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A variational principle is derived for two-dimensional
incompressible rotational fluid flow with a free surface
in a moving vessel when both the vessel and fluid
motion are to be determined. The fluid is represented
by a stream function and the vessel motion is
represented by a path in the planar Euclidean group.
Novelties in the formulation include how the pressure
boundary condition is treated, the introduction of a
stream function into the Euler–Poincaré variations,
the derivation of free surface variations and how
the equations for the vessel path in the Euclidean
group, coupled to the fluid motion, are generated
automatically.

1. Introduction
Variational principles for fluid sloshing, that is free
surface flow in an enclosed container, abound, having
first been derived independently by Lukovsky [1] and
Miles [2], based on Luke’s variational principle [3].
Variational principles have since been widely used in the
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analysis and modelling of fluid sloshing (e.g. Faltinsen & Timokha [4], ch. 2, 7 and references
therein). However, in all this work the fluid motion is assumed to be irrotational. A variational
principle for fluid sloshing with vorticity was first introduced by Timokha [5] using Clebsch
variables to represent the velocity field. In two space dimensions, Clebsch variables represent the
vorticity field exactly, but they are difficult to work with and have singularities in the potentials
even when the velocity field is smooth (e.g. [6,7]).

In this paper, a new variational principle for fluid flow with a free surface and vorticity is
obtained in two dimensions by representing the velocity field in terms of a stream function and
using constrained variations. Moreover, the variational principle captures dynamic coupling with
the vessel motion; that is, the variational principle produces both the exact fluid equations in a
moving vessel, as well as coupling with the exact equations of motion for the vessel. The vessel
motion is a path in the special Euclidean group, SE(2), consisting of rotations and translation in
the plane.

Variational principles for the coupled motion have been given before, the first by Lukovsky
(see [8] and references therein), for the fluid–vessel coupling, and more recently by Alemi
Ardakani [9,10], which, in the latter case, includes coupling between the vessel and both interior
and exterior fluid motion. However, in all these cases, the fluid motion is taken to be irrotational.
Here the aim is to dynamically couple vessel motion to interior fluid flow with an exact and
complete representation of the vorticity field.

Variational principles for Eulerian fluid motion with vorticity are notoriously difficult. On
the other hand, variational principles in the Lagrangian particle path (LPP) formulation are
the natural continuum versions of Hamilton’s principle in classical mechanics and are therefore
relatively straightforward. For example, Hsieh [11] presents a variational principle for the LPP
formulation with a free surface, based on the kinetic minus the potential energy, which is used
to model bubble dynamics, and no special constraints or constrained variations are required.
Yamada [12] develops a numerical method, based on a Lagrangian variational principle, for
sloshing in the LPP setting. However, in general the LPP formulation is not as useful in practice
as the Eulerian fluid representation.

In the Eulerian representation, the fluid velocity u(x, t) is studied as a function of position and
time. It is the observational approach and the most widely used representation in fluid dynamics.
When forecasting the wind in a city, for example, one wants to predict the velocity at a fixed spatial
position as a function of time. One is not normally interested in where the parcel of fluid was the
day before or the week before. This latter view, where individual fluid parcels are followed for all
time, is the LPP description. The position of a parcel of fluid is given by

x = ϕ(a, τ ), a ∈ B, (1.1)

where τ = t is the representation of time in the Lagrangian setting. Here B ⊂ R
n (spatial

dimension n) is a fixed reference space that may be the initial configuration of the fluid, ϕ(a, 0) =
a ∈ B. The Lagrangian velocity field follows a fluid particle:

uLag(a, τ ) = ϕ̇(a, τ ), (1.2)

where the dot denotes differentiation with respect to τ (time derivative with a fixed). The two
fields are related by

uLag(a, τ ) = u(ϕ(a, τ ), t) (with t = τ ). (1.3)

In fact, this identity will be important in transforming natural variational principles in the LPP
setting to a variational principle in the Eulerian setting.

Natural variational principles, starting with the kinetic minus the potential energy, fail
in the Eulerian setting. For example, take the two-dimensional fluid domain to be in the
region 0< y< h(x, t), where y = h(x, t) represents the free surface for 0 ≤ x ≤ L. Then the natural
Lagrangian, based on the kinetic minus potential energy, when the velocity is represented by



3

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20180642

...........................................................

a stream function, is

δ

∫ t2

t1

L(ψ , h) dt = 0 with L(ψ , h) =
∫L

0

∫ h

0

[
1
2
ρ(ψ2

x + ψ2
y ) − ρgy

]
dx dy, (1.4)

where ρ is the constant fluid density and g is the gravitational constant. Taking free variations
with respect to h andψ and setting δL/δψ and δL/δh to zero does not lead to the correct governing
equations or boundary conditions. The reason being thatψ and h are not the Lagrangian variables
of the problem, and hence the classical Hamilton principle with free variations does not apply
when such variables are used.

One thus needs to consider the constrained variations induced by the free variations of the
Lagrangian variables. For fluids with a fixed boundary, this is known as the Euler–Poincaré
framework (e.g. Holm et al. [13, ch. 11]). In the Euler–Poincaré framework, the constrained variation
of the velocity field is given by

δu = zt + [u, z], (1.5)

where z is a vector-valued free variation, and [·, ·] is the Lie bracket of vector fields [13,14] (that is,
[u, z] = u · ∇z − z · ∇u). However, we will need to introduce two extensions of this theory: firstly,
inclusion of a free boundary h(x, t) and an appropriate variation δh, and, secondly, how to induce
a constrained variation, δψ , for the stream function.

