
RESEARCH Open Access

Reducing the worst case running times of a
family of RNA and CFG problems, using Valiant’s
approach
Shay Zakov, Dekel Tsur and Michal Ziv-Ukelson*

Abstract

Background: RNA secondary structure prediction is a mainstream bioinformatic domain, and is key to
computational analysis of functional RNA. In more than 30 years, much research has been devoted to defining
different variants of RNA structure prediction problems, and to developing techniques for improving prediction
quality. Nevertheless, most of the algorithms in this field follow a similar dynamic programming approach as that
presented by Nussinov and Jacobson in the late 70’s, which typically yields cubic worst case running time
algorithms. Recently, some algorithmic approaches were applied to improve the complexity of these algorithms,
motivated by new discoveries in the RNA domain and by the need to efficiently analyze the increasing amount of
accumulated genome-wide data.

Results: We study Valiant’s classical algorithm for Context Free Grammar recognition in sub-cubic time, and extract
features that are common to problems on which Valiant’s approach can be applied. Based on this, we describe
several problem templates, and formulate generic algorithms that use Valiant’s technique and can be applied to all
problems which abide by these templates, including many problems within the world of RNA Secondary Structures
and Context Free Grammars.

Conclusions: The algorithms presented in this paper improve the theoretical asymptotic worst case running time
bounds for a large family of important problems. It is also possible that the suggested techniques could be applied
to yield a practical speedup for these problems. For some of the problems (such as computing the RNA partition
function and base-pair binding probabilities), the presented techniques are the only ones which are currently
known for reducing the asymptotic running time bounds of the standard algorithms.

1 Background
RNA research is one of the classical domains in bioin-
formatics, receiving increasing attention in recent years
due to discoveries regarding RNA’s role in regulation of
genes and as a catalyst in many cellular processes [1,2].
It is well-known that the function of an RNA molecule
is heavily dependent on its structure [3]. However, due
to the difficulty of physically determining RNA structure
via wet-lab techniques, computational prediction of
RNA structures serves as the basis of many approaches
related to RNA functional analysis [4]. Most computa-
tional tools for RNA structural prediction focus on RNA
secondary structures - a reduced structural

representation of RNA molecules which describes a set
of paired nucleotides, through hydrogen bonds, in an
RNA sequence. RNA secondary structures can be rela-
tively well predicted computationally in polynomial time
(as opposed to three-dimensional structures). This com-
putational feasibility, combined with the fact that RNA
secondary structures still reveal important information
about the functional behavior of RNA molecules,
account for the high popularity of state-of-the-art tools
for RNA secondary structure prediction [5].
Over the last decades, several variants of RNA second-

ary structure prediction problems were defined, to
which polynomial algorithms have been designed. These
variants include the basic RNA folding problem (predict-
ing the secondary structure of a single RNA strand
which is given as an input) [6-8], the RNA-RNA

* Correspondence: michaluz@cs.bgu.ac.il
Department of Computer Science, Ben-Gurion University of the Negev, P.O.B.
653 Beer Sheva, 84105, Israel

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

© 2011 Zakov et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:michaluz@cs.bgu.ac.il
http://creativecommons.org/licenses/by/2.0

Interaction problem (predicting the structure of the
complex formed by two or more interacting RNA mole-
cules) [9], the RNA Partition Function and Base Pair
Binding Probabilities problem of a single RNA strand
[10] or an RNA duplex [11,12] (computing the pairing
probability between each pair of nucleotides in the
input), the RNA Sequence to Structured-Sequence Align-
ment problem (aligning an RNA sequence to sequences
with known structures) [13,14], and the RNA Simulta-
neous Alignment and Folding problem (finding a sec-
ondary structure which is conserved by multiple
homologous RNA sequences) [15]. Sakakibara et al. [16]
noticed that the basic RNA Folding problem is in fact a
special case of the Weighted Context Free Grammar
(WCFG) Parsing problem (also known as Stochastic or
Probabilistic CFG Parsing) [17]. Their approach was
then followed by Dowell and Eddy [18], Do et al. [19],
and others, who studied different aspects of the relation-
ship between these two domains. The WCFG Parsing
problem is a generalization of the simpler non-weighted
CFG Parsing problem. Both WCFG and CFG Parsing
problems can be solved by the Cocke-Kasami-Younger
(CKY) dynamic programming algorithm [20-22], whose
running time is cubic in the number of words in the
input sentence (or in the number of nucleotides in the
input RNA sequence).
The CFG literature describes two improvements which

allow to obtain a sub-cubic time for the CKY algorithm.
The first among these improvements was a technique
suggested by Valiant [23], who showed that the CFG
Parsing problem on a sentence with n words can be
solved in a running time which matches the running
time of a Boolean Matrix Multiplication of two n × n
matrices. The current asymptotic running time bound
for this variant of matrix multiplication was given by
Coppersmith-Winograd [24], who showed an O(n2.376)
time (theoretical) algorithm. In [25], Akutsu argued that
the algorithm of Valiant can be modified to deal also
with WCFG Parsing (this extension is described in more
details in [26]), and consequentially with RNA Folding.
The running time of the adapted algorithm is different
from that of Valiant’s algorithm, and matches the run-
ning time of a Max-Plus Multiplication of two n × n
matrices. The current running time bound for this var-

iant is O
(

n3log3 log n
log2 n

)
, given by Chan [27].

The second improvement to the CKY algorithm was
introduced by Graham et al. [28], who applied the Four

Russians technique [29] and obtained an O
(

n3

log n

)
run-

ning time algorithm for the (non-weighted) CFG Parsing
problem. To the best of our knowledge, no extension of
this approach to the WCFG Parsing problem has been
described. Recently, Frid and Gusfield [30] showed how

to apply the Four Russians technique to the RNA fold-
ing problem (under the assumption of a discrete scoring

scheme), obtaining the same running time of O
(

n3

log n

)
.

This method was also extended to deal with the RNA
simultaneous alignment and folding problem [31], yield-

ing an O
(

n6

log n

)
running time algorithm.

