to the electrostatic mechanism for correct spatial
orientation, sequence rules 1 and 2 overlap with residue
experimentally determined to be important in phosphatidylinositol
and general membrane binding (Hurley, 2006). The third sequence
rule mapped does not immediately correlate with any known
residues important for binding but does contain two positively
charged residues that may be important in binding, thus these
residues may constitute a novel functional region.

4 DISCUSSION AND CONCLUSION
This work touches on two key challenges of computational
biology: How do we efficiently organize and classify the vastly
expanding body of data produced by experimentalists; and of
even greater importance, how do we transform this data into
biological knowledge in the form of testable hypotheses. It can
be argued that simple rule mining would be an appropriate option
to deduce classification rules. However, it is widely believed that
discriminative approaches are far superior to generative ones given
their simplicity. Moreover, discriminative classifiers have been
shown to have a lower asymptotic error (Bishop, 2006). Further,
ADtrees have the ability to elicit more uncorrelated rules (by
definition) that cover diverse features of the data, although of course
being limited to the feature space initially defined.

The graphical models built for the three families highlight the
general rules and features that set binding instances of peripheral
proteins apart from non-binding ones. Although some of these
features are in agreement with previous studies, novel features are
also proposed. In general, we find that structural features, such as a
specific cutoff for the size of positive electrostatic surface patches,
are found in models for all domains and thusly constitutes general
mechanisms driving membrane binding. Sequence-based features
on the other hand, are more important in expressing unique binding
motifs for each family as they are rooted in local regions of the
domains.

Characteristics elucidated from the rules learned in this work
can be used to guide further experimental studies. For example,
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mutation of certain amino acids that are statistically over-represented
in important rules could be suggested as pointers for experiments
(such as aromatic residues for C1/C2 domains). Similarly, if feasible,
features such as overall charge on the domain could be tinkered
with by multiple mutations of charged residues. Such guided studies
are expected to reduce the effort and time required to reveal the
mechanisms and features used by peripheral proteins and highlights
the value of knowledge mining over the ‘black-box’-type approaches
that are often used in classification of biological data.
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