The Euler–Poincaré framework was first extended to free boundary flows in Gay-Balmaz
et al. [15] with a compressible fluid in the interior. The incompressible case can be obtained
a posteriori by setting density to be constant. Here, the new strategy is to address the
incompressible case directly by working with divergence-free vector fields from the start,
parametrized with a stream function, then use (1.5) and a Lie algebra homomorphism to obtain δψ
directly,

δψ = wt + {w,ψ}, (1.6)

where w(x, y, t) is scalar valued and a free variation, and {·, ·} is the standard (x, y)-Poisson bracket
for scalar valued functions. This variation, and a reduction from the LPP setting to the Eulerian
setting, induces a variation at the free surface

δh = −Wx and W(x, t) := w(x, h(x, t), t).

The expressions for δψ and δh are proved in §6. They are derived from first principles using
reduction from the LPP to Eulerian formulation and the formula (1.3).

The difficulties with the free boundary are compounded by the use of a stream function
formulation: the pressure no longer appears explicitly rendering the dynamic boundary condition
at the free surface problematic. This problem is resolved in a novel way by showing that
the pressure boundary condition is equivalent to the kinematic conservation law of Gavrilyuk
et al. [16] (hereafter GKK conservation law), extended to the case of free surface flow relative to
a moving frame. Then a key result of the variational construction is how the GKK conservation
law emerges from the variational principle, justifying this new form for the pressure boundary
condition.

The variational principle is useful for establishing structure, identifying conservation laws,
constructing numerical schemes and developing approximate methods such as the multimodal
expansion of solutions. Some implications and applications are discussed in §7.

An outline of the paper is as follows. Firstly, the governing equations for the coupled problem
are written down in §2. Then a Lagrangian density is formulated based on the kinetic minus
potential energy of the fluid and vessel motion, relative to a moving frame in §3. Variations are
then taken in the directions δh, δψ , δq and δR, where q is the body translation vector in two
dimensions and R is a rotation matrix in the plane representing the body orientation. Special cases
of the resulting equations are given in §5. The justification of the expressions for the constrained
variations is given in §6 based on reduction from the LPP setting to the Eulerian setting. In §7
and the concluding remarks section §8 some implications and potential extensions of the new
variational formulation are discussed.
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2. Governing equations
The fluid is incompressible and of constant density ρ. The fluid occupies the two-dimensional
region

D := {(x, y) ∈ R
2 : 0< y< h(x, t) and 0< x< L}, (2.1)

for some L> 0 and y = h(x, t) is a graph representing the free surface, and it is to be determined.
The fluid equations are relative to the body-fixed frame with coordinates x = (x, y) and its relation
to the spatial frame is given below in (2.6).

Upon denoting the velocity field by u = (u, v), the governing equations for the velocity and
pressure, relative to the body frame, are

Du
Dt

+ 1
ρ

∂p
∂x

= −g sin θ + 2θ̇v + θ̈y + θ̇2x − q̈1 cos θ − q̈2 sin θ

and
Dv
Dt

+ 1
ρ

∂p
∂y

= −g cos θ − 2θ̇u − θ̈x + θ̇2y + q̈1 sin θ − q̈2 cos θ ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.2)

where g> 0 is the gravitational constant and (Df/Dt) := (∂f/∂t) + u(∂f/∂x) + v(∂f/∂y). The
functions (θ , q1, q2) represent the orientation and translation of the body. These equations are
derived in [9] and in §2 of [17]. Conservation of mass relative to the body frame is

ux + vy = 0, (2.3)

which also acts as an equation for the pressure. The boundary conditions on the vessel walls are

u = 0 at x = 0, L and v = 0 at y = 0, (2.4)

and at the free surface the boundary conditions are

p = pa and ht + uhx = v at y = h(x, t), (2.5)

where pa(x, y, t) is a given external pressure field. The free-surface boundary condition on the
pressure is obtained by assuming that surface tension effects are neglected and by requiring
the pressure to be equal to external pressure field at the surface. The free surface equation for
the height is the usual kinematic free surface boundary condition in the Eulerian setting.

The body-fixed frame with coordinates x = (x, y) is related to the space-fixed frame with
coordinates X = (X, Y) by

X =R(t)x + q(t), (2.6)

where q = (q1, q2) represents uniform translation of the frame, and

R(t) =
[

cos θ (t) − sin θ (t)
sin θ (t) cos θ (t)

]
. (2.7)

A schematic is shown in figure 1. When the axis of rotation is at another point other than the
origin of the body axis then (2.6) is replaced by X =R(t)(x + d) + q(t) where d is a constant vector.
The theory will be developed for d = 0, to simplify notation, as the shift in axis of rotation can be
added in a posteriori as required.

(a) Stream function and vorticity
In two-dimensional divergence free vector fields in D can be parametrized by a stream function,

u =ψy and v = −ψx. (2.8)

Conservation of mass (2.3) is satisfied exactly and the vorticity V is defined by

V = vx − uy = −	ψ and
DV
Dt

= −2θ̈ . (2.9)
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Figure 1. Schematic of the fluid domain relative to the body frame.