Several other techniques have been previously devel-
oped to accelerate the practical running times of differ-
ent variants of CFG and RNA related algorithms.
Nevertheless, these techniques either retain the same
worst case running times of the standard algorithms
[14,28,32-36], or apply heuristics which compromise the
optimality of the obtained solutions [25,37,38]. For some
of the problem variants, such as the RNA Base Pair
Binding Probabilities problem (which is considered to
be one of the variants that produces more reliable pre-
dictions in practice), no speedup to the standard algo-
rithms has been previously described.
In his paper [23], Valiant suggested that his approach

could be extended to additional related problems. How-
ever, in more than three decades which have passed
since then, very few works have followed. The only
extension of the technique which is known to the
authors is Akutsu’s extension to WCFG Parsing and
RNA Folding [25,26]. We speculate that simplifying
Valiant’s algorithm would make it clearer and thus more
accessible to be applied to a wider range of problems.
Indeed, in this work we present a simple description

of Valiant’s technique, and then further generalize it to
cope with additional problem variants which do not fol-
low the standard structure of CFG/WCFG Parsing (a
preliminary version of this work was presented in [39]).
More specifically, we define three template formulations,
entitled Vector Multiplication Templates (VMTs). These
templates abstract the essential properties that charac-
terize problems for which a Valiant-like algorithmic
approach can yield algorithms of improved time com-
plexity. Then, we describe generic algorithms for all pro-
blems sustaining these templates, which are based on
Valiant’s algorithm.
Table 1 lists some examples of VMT problems. The

table compares between the running times of standard
dynamic programming (DP) algorithms, and the VMT
algorithms presented here. In the single string problems,
n denotes the length of the input string. In the double-
string problems [9,12,13], both input strings are
assumed to be of the same length n. For the RNA
Simultaneous Alignment and Folding problem, m
denotes the number of input strings and n is the length
of each string. DB(n) denotes the time complexity of a
Dot Product or a Boolean Multiplication of two n × n
matrices, for which the current best theoretical result is

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 2 of 22

O(n2.376), due to Coppersmith and Winograd [24]. MP
(n) denotes the time complexity of a Min-Plus or a
Max-Plus Multiplication of two n × n matrices, for
which the current best theoretical result is

O
(

n3log3 log n
log2 n

)
, due to Chan [27]. For most of the pro-

blems, the algorithms presented here obtain lower run-
ning time bounds than the best algorithms previously
known for these problems. It should be pointed out that
the above mentioned matrix multiplication running
times are the theoretical asymptotic times for suffi-
ciently large matrices, yet they do not reflect the actual
multiplication time for matrices of realistic sizes. Never-
theless, practical fast matrix multiplication can be
obtained by using specialized hardware [40,41] (see Sec-
tion 6).
The formulation presented here has several advantages

over the original formulation in [23]: First, it is consid-
erably simpler, where the correctness of the algorithms
follows immediately from their descriptions. Second,
some requirements with respect to the nature of the
problems that were stated in previous works, such as
operation commutativity and distributivity requirements

in [23], or the semiring domain requirement in [42], can
be easily relaxed. Third, this formulation applies in a
natural manner to algorithms for several classes of pro-
blems, some of which we show here. Additional problem
variants which do not follow the exact templates pre-
sented here, such as the formulation in [12] for the
RNA-RNA Interaction Partition Function problem, or
the formulation in [13] for the RNA Sequence to Struc-
tured-Sequence Alignment problem, can be solved by
introducing simple modifications to the algorithms we
present. Interestingly, it turns out that almost every var-
iant of RNA secondary structure prediction problem, as
well as additional problems from the domain of CFGs,
sustain the VMT requirements. Therefore, Valiant’s
technique can be applied to reduce the worst case run-
ning times of a large family of important problems. In
general, as explained later in this paper, VMT problems
are characterized in that their computation requires the
execution of many vector multiplication operations, with
respect to different multiplication variants (Dot Product,
Boolean Multiplication, and Min/Max Plus Multiplica-
tion). Naively, the time complexity of each vector

Table 1 Time complexities of several VMT problems

Problem Standard DP running
time

Implicit [explicit] VMT algorithm running
time

Results previously
published

CFG Recognition/Parsing �(n3)) [20-22] �(DB(n))
[
�

(
n2.38)][23]

WCFG Parsing �(n3)[17]
�(MP(n))

[
Õ

(
n3

log2 n

)]
[25]

RNA Single Strand Folding �(n3)[6,7]
�(MP(n))

[
Õ

(
n3

log2 n

)]
[25]

RNA Partition Function �(n3)[10]
�(MP(n))

[
�

(
n2.38)]

[25]

In this paper WCFG Inside-Outside �(n3)[43]
�(DB(n))

[
�

(
n2.38)]

RNA Base Pair Binding Probabilities �(n3)[10]
�(DB(n))

[
�

(
n2.38)]

RNA Simultaneous Alignment and Folding �((n/2)3m)[15]
�(MP(nm))

[
Õ

(
n3m

m log2 n

)]
RNA-RNA Interaction �(n6)[9]

�(MP(n2))
[
Õ

(
n6

log2 n

)]
RNA-RNA Interaction Partition Function �(n6)[12]

�(DB(n))
[
�

(
n4.75)]

RNA Sequence to Structured-Sequence
Alignment

�(n4)[13]
�(nMP(n))

[
Õ

(
n4

log2 n

)]
The notation Õ corresponds to the standard big-O notation, hiding some polylogarithmic factors.

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 3 of 22

multiplication is linear in the length of the multiplied
vectors. Nevertheless, it is possible to organize these
vector multiplications as parts of square matrix multipli-
cations, and to apply fast matrix multiplication algo-
rithms in order to obtain a sub-linear (amortized)
running time for each vector multiplication. As we
show, a main challenge in algorithms for VMT pro-
blems is to describe how to bundle subsets of vector
multiplications operations in order to compute them via
the application of fast matrix multiplication algorithms.
As the elements of these vectors are computed along
the run of the algorithm, another aspect which requires
attention is the decision of the order in which these
matrix multiplications take place.

Road Map
In Section 2 the basic notations are given. In Section 3 we
describe the Inside Vector Multiplication Template - a
template which extracts features for problems to which
Valiant’s algorithm can be applied. This section also
includes the description of an exemplary problem (Section
3.1), and a generalized and simplified exhibition of Vali-
ant’s algorithm and its running time analysis (Section 3.3).
In Sections 4 and 5 we define two additional problem tem-
plates: the Outside Vector Multiplication Template, and
the Multiple String Vector Multiplication Template, and
describe modifications to the algorithm of Valiant which
allow to solve problems that sustain these templates. Sec-
tion 6 concludes the paper, summarizing the main results
and discussing some of its implications. Two additional
exemplary problems (an Outside and a Multiple String
VMT problems) are presented in the Appendix.

2 Preliminaries
As intervals of integers, matrices, and strings will be
extensively used throughout this work, we first define
some related notation.