The vorticity V is the relative vorticity; that is, relative to the body frame. The absolute vorticity is
V + 2θ̇ . Substitute the stream function into the free surface boundary condition (2.5),

0 = ht + uhx − v = ht + ψyhx + ψx = ht + Ψx, (2.10)

where

Ψ (x, t) =ψ(x, h(x, t), t), (2.11)

giving the following form for the kinematic free surface boundary condition:

ht + Ψx = 0 at y = h(x, t). (2.12)

At this point, a difficulty emerges with the pressure boundary condition, p = pa at y = h,
since pressure does not appear in the vorticity-stream function formulation. However, the Euler
equations have a gauge symmetry in that an arbitrary function of time can be added to the
pressure field without changing the dynamics. Hence the more general boundary condition for
the pressure is p − pa = 0 modulo an arbitrary function of time, or

∂

∂x
pa = ∂

∂x
p(x, h(x, t), t) = px + pyhx at y = h(x, t). (2.13)

Substituting for px and py from (2.2) then gives

Du
Dt

+ hx
Dv
Dt

+ 1
ρ

∂pa

∂x
= −g sin θ + 2θ̇v + θ̈y + θ̇2x − q̈1 cos θ − q̈2 sin θ

+ hx(−g cos θ − 2θ̇u − θ̈x + θ̇2y + q̈1 sin θ − q̈2 cos θ ), (2.14)

at y = h(x, t). Although this boundary condition looks complicated it has an elegant and simple
form

Kt + (uK −Ξ )x = 0, (2.15)

with

K = ρ[u − θ̇h + v1 + hx(v + θ̇x + v2)], (2.16)

and flux function

Ξ = 1
2ρ(u − θ̇h + v1)2 + 1

2ρ(v + θ̇x + v2)2 − ρ(Γ1x + Γ2h)−pa, (2.17)

where Γ = (Γ1,Γ2) and v = (v1, v2) are the gravity vector and vessel acceleration vector relative to
the body frame and explicit expressions for them are given in §3.
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The conservation law (2.15) is a generalization of the GKK conservation law [16] to the case
of free boundary flow relative to a moving frame. When θ = θ̇ = v1 = v2 = 0 and pa = 0 the above
conservation law reduces to

Kt +
(

uK + ρgh − 1
2ρu2 − 1

2ρv
2
)

x
= 0, and K = ρ(u + vhx), at y = h(x, t), (2.18)

which is the form of the kinematic conservation law given in eqn (14) of [16].

(b) Summary of the fluid equations
In summary, in the vorticity-stream function formulation, the governing equations (2.2) are
replaced by

V = −	ψ and
DV
Dt

= −2θ̈ in D. (2.19)

The boundary conditions at the solid walls are

ψx = 0 at y = 0 and ψy = 0 at x = 0, L. (2.20)

The boundary conditions at the free surface are

ht + Ψx = 0 and Kt + (ψyK −Ξ )x = 0 at y = h(x, t), (2.21)

with K and Ξ given in (2.16) and (2.17), respectively, with u, v replaced by their stream function
representation. The aim is the show that these governing equations for the fluid follow from a
variational principle.

(c) Summary of the vessel equations
The fluid equations in §2b are dynamically coupled to the vessel motion. The vessel position
and orientation are given in terms of θ (t) and q(t) and they are coupled to the fluid motion.
Governing equations for (θ (t), q(t)) can be deduced from Newton’s Law for the total linear and
angular momentum.

The translation of the vessel follows from the conservation of total linear momentum

d
dt

∫L

0

∫ h

0
ρR(u + Ω × x + RTq̇

)
dy dx = −

∫L

0

∫ h

0
ρgE2 dy dx. (2.22)

The orientation of the vessel follows from the conservation of total angular momentum

d
dt

[∫L

0

∫ h

0
ρ(Rx + q) × R(u + Ω × x + RTq̇) dy dx

]
= −

∫L

0

∫ h

0
ρg(Rx + q) × E2 dy dx. (2.23)

In these equations,

Ω = θ̇e3 = θ̇E3 = ω,

that is the body angular velocity Ω equals the space angular velocity ω. The basis for the spatial
frame is denoted by (E1, E2, E3) and the basis for the body frame is denoted by (e1, e2, e3). The
fluid velocities U and u in the spatial and body frame, respectively, are related by

U = Ṙx + Ru + q̇ =R
[
u + Ω × x + RTq̇

]
. (2.24)

The governing equations for the vessel, (2.22) and (2.23), can be expanded and simplified, but it
is easier to develop these equations in the form that emerges from the variational principle.
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3. Lagrangian of the coupled system
The proposed variational principle is

δ

∫ t2

t1

Ldt = 0, (3.1)

where the Lagrangian is the kinetic minus potential energy

L= KE f + KEv − PE f − PEv , (3.2)

where the superscript f indicates fluid and v the vessel. These energies are formulated as follows.
The energy densities of the fluid are

KEf =
∫L

0

∫ h

0
K̂Ef dy dx and PEf :=

∫L

0

∫ h

0
P̂Ef dy dx−

∫L

0

∫∞

h
pa dy dx, (3.3)

with

K̂Ef = 1
2ρ‖U‖2

= 1
2ρ‖u + Ω × x + RTq̇‖2 (using (2.24))

= 1
2ρ (u + Ω × x + v) · (u + Ω × x + v)

= 1
2ρ‖u‖2 + ρu · Ω × x + 1

2ρ‖Ω × x‖2 + ρv · Ω × x + ρv · u + 1
2ρ‖v‖2. (3.4)

The vessel position and velocity and the gravity vector are represented relative to the body frame.

Γ = gRTE2, r =RTq and v =RTq̇. (3.5)

With these definitions, the kinetic and potential energies are R-invariant, and there is no explicit
dependence on the group action.

Re-introducing integration, the fluid kinetic energy takes the form

KEf =
∫L

0

∫ h

0

(
1
2
ρ‖u‖2 + ρu · Ω × x + ρv · u

)
dy dx + 1

2
Π f Ω · Ω − mf x̄f · Ω × v + 1

2
mf ‖v‖2,

where

mf =
∫L

0

∫ h

0
ρ dy dx =

∫L

0
ρh(x, t) dx and x̄f = 1

mf

∫L

0

∫ h

0
ρx dy dx,

and

Π f :=
∫L

0

∫ h

0
ρ
(

1‖x‖2 − xxT
)

dy dx.