2.1 Interval notations
For two integers a, b, denote by [a, b] the interval which
contains all integers q such that a ≤ q ≤ b. For two
intervals I = [i1, i2] and J = [j1, j2], define the following
intervals: [I, J] = {q : i1 ≤ q ≤ j2}, (I, J) = {q : i2 < q < j1},
[I, J) = {q : i1 ≤ q < j1}, and (I, J] = {q : i2 < q ≤ j2} (Fig-
ure 1). When an integer r replaces one of the intervals I
or J in the notation above, it is regarded as the interval

[r, r]. For example, [0, I) = {q : 0 ≤ q < i1}, and (i, j) = {q
: i < q < j}. For two intervals I = [i1, i2] and J = [j1, j2]
such that j1 = i2 + 1, define IJ to be the concatenation
of I and J, i.e. the interval [i1, j2].

2.2 Matrix notations
Let X be an n1 × n2 matrix, with rows indexed with 0, 1,
..., n1 - 1 and columns indexed with 0, 1, ..., n2 - 1.
Denote by Xi, j the element in the ith row and jth col-
umn of X. For two intervals I ⊆ [0, n1) and J ⊆ [0, n2),
let XI, J denote the sub-matrix of X obtained by project-
ing it onto the subset of rows I and subset of columns J.
Denote by Xi, J the sub-matrix X[i,i],J, and by XI, j the
sub-matrix XI,[j,j]. Let D be a domain of elements, and ⊗
and ⊕ be two binary operations on D. We assume that
(1) ⊕ is associative (i.e. for three elements a, b, c in the
domain, (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)), and (2) there exists
a zero element j in D, such that for every element
a ∈ Da ⊕ j = j ⊕ a = a and a ⊗ j = j ⊗ a = j.
Let X and Y be a pair of matrices of sizes n1 × n2 and n2 ×

n3, respectively, whose elements are taken from D. Define
the result of the matrix multiplication X ⊗ Y to be the
matrix Z of size n1 × n3, where each entry Zi, j is given by

Zi,j = ⊕q∈[0,n2)(Xi,q ⊗ Yq,j) = (Xi,0 ⊗ Y0,j) ⊕ (Xi,1 ⊗ Y1,j) ⊕ . . . ⊕ (Xi,n2−1 ⊗ Yn2−1,j).

In the special case where n2 = 0, define the result of
the multiplication Z to be an n1 × n3 matrix in which
all elements are j. In the special case where n1 = n3 =
1, the matrix multiplication X ⊗ Y is also called a vector
multiplication (where the resulting matrix Z contains a
single element).
Let X and Y be two matrices. When X and Y are of

the same size, define the result of the matrix addition X
⊕ Y to be the matrix Z of the same size as X and Y,
where Zi, j = Xi, j ⊕ Yi, j. When X and Y have the same

number of columns, denote by

[
X
Y

]
the matrix obtained

by concatenating Y below X. When X and Y have the
same number of rows, denote by [XY] the matrix
obtained by concatenating Y to the right of X. The fol-
lowing properties can be easily deduced from the defini-
tion of matrix multiplication and the associativity of the
⊕ operation (in each property the participating matrices
are assumed to be of the appropriate sizes).[

X1

X2

]
⊗ Y =

[
X1 ⊗ Y
X2 ⊗ Y

]
(1)

X ⊗ [Y1Y2] = [(X ⊗ Y1)(X ⊗ Y2)] (2)

(X1 ⊗ Y1) ⊕ (X2 ⊗ Y2) = [X1X2] ⊗
[

Y1

Y2

]
(3)Figure 1 Some interval examples.

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 4 of 22

Under the assumption that the operations ⊗ and ⊕
between two domain elements consume Θ(1) computa-
tion time, a straightforward implementation of a matrix
multiplication between two n × n matrices can be com-
puted in Θ(n3) time. Nevertheless, for some variants of
multiplications, sub-cubic algorithms for square matrix
multiplications are known. Here, we consider three such
variants, which will be referred to as standard multipli-
cations in the rest of this paper:

• Dot Product: The matrices hold numerical ele-
ments, ⊗ stands for number multiplication (·) and ⊕
stands for number addition (+). The zero element is
0. The running time of the currently fastest algo-
rithm for this variant is O(n2.376) [24].
• Min-Plus/Max-Plus Multiplication: The matrices
hold numerical elements,⊗ stands for number addi-
tion and ⊕ stands for min or max (where a min b is
the minimum between a and b, and similarly for
max). The zero element is ∞ for the Min-Plus var-
iant and -∞ for the Max-Plus variant. The running
time of the currently fastest algorithm for these var-

iants is O
(

n3log3 log n
log2 n

)
[27].

• Boolean Multiplication: The matrices hold boolean
elements, ⊗ stands for boolean AND (⋀) and ⊕
stands for boolean OR(⋁). The zero element is the
false value. Boolean Multiplication is computable
with the same complexity as the Dot Product, having
the running time of O(n2.376) [24].

2.3 String notations
Let s = s0s1 ... sn - 1 be a string of length n over some
alphabet. A position q in s refers to a point between the
characters sq - 1 and sq (a position may be visualized as
a vertical line which separates between these two char-
acters). Position 0 is regarded as the point just before s0,
and position n as the point just after sn - 1. Denote by ||
s|| = n + 1 the number of different positions in s.
Denote by si, j the substring of s between positions i and
j, i.e. the string si si+1 ... sj - 1. In a case where i = j, si, j
corresponds to an empty string, and for i > j, si, j does
not correspond to a valid string.
An inside property bi,j is a property which depends

only on the substring si, j (Figure 2). In the context of
RNA, an input string usually represents a sequence of
nucleotides, where in the context of CFGs, it usually
represents a sequence of words. Examples of inside
properties in the world of RNA problems are the maxi-
mum number of base-pairs in a secondary structure of
si, j [6], the minimum free energy of a secondary struc-
ture of si, j [7], the sum of weights of all secondary
structures of si, j [10], etc. In CFGs, inside properties

can be boolean values which state whether the sub-sen-
tence can be derived from some non-terminal symbol of
the grammar, or numeric values corresponding to the
weight of (all or best) such derivations [17,20-22].
An outside property ai,j is a property of the residual

string obtained by removing si, j from s (i.e. the pair of
strings s0,i and sj,n, see Figure 2). Such a residual string
is denoted by si,j. Outside property computations occur
in algorithms for the RNA Base Pair Binding Probabil-
ities problem [10], and in the Inside-Outside algorithm
for learning derivation rule weights for WCFGs [43].
In the rest of this paper, given an instance string s,

substrings of the form si, j and residual strings of the
form si,j will be considered as sub-instances of s. Char-
acters and positions in such sub-instances are indexed
according to the same indexing as of the original string
s. That is, the characters in sub-instances of the form
si, j are indexed from i to j - 1, and in sub-instances of
the form si,j the first i characters are indexed between
0 and i - 1, and the remaining characters are indexed
between j and n - 1. The notation b will be used to
denote the set of all values of the form bi,j with respect
to substrings si, j of some given string s. It is conveni-
ent to visualize b as an ||s|| × ||s|| matrix, where the
(i, j)-th entry in the matrix contains the value bi,j. Only
entries in the upper triangle of the matrix b corre-
spond to valid substrings of s. For convenience, we
define that values of the form bi, j, when j < i, equal to
j (with respect to the corresponding domain of
values). Notations such as bI, J, bi, J, and bI, j are used
in order to denote the corresponding sub-matrices of
b, as defined above. Similar notations are used for a
set a of outside properties.