In the two-dimensional case considered here the moment of inertia term reduces to

1
2
Π f Ω · Ω = θ̇2

∫L

0

∫ h

0

1
2
ρ(x2 + y2) dy dx = 1

2

[∫L

0

(
x2h + 1

3
h3
)

dx

]
θ̇2 := 1

2
I
f θ̇2. (3.6)

The potential energy density for the fluid is

P̂Ef = ρgE2 · (Rx + q)

= ρgRTE2 · (x + RTq)

= ρΓ · (x + r), (3.7)

and so, adding in the external pressure field,

PEf =
∫L

0

∫ h

0
ρΓ · (x + r) dy dx−

∫L

0

∫∞

h
pa dy dx = Γ · (mf x̄f + mf r

)− ∫L

0

∫∞

h
pa dy dx.
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A similar construction gives the kinetic and potential energies of the vessel

Lv = KEv − PEv

= 1
2Π

vΩ · Ω − mv x̄v · Ω × v + 1
2 mv‖v‖2 − mvΓ · (x̄v + r),

where ρv is the density of the vessel material,

mv =
∫

V
ρv dx dy and x̄v = 1

mv

∫
V
ρvx dx dy,

where
∫

V(·)dx dy is the integral over the vessel volume, and

ΠvΩ · Ω :=
(∫

V
ρv

(
1‖x‖2 − xxT

)
dx dy Ω

)
· Ω = θ̇2

∫
V
ρv(x2 + y2) dx dy.

The full combined Lagrangian, L=Lf + Lv , is

L=
∫L

0

∫ h

0

(
1
2
ρ‖∇ψ‖2 + ρJT∇ψ · Ω × x + ρv · JT∇ψ

)
dy dx

+ 1
2

(
Π f +Πv)Ω · Ω − (mf x̄f + mv x̄v

) · Ω × v + 1
2

(mf + mv)‖v‖2

− Γ · (mf x̄f + mv x̄v + (mf + mv)r
)+ ∫L

0

∫∞

h
pa dy dx, (3.8)

where the velocity field has been replaced by its stream function representation

u = JT∇ψ and J =
[

0 −1
1 0

]
. (3.9)

In (3.8) ψ is any smooth function on D satisfying the boundary conditions

ψy = 0 at x = 0, L, ψx = 0 at y = 0 and ψx = −ht − ψyhx at y = h. (3.10)

These boundary conditions still leave the freedom to add an arbitrary function of time to ψ , and
this value is fixed by taking ψ = 0 on the rigid boundaries

ψ(x, 0, t) =ψ(0, y, t) =ψ(L, y, t) = 0. (3.11)

When the fluid is neglected and Γ is set to zero the Lagrangian density (3.8) reduces to the
standard form for a Lagrangian that is left-invariant with respect to the special Euclidean group
SE(2), which generates the equations for rigid-body motion undergoing rotation and translation
in the plane; see [18], ch. 7 for the theory of SE(n)-invariant Lagrangians.

4. Variations
In deducing the variational principle in the Eulerian setting, the starting point is the natural
variational principle in the LPP setting. In the LPP setting, the principle fluid unknown is the
particle position ϕ(a, t) as defined in (1.1) and its velocity ϕ̇ defined in (1.2). In the coupled
problem, the orientation R and position q are also treated as Lagrangian variables.

The variational principle in the Lagrangian path formulation is therefore

δ

∫ τ2

τ1

L̂(ϕ, ϕ̇,R, Ṙ, q, q̇) dτ = 0, (4.1)

with respect to free variations δϕ, δR, δq, vanishing at τ = τ1, τ2, where τ = t in the LPP setting.
The aim is to transform this integrand from Lagrangian variables to Eulerian variables.
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The Lagrangian density (3.8) is already a reduced Eulerian form of (4.1) and forms the basis
for the variational principle here

δ

∫ t2

t1

L(ψ , h, Ω , r, v, Γ ) dt = 0,

with respect to appropriate constrained variations δψ , δh, δΩ , δr, δv, δΓ . Taking variations

0 =
∫ t2

t1

[∫L

0

∫ h

0

δL
δψ
δψ dy dx +

∫L

0

δL
δh
δh dx + δL

δΩ
· δΩ + δL

δr
· δr + δL

δv
· δv + δL

δΓ
· δΓ

]
dt. (4.2)

However, setting each of these functional derivatives to zero does not recover the governing
equations, since the variations are not free. In this section, the variations needed are recorded
and they are justified from the Lagrangian particle path formulation (4.1) in §6. The required
fluid variations are

δψ = wt + {w,ψ} (0< y< h, 0< x< L),

δψ = Wt + ψy|y=h Wx (y = h),

δψ = 0 (y = 0, x = 0, L)

and δh = −Wx,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.3)

where w(x, y, t) is a free variation in the interior with wy = 0 at x = 0, L; w = 0 at y = 0; w = 0 at
t = t1, t2, and W(x, t) = w(x, h(x, t), t) is the restriction of w to the free surface. As it should, these
variations are compatible with the free surface boundary condition (2.12). Indeed, we have

0 = δ(ht + Ψx) = (δh)t + (δΨ )x

= (δh)t + (δψ |y=h + ψy|y=hδh)x

= (−Wx)t + (Wt + ψ |y=hWx − ψy|y=hWx)x

= (−Wx)t + (Wt)x = 0.

The vessel variations are

δΩ = Λt + Ω × Λ,

δr = λ + r × Λ,

δv = λt + Ω × λ + v × Λ

and δΓ = Γ × Λ,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.4)

where Λ and λ depend on time only and are free variations vanishing at t = t1, t2. Substitute these
variations into (4.2) noting that Ω × Λ = 0 in the two-dimensional case,

0 =
∫ t2

t1

[∫L

0

∫ h

0

δL
δψ

(wt + {w,ψ}) dydx +
∫L

0

δL
δψ |y=h

(Wt + uWx) dx +
∫L

0

δL
δh

(−Wx) dx

+ δL
δΩ

· Λt + δL
δr

· (λ + r × Λ) + δL
δv

· (λt + Ω × λ + v × Λ) + δL
δΓ

· (Γ × Λ)
]

dt.

Now include integration over t, integrate by parts, and use fixed endpoint conditions on the
variations Λ and λ. The abstract equations emerging are

δw :
D
Dt

(
δL
δψ

)
= 0,

δW :
∂

∂t

(
δL

δψ |y=h

)
+ ∂

∂x

(
u

δL
δψ |y=h

− δL
δh

)
= 0, at y = h,
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δΛ :
d
dt

(
δL
δΩ

)
+ r × δL

δr
+ v × δL

δv
+ Γ × δL

δΓ
= 0

and δλ :
d
dt

(
δL
δv

)
+ Ω × δL

δv
= δL
δr

.

The δw equation gives the fluid equation in the interior and the δW equation generates the GKK
conservation law. The δΛ and δλ equations generate the rigid body motion of the vessel with fluid
coupling. The equations are accompanied by the boundary conditions (3.10).

The variational derivatives, obtained by differentiating (3.8), are

δL
δψ

= −ρ(	ψ − 2θ̇ ), 0< y< h, (4.5)

in the interior, and at the free surface

δL
δψ

= K and
δL
δh

=Ξ at y = h. (4.6)

A derivation of these variations starting with (3.8) is given in appendix A.
The variational derivatives associated with the rigid body motion are

δL
δΩ

= (Π f +Πv)Ω + (mf x̄f + mv x̄v) × v +
∫L

0

∫ h

0
(x × ρu) dy dx,

δL
δr

= −(mf + mv)Γ ,

δL
δv

= (mf + mv)v + Ω × (mf x̄f + mv x̄v) +
∫L

0

∫ h

0
ρu dy dx

and
δL
δΓ

= −g(mf x̄f + mv x̄v + (mf + mv)r).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.7)

Substituting these expressions into the δΛ and δλ equations gives the equations for the vessel
coupled to the fluid motion, and they recover exactly the conservation of total linear and angular
momentum in §2c. Here the governing equation for v is expanded

d
dt

(
(mf + mv)v + Ω × (mf x̄f + mv x̄v) +

∫L

0

∫ h

0
ρu dy dx

)

+ Ω ×
(

(mf + mv)v + Ω × (mf x̄f + mv x̄v) +
∫L

0

∫ h

0
ρu dy dx

)
= −(mf + mv)Γ , (4.8)

where u = (ψy, −ψx). This expression generates only two component equations as the third
component is identically zero. A similar expanded formula can be developed for the Ω equation,
with the Ω equation having only one non-zero component. When the velocity field u is restricted
to be irrotational, the vessel equations agree with those in [9,10].

5. Special cases of governing equations
When the vessel motion vanishes and pa = 0, the Lagrangian (3.8) reduces to

L=
∫L

0

∫ h

0

(
1
2
ρ‖∇ψ‖2 − ρgy

)
dy dx,

with

δL=
∫L

0

∫ h

0
ρ∇ψ · ∇δψ dy dx +

∫L

0

[
1
2
ρ‖∇ψ‖2 − ρgy

]∣∣∣∣y=h
δh dx.

Substituting for δψ and δh from (4.3), and adding in the boundary conditions (3.10), recovers the
governing equations for the fluid in §2b with the GKK conservation law in the form (2.18).
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Figure 2. Schematic of rigid body motion in a vertical plane.

When the fluid motion vanishes, the vessel motion equations reduce to

ΠvΩ t + mv x̄v × vt + mv(v · x̄v)Ω − mvΓ × x̄v = 0,

mvvt + mv

(
Ω × v

)+ mv(Ω t × x̄v) + mvΓ − mvΩ · Ω x̄v = 0

and Γ t + Ω × Γ = 0.

⎫⎪⎪⎬⎪⎪⎭ (5.1)

These equations are similar to Kirchoff’s equations for a rigid body in moving in 3D (see Lamb [19,
ch. 6] and Holm [18, §7.2]). The latter view of the equations (5.1) is that they are the Euler–
Poincaré equations for a Lagrangian that is left-invariant with respect to the group SE(2), the
special Euclidean group in the plane, although here there is the additional term due to gravity
and represented by the vector Γ . In two dimensions, these equations are just the governing
equations of a compound pendulum in the plane with translating pivot point (figure 2), or more
generally a rigid body moving in the plane subject to a gravitational field. In two dimensions, the
first equation of (5.1) has only one non-zero component and the second has only two non-zero
components.