3 The Inside Vector Multiplication Template
In this section we describe a template that defines a
class of problems, called the Inside Vector Multiplication
Template (Inside VMT). We start by giving a simple
motivating example in Section 3.1. Then, the class of
Inside VMT problems is formally defined in Section 3.2,
and in Section 3.3 an efficient generic algorithm for all
Inside VMT problems is presented.

Figure 2 Inside and outside sub-instances, and their
corresponding properties.

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 5 of 22

3.1 Example: RNA Base-Pairing Maximization
The RNA Base-Pairing Maximization problem [6] is a
simple variant of the RNA Folding problem, and it exhi-
bits the main characteristics of Inside VMT problems.
In this problem, an input string s = s0s1 ... sn - 1 repre-
sents a string of bases (or nucleotides) over the alphabet
A, C, G, U. Besides strong (covalent) chemical bonds
which occur between each pair of consecutive bases in
the string, bases at distant positions tend to form addi-
tional weaker (hydrogen) bonds, where a base of type A
can pair with a base of type U, a base of type C can pair
with a base of type G, and in addition a base of type G
can pair with a base of type U. Two bases which can
pair to each other in such a (weak) bond are called com-
plementary bases, and a bond between two such bases is
called a base-pair. The notation a • b is used to denote
that the bases at indices a and b in s are paired to each
other.
A folding (or a secondary structure) of s is a set F of

base-pairs of the form a • b, where 0 ≤ a < b < n,
which sustains that there are no two distinct base pairs
a • b and c • d in F such that a ≤ c ≤ b ≤ d (i.e. the par-
ing is nested, see Figure 3). Denote by |F| the number of
complementary base-pairs in F. The goal of the RNA
base-paring maximization problem is to compute the
maximum number of complementary base-pairs in a
folding of an input RNA string s. We call such a num-
ber the solution for s, and denote by bi, j the solution
for the substring si,j. For substrings of the form si, i and
si, i+1 (i.e. empty strings or strings of length 1), the only
possible folding is the empty folding, and thus bi, i = bi,
i+1 = 0. We next explain how to recursively compute bi,
j when j > i + 1.
In order to compute values of the form bi, j, we distin-

guish between two types of foldings for a substring si, j:
foldings of type I are those which contain the base-pair
i • (j - 1), and foldings of type II are those which do not
contain i • (j - 1).

Consider a folding F of type I. Since i • (j - 1) Î F, the
folding F is obtained by adding the base-pair i • (j - 1)
to some folding F’ for the substring si+1, j - 1 (Figure 3a).
The number of complementary base-pairs in F is thus |
F’| + 1 if the bases si and sj - 1 are complementary, and
otherwise it is |F’|. Clearly, the number of complemen-
tary base-pairs in F is maximized when choosing F’ such
that |F’| = bi+1, j - 1. Now, Consider a folding F of type
II. In this case, there must exist some position q Î (i, j),
such that no base-pair a • b in F sustains that a < q ≤
b. This observation is true, since if j - 1 is paired to
some index p (where i < p < j - 1), then q = p sustains
the requirement (Figure 3b), and otherwise q = j - 1 sus-
tains the requirement (Figure 3c). Therefore, q splits F
into two independent foldings: a folding F’ for the prefix
si, q, and a folding F” for the suffix sq, j, where |F| = |F’|
+ |F”|. For a specific split position q, the maximum
number of complementary base-pairs in a folding of
type II for si, j is then given by bi, q + bq, j, and taking
the maximum over all possible positions q Î (i, j) guar-
antees that the best solution of this form is found.
Thus, bi, j can be recursively computed according to

the following formula:

βi,j = max

{
(I) βi+1,j−1 + δi,j−1,
(II) max

q∈(i,j)
{βi,q + βq,j}

}
,

where δi, j - 1 = 1 if si and sj - 1 are complementary
bases, and otherwise δi,j - 1 = 0.
3.1.1 The classical algorithm
The recursive computation above can be efficiently
implemented using dynamic programming (DP). For an
input string s of length n, the DP algorithm maintains
the upper triangle of an ||s|| × ||s|| matrix B, where
each entry Bi, j in B corresponds to a solution bi, j. The
entries in B are filled, starting from short base-case
entries of the form Bi, i and Bi,i+1, and continuing by
computing entries corresponding to substrings with
increasing lengths. In order to compute a value bi, j

according to the recurrence formula, the algorithm
needs to examine only values of the form bi’,j’ such that
si’,j’ is a strict substring of si, j (Figure 4). Due to the bot-
tom-up computation, these values are already computed
and stored in B, and thus each such value can be
obtained in Θ(1) time.
Upon computing a value bi, j, the algorithm needs to

compute term (II) of the recurrence. This computation
is of the form of a vector multiplication operation ⊕qÎ(i,

j) (bi, q ⊗ bq, j), where the multiplication variant is the
Max Plus multiplication. Since all relevant values in B
are computed, this computation can be implemented by
computing Bi, (i,j) ⊗ B(i,j),j (the multiplication of the two
darkened vectors in Figure 4), which takes Θ(j - i) run-
ning time. After computing term (II), the algorithm

Figure 3 An RNA string s = s0,9 = ACAGUGACU, and three
corresponding foldings. (a) A folding of type I, obtained by
adding the base-pair i • (j - 1) = 0 • 8 to a folding for si+1, j-1 = s1,8.
(b) A folding of type II, in which the last index 8 is paired to index
6. The folding is thus obtained by combining two independent
foldings: one for the prefix s0,6, and one for the suffix s6,9. (c) A
folding of type II, in which the last index 8 is unpaired. The folding
is thus obtained by combining a folding for the prefix s0,8, and an
empty folding for the suffix s8,9.

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 6 of 22

needs to perform additional operations for computing bi,
j which take Θ(1) running time (computing term (I), and
taking the maximum between the results of the two
terms). It can easily be shown that, on average, the run-
ning time for computing each value bi, j is Θ(n), and
thus the overall running time for computing all Θ(n2)
values bi, j is Θ(n3). Upon termination, the computed
matrix B equals to the matrix b, and the required result
b0,n is found in the entry B0,n.