6. Justifying constrained variations via reduction
The natural variational principle in fluid mechanics is Hamilton’s principle in the LPP setting.
Natural because the density is the kinetic minus potential energy and the variations are free.
In the LPP setting, the position of particles is determined by a mapping ϕ : B →D where B is a
reference space

B = {a = (a1, a2) ∈ R
2 : 0 ≤ a1 ≤ 1, 0 ≤ a2 ≤ 1}

and D is the current fluid configuration (2.1). The position and velocity of a fluid particle at any
time τ in the LPP setting from (1.1) and (1.3) are recorded here,

x = ϕ(a, τ ) and uLag(a, τ ) = ϕ̇(a, τ ). (6.1)

τ = t but the distinction is maintained as ∂τ is taken with a fixed and ∂t is taken with x fixed.
The LPP Lagrangian variational principle for the fluid only is then

δ

∫ τ2

τ1

L(ϕ, ϕ̇) dτ = 0, (6.2)
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with respect to arbitrary variations δϕ vanishing at τ = τ1, τ2. To be precise the configuration
manifold is an appropriate subset of the manifold of volume-preserving embeddings (e.g.
[15,20,21] and references therein) but this level of detail will not be needed here.

The free surface is the image of the upper edge of the reference space

Σs = {(x, y) ∈ R
2 : x = ϕ1(a1, 1, τ ) and y = ϕ2(a1, 1, τ )} ⊂ ∂D. (6.3)

Variation of L in (3.8) will require variations in the Eulerian setting. The transformation from
the LPP description to the Eulerian description is a form of reduction, obtained by factoring
out the particle relabelling group (cf. §11.1 of [13,15] when a free boundary is included). This
reduction converts free variations in the LPP setting to constrained variations in the Eulerian
setting.

The Lagrangian and Eulerian velocity fields are related by

u(x, t) = ϕ̇(ϕ−1(x, t), t) ⇒ ϕ̇(a, τ ) = u(ϕ(a, τ ), τ ), (6.4)

and u is a divergence-free vector field on D, parallel to rigid boundaries but not parallel to Σs.
Let δϕ(a, τ ) be a free variation of the fluid displacement in the LPP setting and let z(x, t) be its
representation in the Eulerian setting,

z(x, t) = δϕ(ϕ−1(x, t), t) ⇒ δϕ(a, τ ) = z(ϕ(a, τ ), τ ). (6.5)

The field z is an arbitrary divergence-free vector field on D, parallel to rigid boundaries but not
parallel to Σs.

To derive (1.5) vary (6.4),

δϕ̇(a, τ ) = δu(ϕ(a, τ ), τ ) + δϕ(a, τ ) · ∇u(ϕ(a, τ ), τ ). (6.6)

Now differentiating (6.5) with respect to t gives

δϕ̇(a, τ ) = zt(ϕ(a, τ ), τ ) + ϕ̇(a, τ ) · ∇z(ϕ(a, τ ), τ ). (6.7)

Combining these two expressions then gives

δu = zt + [u, z] with [u, z] := u · ∇z − z · ∇u. (6.8)

In forming this equation, a is replaced by a = ϕ−1(x, t) rendering it a purely Eulerian expression.
The identity (6.8) is one of the most important, but unheralded, identities in fluid mechanics
as it relates small changes in the Eulerian velocity field to small changes in the Lagrangian
velocity field, all viewed from the Eulerian perspective. Further detail on this identity, its history,
abstraction and generalization can be found in [13,14] and references therein.

The two new results on Eulerian variations needed in this paper are the implications for (6.8)
when the velocity field is represented by a stream function, and the induced free surface variation
when the surface Σs is represented by a graph.

(a) Stream function variations
The aim is to reduce

δu = zt + [u, z] to δψ = wt + {w, z}. (6.9)

Define w(x, y, t) by expressing the divergence-free vector field z in terms of a w stream function

z := JT∇w. (6.10)

The properties of z then give that w is an arbitrary scalar-valued function on D satisfying wy = 0
at x = 0, L; wx = 0 at y = 0 and w = 0 at t = t1, t2.
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The w stream function is obtained from a given z by integrating

dw = −z2 dx + z1 dy,

along a curve in D. By choosing a reference value of w, e.g. fixing w on rigid boundaries

w(x, 0, t) = w(0, y, t) = w(L, y, t) = 0, (6.11)

the w stream function is unique. This condition mirrors the condition on ψ in (3.11).
Inserting the velocity representation u = JT∇ψ and (6.10) into the first expression in (6.9) gives

JT∇δψ = JT∇wt + [JT∇ψ , JT∇w]. (6.12)

A direct computation then shows that [JT∇ψ , JT∇w] = JT∇{w,ψ}, and so (6.12) yields

JT∇(δψ − wt − {w,ψ}) = 0

or

δψ = wt + {w,ψ} + f (t), (6.13)

where f (t) is in general arbitrary. However, evaluating (6.13) at y = 0 and using the normalization
(6.11) gives f (t)=0. This confirms the form for δψ in the second expression in (6.9).

(b) Free surface variations
With the free surface represented by a graph, y = h(x, t), the mapping from LPP to Eulerian
variables (6.3) on Σs becomes

h(ϕ1(a1, 1, τ ), τ ) = ϕ2(a1, 1, τ ). (6.14)

The time derivative of this equality gives the free surface condition (2.5). Taking variations of
(6.14), we get

δh(ϕ1(a1, 1, τ ), τ ) + hxδϕ1(a1, 1, τ ) = δϕ2(a1, 1, τ ). (6.15)

But using the stream function representation for z, we get

δϕ(a, τ ) = z(ϕ(a, τ ), τ ) = (wy(ϕ(a1, a2, τ ), τ ), −wx(ϕ(a1, a2, τ ), τ ))

and hence

δϕ1(a1, 1, τ ) = wy(ϕ(a1, 1, τ ), τ ) and δϕ2(a1, 1, τ ) = −wx(ϕ(a1, 1, τ ), τ ),

so the second and third terms in (6.15) combine into

hxδϕ1(a1, 1, τ ) − δϕ2(a2, 1, τ ) = hxwy(ϕ1(a1, 1, τ ), 1, τ ) + wx(ϕ1(a1, 1, τ ), 1, τ ).

In Eulerian variables, the right-hand side is[
hxwy(ϕ1, 1, τ ) + wx(ϕ1, 1, τ )

]∣∣∣a2=1 ϕ−1

−−→ hxwy(x, h(x, t), t) + wx(x, h(x, t), t) = Wx.

Substitution into (6.15) and mapping δh to Eulerian variables then gives

δh = −Wx,

confirming the expression in (4.3).

(c) Variation of vessel parameters
The variations of Ω , r, v and Γ in (4.4) arise in rigid body motion and the details can be found in
[13]. Here, just a sketch of the basic idea is given. A detailed derivation of δΩ is given on pages
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249–250 of [13] with Λ̂ :=RTδR, where Λ̂ is the representation of the vector Λ in terms of a 3 × 3
skew-symmetric matrix. Let λ =RTδq then

δr = δ
(RTq

)= −RTδRRTq + RTδq = λ − Λ̂r = λ + r × Λ.

A similar argument gives the expression for δv in (4.4). For the gravity vector

δΓ = δ
(RTe2

)= −RTδRRTe2 = −RTδRΓ = −Λ × Γ ,

confirming the fourth equation in (4.4).

7. Implications and applications
The existence of a variational principle for sloshing with vorticity gives added value to the
analysis of the governing equations in various directions. For example, the importance of
variational principles in the design of robust numerical schemes is now well established (e.g.
[22,23]). In fluid dynamics, the development of numerical methods from variational principles
with constrained variations, as in the Euler–Poincaré framework, is a burgeoning research area
(cf. Pavlov et al. [24] and its citation trail). For this development, the understanding of the Eulerian
variational principle as a consequence of the LPP is of fundamental importance. The variational
framework in the present paper is a candidate for adapting these variational numerical methods
to the case of free surface flows.

A canonical problem in the study of dynamic coupling between sloshing and vessel motion
is the ‘pendulum-slosh’ problem, illustrated in figure 3, where q = 0 and the only vessel degree
of freedom is rotation. The irrotational case has been studied in Turner et al. [25]. Vorticity will
change the resonance structure, affect the energy budget and interact with the vorticity induced
by vessel rotation. An analysis of this problem is outside the scope of this paper, but some
indication of the implication of vorticity on sloshing can be given using an exact solution.

There is an exact solution of the sloshing problem with vorticity and a stationary vessel.
Suppose the external pressure field evaluated on the free surface has the form

pa
∣∣y=h = 1

4ρβ
2A cos(2αx),

where α, β, A are arbitrary positive parameters, then the exact steady solution, with a non-trivial
vorticity field, is

u(x, y) = βmA sin(αnx) cos(βmy),

v(x, y) = −αnA cos(αnx) sin(βmy),

p(x, y) = 1
4ρβ

2
mA cos(2αnx) − ρgy + 1

4ρα
2
nA cos(2βmy) + Const.

and V(x, y) = (α2
n + β2

m)A sin(αnx) sin(βmy),

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(7.1)

with h = h0 with h0 a constant, and

αn = nπ
L

and βm = mπ
h0

,

where m, n are natural numbers. The constant in the pressure is chosen to satisfy the free surface
boundary condition giving

Const.= ρgh0 − 1
4ρα

2
nA cos(2βmh0).

This exact solution has not been noticed before as it requires a non-zero external pressure field.
It is useful as a model problem for introducing vorticity. It also demonstrates the importance of
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Figure 3. The pendulum slosh problem with vorticity.
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Figure 4. Stream function contours for the solution (7.1) in the case n= 2 andm= 1. (Online version in colour.)

non-zero kinetic energy in the initial data when vorticity is present. The kinetic energy of the fluid
in this case is

KEf =
∫L

0

∫ h0

0

1
2

(u2 + v2) dy dx = 1
8
π2A2

(
n2

L2 + m2

h2
0

)
. (7.2)

The flowfield has a cellular structure with n cells in the x-direction and m cells in the y-direction.
An example of the stream function contours in the case n = 2, m = 1 is shown in figure 4.
Although the flow is stationary, the formula (7.2) shows that the kinetic energy increases with
granularity of the vorticity. This cellular structure is a model for the vorticity generated when
baffles are introduced. Adding a perturbation to this exact solution, and using it as initial data, is
a mechanism for generating a non-trivial sloshing flow field with time-dependent vorticity.

Some experiments show evidence of vorticity. In a viscous fluid, vorticity can be generated
by boundary layers and vortex shedding. For short times, it is the vorticity in initial data that
will dominate. Many sloshing experiments start with a quiescent fluid (e.g. [26]), generating an
irrotational flow until viscosity influences the vorticity field. However, there are some interesting
experiments of Herczyńiski & Weidman [27], which introduce non-zero kinetic energy into the
initial data. In [27], they were interested in the induced motion of the vessel due to the fluid. The
fluid was set in motion and transients eliminated before recording, thereby ensuring non-trivial
kinetic energy in the initial data. Vorticity was not measured and the experiments were compared
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with irrotational theory, but the experiment shows that it is possible to generate initial conditions
with vorticity in a sloshing experiment. Another approach to generating strong vorticity in the
initial data is to insert a baffle to generate vortex shedding before starting the experimental record.