3.2 Inside VMT definition
In this section we characterize the class of Inside VMT
problems. The RNA Base-Paring Maximization problem,
which was described in the previous section, exhibits a
simple special case of an Inside VMT problem, in which
the goal is to compute a single inside property for a
given input string. Note that this requires the computa-
tion of such inside properties for all substrings of the
input, due to the recursive nature of the computation.
In other Inside VMT problems the case is similar, hence
we will assume that the goal of Inside VMT problems is
to compute inside properties for all substrings of the
input string. In the more general case, an Inside VMT
problem defines several inside properties, and all of
these properties are computed for each substring of the
input in a mutually recursive manner. Examples of such
problems are the RNA Partition Function problem [10]
(which is described in Appendix A), the RNA Energy
Minimization problem [7] (which computes several fold-
ing scores for each substring of the input, corresponding

to restricted types of foldings), and the CFG Parsing
problem [20-22] (which computes, for every non-term-
inal symbol in the grammar and every sub-sentence of
the input, a boolean value that indicates whether the
sub-sentence can be derived in the grammar when start-
ing the derivation from the non-terminal symbol).
A common characteristic of all Inside VMT problems

is that the computation of at least one type of an inside
property requires a result of a vector multiplication
operation, which is of similar structure to the multipli-
cation described in the previous section for the RNA
Base-Paring Maximization problem. In many occasions,
it is also required to output a solution that corresponds
to the computed property, e.g. a minimum energy sec-
ondary structure in the case of the RNA folding pro-
blem, or a maximum weight parse-tree in the case of
the WCFG Parsing problem. These solutions can usually
be obtained by applying a traceback procedure over the
computed dynamic programming tables. As the running
times of these traceback procedures are typically negligi-
ble with respect to the time needed for filling the values
in the tables, we disregard this phase of the computation
in the rest of the paper.
The following definition describes the family of Inside

VMT problems, which share common combinatorial
characteristics and may be solved by a generic algorithm
which is presented in Section 3.3.
Definition 1 A problem is considered an Inside VMT

problem if it fulfills the following requirements.

1. Instances of the problem are strings, and the goal
of the problem is to compute for every substring si, j
of an input string s, a series of inside properties
β1

i,j, β2
i,j, . . . , βK

i,j.
2. Let si, j be a substring of some input string s. Let 1

≤ k ≤ K, and let μk
i,jbe a result of a vector multiplica-

tion of the form μk
i,j = ⊕q∈(i,j)

(
βk′

i,q ⊗ βk′′
q,j

)
, for some 1

≤ k’, k” ≤ K. Assume that the following values are

available: μk
i,j, all values βk′

i′,j′for 1 ≤ k’ ≤ K and si’,j’ a

strict substring of si, j, and all values βk′
i,jfor 1 ≤ k’ < k.

Then, βk
i,jcan be computed in o(||s||) running time.

3. In the multiplication variant that is used for com-

puting μk
i,j, the ⊕ operation is associative, and the

domain of elements contains a zero element. In addi-
tion, there is a matrix multiplication algorithm for
this multiplication variant, whose running time M(n)
over two n × n matrices satisfies M(n) = o(n3).

Intuitively, μk
i,j reflects an expression which examines

all possible splits of si, j into a prefix substring si, q and a
suffix substring sq, j (Figure 5). Each split corresponds to

Figure 4 The table B maintained by the DP algorithm. In order
to compute Bi, j, the algorithm needs to examine only values in
entries of B that correspond to strict substrings of si, j (depicted as
light and dark grayed entries).

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 7 of 22

a term that should be considered when computing the

property βk
i,j, where this term is defined to be the appli-

cation of the ⊗ operator between the property βk′
i,q of

the prefix si, q, and the property βk′′
q,j of the suffix sq, j

(where ⊗ usually stands for +, ·, or ⋀). The combined

value μk
i,j for all possible splits is then defined by apply-

ing the ⊕ operation (usually min/max, +, or ⋁) over
these terms, in a sequential manner. The template

allows examining μk
i,j, as well as additional values of the

form βk′
i′,j′, for strict substrings si’,j’ of si, j and 1 ≤ k’ <K,

and values of the form βk′
i,j for 1 ≤ k’ < k, in order to

compute βk
i,j. In typical VMT problems (such as the

RNA Base-Paring Maximization problem, and excluding
problems which are described in Section 5), the algo-
rithm needs to perform Θ(1) operations for computing
βk

i,j, assuming that μk
i,j and all other required values are

pre-computed. Nevertheless, the requirement stated in
the template is less strict, and it is only assumed that
this computation can be executed in a sub-linear time
with respect to ||s||.

3.3 The Inside VMT algorithm
We next describe a generic algorithm, based on Vali-
ant’s algorithm [23], for solving problems sustaining the
Inside VMT requirements. For simplicity, it is assumed
that a single property bi, j needs to be computed for
each substring si, j of the input string s. We later explain
how to extend the presented algorithm to the more gen-
eral cases of computing K inside properties for each
substring.
The new algorithm also maintains a matrix B as

defined in Section 3.1. It is a divide-and-conquer recur-
sive algorithm, where at each recursive call the algo-
rithm computes the values in a sub-matrix BI, J of B
(Figure 6). The actual computation of values of the form
bi, j is conducted at the base-cases of the recurrence,
where the corresponding sub-matrix contains a single
entry Bi, j. The main idea is that upon reaching this

stage the term μi, j was already computed, and thus bi, j
can be computed efficiently, as implied by item 2 of
Definition 1. The accelerated computation of values of
the form μi , j is obtained by the application of fast
matrix multiplication subroutines between sibling recur-
sive calls of the algorithm. We now turn to describe this
process in more details.
At each stage of the run, each entry Bi, j either con-

tains the value bi,j, or some intermediate result in the
computation of μi, j. Note that only the upper triangle of
B corresponds to valid substrings of the input. Never-
theless, our formulation handles all entries uniformly,
implicitly ignoring values in entries Bi, j when j < i. The
following pre-condition is maintained at the beginning
of the recursive call for computing BI, J (Figure 7):

1. Each entry Bi, j in B[I,J], [I,J] contains the value bi, j,
except for entries in BI, J.
2. Each entry Bi, j in BI, J contains the value ⊕qÎ(I,J)

(bi, q ⊗ bq, j). In other words, BI, J = bI,(I,J) ⊗ b(I,J),J.

Let n denote the length of s. Upon initialization, I = J
= [0, n], and all values in B are set to j. At this stage (I,
J) is an empty interval, and so the pre-condition with
respect to the complete matrix B is met. Now, consider
a call to the algorithm with some pair of intervals I, J. If
I = [i, i] and J = [j, j], then from the pre-condition, all
values bi’, j’ which are required for the computation bi, j
of are computed and stored in B, and Bi, j = μi, j (Figure
4). Thus, according to the Inside VMT requirements, bi,
j can be evaluated in o(||s||) running time, and be stored
in Bi, j.
Else, either |I| >1 or |J| >1 (or both), and the algo-

rithm partitions BI, J into two sub-matrices of approxi-
mately equal sizes, and computes each part recursively.
This partition is described next. In the case where |I|
≤ |J|, BI, J is partitioned vertically (Figure 8). Let J1 and
J2 be two column intervals such that J = J1J2 and |J1| =
⌊|J|/2⌋ (Figure 8b). Since J and J1 start at the same
index, (I, J) = (I, J1). Thus, from the pre-condition and
Equation 2, BI,J1 = βI,(I,J1) ⊗ β(I,J1),J1. Therefore, the pre-
condition with respect to the sub-matrix BI,J1 is met,
and the algorithm computes this sub-matrix recur-
sively. After BI,J1 is computed, the first part of the pre-
condition with respect to BI,J2 is met, i.e. all necessary
values for computing values in BI,J2, except for those in
BI,J2 itself, are computed and stored in B. In addition,
at this stage BI,J2 = βI,(I,J) ⊗ β(I,J),J2. Let L be the interval
such that (I, J2) = (I, J)L. L is contained in J1, where it
can be verified that either L = J1 (if the last index in I
is smaller than the first index in J, as in the example
of Figure 8c), or L is an empty interval (in all other
cases which occur along the recurrence). To meet the
full pre-condition requirements with respect to I and

Figure 5 The examination of a split position q in the
computation of an inside property βk

i,j.

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 8 of 22

J2, BI,J2 is updated using Equation 3 to be
BI,J2 ⊕ (BI,L ⊗ BL,J2) =

(
βI,(I,J) ⊗ β(I,J),J2

) ⊕ (
βI,L ⊗ βL,J2

)
= βI,(I,J2) ⊗ β(I,J2),J2.

Now, the pre-condition with respect to BI,J2 is estab-
lished, and the algorithm computes BI,J2 recursively. In
the case where |I| >|J|, BI, J is partitioned horizontally,
in a symmetric manner to the vertical partition. The
horizontal partition is depicted in Figure 9. The com-
plete pseudo-code for the Inside VMT algorithm is
given in Table 2.
3.3.1 Time complexity analysis for the Inside VMT algorithm
In order to analyze the running time of the presented
algorithm, we count separately the time needed for
computing the base-cases of the recurrence, and the
time for non-base-cases.
In the base-cases of the recurrence (lines 1-2 in Proce-

dure Compute-Inside-Sub-Matrix, Table 2), |I| = |J| = 1,
and the algorithm specifically computes a value of the
form bi,j. According to the VMT requirements, each
such value is computed in o(||s||) running time. Since

there are Θ(||s||2) such base-cases, the overall running
time for their computation is o(||s||3).
Next, we analyze the time needed for all other parts of

the algorithm except for those dealing with the base-
cases. For simplicity, assume that ||s|| = 2x for some
integer x. Then, due to the fact that at the beginning |I|
= |J| = 2x, it is easy to see that the recurrence encoun-
ters pairs of intervals I, J such that either |I| = |J| or |I|
= 2|J|.
Denote by T(r) and D(r) the time it takes to compute

all recursive calls (except for the base-cases) initiated
from a call in which |I| = |J| = r (exemplified in Figure
8) and |I| = 2|J| = r (exemplified in Figure 9),
respectively.
When |I| = |J| = r (lines 4-9 in Procedure Compute-

Inside-Sub-Matrix, Table 2), the algorithm performs two
recursive calls with sub-matrices of size r × r

2, a matrix
multiplication between an r × r

2 and an r
2 × r

2 matrices,
and a matrix addition of two r × r

2 matrices. Since the

Figure 6 The recursion tree. Each node in the tree shows the state of the matrix B when the respective call to Compute-Inside-Sub-Matrix
starts. The dotted cells are those that are computed during the call. Black and gray cells are cells whose values were already computed (black
cells correspond to empty substrings). The algorithm starts by calling the recursive procedure over the complete matrix. Each visited sub-matrix
is decomposed into two halves, which are computed recursively. The recursion visits the sub-matrices according to a pre-order scan on the tree
depicted in the figure. Once the first among a pair of sibling recursive calls was concluded, the algorithm uses the new computed portion of
data as an input to a fast matrix multiplication subroutine, which facilitate the computation of the second sibling.

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 9 of 22

matrix multiplication can be implemented by perform-
ing two r

2 × r
2 matrix multiplications (Equation 1), T (r)

is given by

T(r) = 2D(r) + 2M
(r

2

)
+ �(r2).

When |I| = 2|J| = r (lines 10-15 in Procedure Com-
pute-Inside-Sub-Matrix, Table 2), the algorithm per-
forms two recursive calls with sub-matrices of size
r
2 × r

2, a matrix multiplication between two r
2 × r

2
matrices, and a matrix addition of two r

2 × r
2 matrices.

Thus, D(r) is given by

D(r) = 2T
(r

2

)
+ M

(r
2

)
+ �(r2).

Therefore, T(r) = 4T(r
2) + 4M(r

2) + �(r2). By the mas-
ter theorem [44], T(r) is given by

• T(r) = Θ(r2logk+1r), if M(r) = O(r2logk r) for some k
≥ 0, and
• T(r) = �(M(r

2)), if M(r
2) = �(r2+ε) for some ε >0,

and 4M(r
2) ≤ dM(r) for some constant d <1 and

sufficiently large r.

The running time of all operations except for the
computations of base cases is thus T(||s||). In both cases
listed above, T(||s||) = o (||s||3), and therefore the over-
all running time of the algorithm is sub-cubic running
time with respect to the length of the input string.
The currently best algorithms for the three standard

multiplication variants described in Section 2.2 satisfy
that M(r) = Ω(r2+ε), and imply that T(r) = Θ(M(r)).
When this case holds, and the time complexity of com-
puting the base-cases of the recurrence does not exceed
M(||s||) (i.e. when the amortized running time for com-
puting each one of the Θ(||s||2) base cases is

O
(

M(||s||)
||s||2

)
), we say that the problem sustains the stan-

dard VMT settings. The running time of the VMT algo-
rithm over such problems is thus Θ (M(||s||)). All
realistic inside VMT problems familiar to the authors
sustain the standard VMT settings.
3.3.2 Extension to the case where several inside properties
are computed
We next describe the modification to the algorithm for
the general case where the goal is to compute a series of
inside property-sets b1, b2, ..., bK (see Appendix A for an

Figure 8 An exemplification of the vertical partition of BI, J (the entries of BI, J are dotted). (a) The pre-condition requires that all values in
B[I,J], [I,J], excluding BI, J, are computed, and BI, J = bI,(I,J) ⊗ b (I,J),J (see Figure 7). (b) BI, J is partitioned vertically to BI,J1 and BI,J2, where BI,J1 is
computed recursively. (c) The pre-condition for computing BI,J2 is established, by updating BI,J2 to be BI,J2 ⊕ (BI,L ⊗ BL,J2) (in this example
L = J1, since I ends before J1 starts). Then, BI,J2 is computed recursively (not shown).