8. Concluding remarks
In this paper, a new variational principle has been introduced for two-dimensional inviscid
incompressible fluid flow in a moving vessel with coupling to the vessel motion. It is a
starting point for new applications and new directions (three-dimensionality, other geometries,
multi-valued free surface and effects such as surface tension).

The representation of the surface as a graph, y = h(x, t) simplified the analysis, but
the variational principle can be generalized to the case where the surface is represented
parametrically, x = X(s, t) and y = Y(s, t), for 0< s< L, thereby allowing for overhanging and a
multi-valued free surface. Coupling with elastic vessel motion or elastic pendulum rod is also a
potential generalization. Sloshing in microgravity can be modelled by introducing surface tension
which fits neatly into the variational framework since surface tension is intrinsically linked to the
variational derivative of the free surface mean curvature.

The Lagrangian variational principle here opens the door to generating a Hamiltonian
formulation with a Lie–Poisson structure, extending the theory in Lewis et al. [28] (for
incompressible free surface flows) and Mazer & Ratiu [29] (for compressible free surface flows) to
the dynamically coupled problem.

In the formulation presented here, there were hints about the structure of the problem in
3D. However there are still technical difficulties in extending the fluid part to 3D. Firstly, a
parametrization of divergence-free vector fields is required. The preferred option is a vector
stream function, but the pressure boundary condition then presents challenges. The tangential
derivative of pressure has two components and the extension of the GKK theory to 3D does not
result in a conservation law (see [16] for the GKK theory in 3D without rotation). On the other
hand, the extension of the vessel motion to 3D is straightforward.

Three-dimensional cylindrical geometry has many applications. Timokha [5] discusses
vorticity in sloshing, and comments on the ‘glass-wine’ paradox, whereby a steady-state swirl
motion in a vessel generates a vortex by conversion of the wave angular momentum to the vortex
angular momentum. Modelling propellant sloshing in rockets also requires cylindrical geometry
in 3D. Another interesting application of cylindrical geometry is the ignoble problem of ‘walking
with coffee’ (cf. Mayer & Krechetnikov [30]). In [30], a simple mechanical model is developed
for the interaction between sloshing coffee and the cup’s dynamics and they comment on the
possibility of designing a flexible container to suppress the sloshing. In addition to flexibility, it
may be that swirl or vorticity or the variational structure also play a role.
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Appendix A. Details of the δL calculations
First look at the variations associated with the stream function with the other variables fixed. The
stream function terms in L are

Lψ =
∫L

0

∫ h

0

(
1
2
ρ(ψ2

x + ψ2
y ) − ρθ̇ (xψx + yψy) + ρ(v1ψy − v2ψx)

)
dy dx.
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Vary Lψ with respect to ψ keeping all other variables fixed, integrate by parts and use δψ = 0 on
rigid boundaries from (3.10), then

δLψ = −
∫L

0

∫ h

0
ρ(	ψ − 2θ̇ )δψ dy dx +

∫L

0
ρ(ψy − θ̇h + v1)δψ

∣∣∣∣y=h
dx

+
∫L

0
ρhx(−ψx + θ̇x + v2)δψ

∣∣∣∣y=h
dx

= −
∫L

0

∫ h

0
ρ(	ψ − 2θ̇ )δψ dy dx +

∫L

0
K δψ

∣∣y=h dx.

This confirms the variational derivatives (4.5) and the first of (4.6).
Now keep all other variations fixed, and vary with respect to h,

δL=
∫L

0

[(
1
2
ρ‖u‖2 + ρu · Ω × x + ρv · u

)
δh + 1

2
ρ(x2 + h2)Ω · Ωδh

−ρ(x∣∣y=h) · Ω × vδh + 1
2
ρδh‖v‖2δh − ρΓ · (x∣∣y=h + r

)
δh−pa

∣∣y=h
δh
]

dx,

using

δmf =
∫L

0
ρδh dx, δ(mf x̄f ) =

∫L

0
ρx
∣∣y=h

δh dx and δ

∫ h

0

1
2
ρ(x2 + y2) dy = 1

2
ρ(x2 + h2)δh.

Rearranging and substituting the above expressions

δL
δh = 1

2ρ(u − θ̇h + v1)2 + 1
2ρ(v + θ̇x + v2)2 − ρ(Γ1(x + r1) + Γ2(h + r2))−pa

∣∣y=h, (A 1)

which confirms the second of (4.6) using (2.17).
For the variations associated with vessel motion, keep ψ and h fixed and vary with respect to

Ω , r, v and Γ ,

δL=
∫L

0

∫ h

0

(
ρu · δΩ × x + ρ δv · u

)
dy dx + (

Π f +Πv)Ω · δΩ

− (mf x̄f + mv x̄v
) · (δΩ × v + Ω × δv

)+ (mf + mv)v · δv
− (mf + mv)Γ · δr − δΓ · (mf x̄f + mv x̄v + (mf + mv)r

)
.

Rearrange and group terms

δL= δΩ ·
∫L

0

∫ h

0
(ρx × u) dy dx + δΩ · (mf x̄f + mv x̄v

)× v + (
Π f +Πv)Ω · δΩ

+ δv ·
∫L

0

∫ h

0
ρu dy dx + Ω × (

mf x̄f + mv x̄v
) · δv + (mf + mv)v · δv

− (mf + mv)Γ · δr − δΓ · (mf x̄f + mv x̄v + (mf + mv)r
)
.

Extracting the variational derivatives,

δL= δL
δΩ

· δΩ + δL
δv

· δv + δL
δr

· δr + δL
δΓ

· δΓ ,

confirms the formulae in (4.7).
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