Figure 7 The pre-condition for computing BI, J with the Inside
VMT algorithm. All values in B[I,J], [I,J], excluding BI, J, are computed
(light and dark grayed entries), and BI, J = bI,(I,J) ⊗ b (I,J),J = BI,(I,J) ⊗ B(I,
J), J (the entries of BI,(I,J) and B(I,J),J are dark grayed).

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 10 of 22

example of such a problem). The algorithm maintains a
series of matrices B1, B2, ..., BK, where Bk corresponds to
the inside property-set bk. Each recursive call to the
algorithm with a pair of intervals I, J computes the ser-
ies of sub-matrices B1

I,J, B2
I,J, . . . , BK

I,J. The pre-condition
at each stage is:

1. For all 1 ≤ k ≤ K, all values in Bk
[I,J],[I,J] are com-

puted, excluding the values in Bk
I,J,

2. If a result of a vector multiplication of the form

μk
i,j = ⊕q∈(i,j)

(
βk′

i,q ⊗ βk′′
q,j

)
is required for the compu-

tation of βk
i,j, then Bk

I,J = βk′
I,(I,J) ⊗ βk′′

(I,J),J.

Figure 9 An exemplification of the horizontal partition of BI, J. See Figure 8 for the symmetric description of the stages.

Table 2 The Inside VMT algorithm

Inside-VMT (s)

1: Allocate a matrix B of size ||s|| × ||s||, and initialize all entries in B with j elements.

2: Call Compute-Inside-Sub-Matrix ([0, n], [0, n]), where n is the length of s.

3: return B

Compute-Inside-Sub-Matrix (I, J)

pre-condition: The values in B[I,J], [I,J], excluding the values in BI,J, are computed, and BI,J = bI,(I,J) ⊗ b(I,J),J.
post-condition: B[I,J], [I,J] = b[I,J], [I,J].

1: if I = [i, i] and J = [j, j] then

2: If i ≤ j, compute bi,j (in o (||s||) running time) by querying computed values in B and the value μi,j which is stored in Bi,j. Update Bi,j ¬ bi,j.
3: else

4: if |I| ≤ |J| then

5: Let J1 and J2 be the two intervals such that J1J2 = J, and |J1| = ⌊|J|/2⌋.

6: Call Compute-Inside-Sub-Matrix (I, J1).

7: Let L be the interval such that (I, J)L = (I, J2).

8: Update BI,J2 ← BI,J2 ⊕ (BI,L ⊗ BL,J2).
9: Call Compute-Inside-Sub-Matrix (I, J2).

10: else

11: Let I1 and I2 be the two intervals such that I2I1 = I, and |I2| = ⌊|I|/2⌋.

12: Call Compute-Inside-Sub-Matrix (I1, J).

13: Let L be the interval such that L(I, J) = (I2, J).

14: Update BI2,J ← (BI2,L ⊗ BL,J) ⊕ BI2,J.

15: Call Compute-Inside-Sub-Matrix (I2, J).

16: end if

17: end if

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 11 of 22

The algorithm presented in this section extends to
handling this case in a natural way, where the modifica-
tion is that now the matrix multiplications may occur
between sub-matrices taken from different matrices,
rather than from a single matrix. The only delicate aspect
here is that for the base case of the recurrence, when I =
[i, i] and J = [j, j], the algorithm needs to compute the
values in the corresponding entries in a sequential order
B1

i,j, B2
i,j, . . . , BK

i,j, since it is possible that the computa-

tion of a property βk
i,j requires the availability of a value of

the form βk′
i,j for some k’ < k. Since K is a constant which

is independent of the length on the input string, it is
clear that the running time for this extension remains the
same as for the case of a single inside value-set.
The following Theorem summarizes our main results

with respect to Inside VMT problems.
Theorem 1 For every Inside VMT problem there is an

algorithm whose running time over an instance s is o(||
s||3). When the problem sustains the standard VMT set-
tings, the running time of the algorithm is Θ(M(||s||)),
where M(n) is the running time of the corresponding
matrix multiplication algorithm over two n × n matrices.

4 Outside VMT
In this section we discuss how to solve another class of
problems, denoted Outside VMT problems, by modify-
ing the algorithm presented in the previous section.
Similarly to Inside VMT problems, the goal of Outside
VMT problems is to compute sets of outside properties
a1, a2, ..., aK corresponding to some input string (see
notations in Section 2.3).
Examples for problems which require outside proper-

ties computation and adhere to the VMT requirements
are the RNA Base Pair Binding Probabilities problem
[10] (described in Appendix A) and the WCFG Inside-
Outside problem [43]. In both problems, the computa-
tion of outside properties requires a set of pre-computed
inside properties, where these inside properties can be
computed with the Inside VMT algorithm. In such
cases, we call the problems Inside-Outside VMT
problems.
The following definition describes the family of Out-

side VMT problems.
Definition 2 A problem is considered an Outside

VMT problem if it fulfills the following requirements.

1. Instances of the problem are strings, and the goal
of the problem is to compute for every sub-instance
si,jof an input string s, a series of outside properties
α1

i,j, α2
i,j, . . . , αK

i,j.
2. Let si,jbe a sub-instance of some input string s. Let

1 ≤ k ≤ K, and let μk
i,jbe a result of a vector

multiplication of the form μk
i,j = ⊕q∈[0,i)

(
βk

q,i ⊗ αk′
q,j

)
or

of the form μk
i,j = ⊕q∈(j,n]

(
αk′

i,q ⊗ βk
j,q

)
, for some 1 ≤ k’

≤ K and a set of pre-computed inside properties bk.
Assume that the following values are available: μk

i,j,

all values αk′
i′ ,j′for 1 ≤ k’ ≤ K and si,j a strict substring

of si’,j’, and all values αk′
i,jfor 1 ≤ k’ < k. Then, αk

i,jcan

be computed in o (||s||) running time.
3. In the multiplication variant that is used for com-

puting μk
i,j, the ⊕ operation is associative, and the

domain of elements contains a zero element. In addi-
tion, there is a matrix multiplication algorithm for
this multiplication variant, which running time M(n)
over two n × n matrices satisfies M(n) = o(n3).

Here, for the case where μk
i,j = ⊕q∈[0,i)

(
βk

q,i ⊗ αk′
q,j

)
, the

value μk
i,j reflects an expression which examines all pos-

sible splits of si,j into a sub-instance of the form sq,j,
where q < i, and a sub-instance of the form sq,i (Figure
10a). Each split induces a term which is obtained by

applying the ⊗ operation between a property βk
q,i of sq,i

and a property αk′
q,j of sq,j. Then, μk

i,j combines the values

of all such terms by applying the ⊕ operator. Symmetri-

cally, when μk
i,j = ⊕q∈(j,n]

(
αk′

i,q ⊗ βk
j,q

)
, μk

i,j reflects a value

corresponding to the examination of all splits of si,j into
a sub-instance of the form si,q, where q > j, and a sub-
instance of the form sj,q (Figure 10b).
We now turn to describe a generic recursive algorithm

for Outside VMT problems. For simplicity, we consider
the case of a problem whose goal is to compute a single
set of outside properties a, given a single pre-computed
set of inside properties b. As for the Inside VMT algo-
rithm, it is simple to extend the presented algorithm to
the case where the goal is to compute a series of outside
properties for every sub-instance of the input.
For an input string s of length n, the algorithm main-

tains a matrix A of size ||s|| × ||s||, corresponding to
the required output matrix a. In order to compute a
property ai,j, the availability of values of the form ai’,j’,

Figure 10 Outside value computation.

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 12 of 22

such that si, j is a strict substring of si’,j’, is required. In
terms of the matrix A, this means that when computing
Ai, j, all entries in the sub-matrix A[0,i], [j,n], excluding
the entry Ai, j itself, need to be computed (Figure 11a).
At each recursive call, the algorithm computes the

values in a sub-matrix of A. The following pre-condition
is maintained when the algorithm is called over a sub-
matrix AI, J (Figure 12):

1. Each entry Ai, j in A[0,I], [J,n] contains the value ai,

j, except for entries in AI, J.
2. If the computation of ai, j requires the result of a
vector multiplication of the form μi, j = ⊕qÎ[0,i) (bq, i
⊗ aq, j), then AI, J = (b[0,I),I)T ⊗ a[0,I),J. Else, if the
computation of ai, j requires the result of a vector
multiplication of the form μi, j = ⊕qÎ(j,n] (ai, q ⊗ bj,
q), then AI, J = aI, (j, n] ⊗ (bj(J, n])T.

The pre-condition implies that when I = [i, i] and J =
[j, j], all necessary values for computing ai, j in o(||s||)
running time are available, and thus ai, j can be effi-
ciently computed and stored in Ai, j. When |I| >1 or |J|
>1, the algorithm follows a similar strategy as that of
the Inside VMT algorithm, by partitioning the matrix
into two parts, and computing each part recursively.
The vertical and horizontal partitions are illustrated in
Figure 13 and 14, respectively. The pseudo-code for the
complete Outside VMT algorithm is given in Table 3.
Similar running time analysis as that applied in the case
of the Inside VMT algorithm can be shown, yielding the
result stated in Theorem 2.
Theorem 2 For every Outside VMT problem there is

an algorithm whose running time over an instance s is

o (||s||3). When the problem sustains the standard
VMT settings, the running time of the algorithm is
Θ(M(||s||)), where M(n) is the running time of the cor-
responding matrix multiplication algorithm over two n
× n matrices.

5 Multiple String VMT
In this section we describe another extension to the
VMT framework, intended for problems for which the
instance is a set of strings, rather than a single string.
Examples of such problems are the RNA Simultaneous
Alignment and Folding problem [15,37], which is
described in details in Appendix B, and the RNA-RNA
Interaction problem [9]. Additional problems which
exhibit a slight divergence from the presented template,
such as the RNA-RNA Interaction Partition Function
problem [12] and the RNA Sequence to Structured-
Sequence Alignment problem [13], can be solved in simi-
lar manners.
In order to define the Multiple String VMT variant in

a general manner, we first give some related notation.
An instance of a Multiple String VMT problem is a set
of strings S = (s0, s1, ..., sm-1), where the length of a
string sp Î S is denoted by np. A position in S is a set of
indices X = (i0, i1, ..., im-1), where each index ip Î X is
in the range 0 ≤ ip ≤ np. The number of different posi-

tions in S is denoted by ||S|| =
∏

0≤p<m
||sp||.

Let X = (i0, i1, ..., im-1) and Y = (j0, j1, ..., jm-1) be two
positions in S. Say that X ≤ Y if ip ≤ jp for every 0 ≤ p <
m, and say that X < Y if X ≤ Y and X ≠ Y. When X ≤ Y,
denote by SX , Y the sub-instance

SX,Y =
(
s0
i0,j0

, s1
i1,j1

, . . . , sm−1
im−1,jm−1

)
of S (see Figure 15a).

Figure 11 The base case of the Outside VMT algorithm. (a) An
illustration of the matrix A upon computing Ai, j. (b) An illustration
of the pre-computed matrix b. All required values of the form ai’, j’

for computing ai, j have already been computed in the sub-matrix
A[0,i], [j,n], excluding the entry Ai, j itself. μi, j is obtained either by the
multiplication (b[0,i),i)T ⊗ A[0,i), j (the multiplication of the transposed
striped dark gray vector in b with the striped dark gray vector in A),
or by the multiplication Ai,(j, n] ⊗ (bj,(j, n])T (the multiplication of the
non-striped dark gray vector in A with the transposed non-striped
dark gray vector in b).

Figure 12 The pre-condition of the Outside VMT algorithm. (a)
An illustration of the matrix A upon computing AI, J (dotted entries).
(b) An illustration of the pre-computed matrix b. The pre-condition
requires that all entries in the sub-matrix A[0,I], [J,n], excluding AI, J, are
computed (dark and light gray entries). In addition, AI, J is either the
result of the matrix multiplication (b[0,I),I)T ⊗ a[0,I), J (the
multiplication of the transposed striped dark gray matrix in b with
the striped dark gray matrix in A), or the multiplication aI,(J, n] ⊗ (bJ,
(J, n])

T (the multiplication of the non-striped dark gray matrix in A
with the transposed non-striped dark gray matrix in b).

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 13 of 22

Say that SX’, Y’ is a strict sub-instance of SX, Y if X ≤ X’ ≤
Y’ ≤ Y, and SX’,Y’ ≠ SX, Y.
The notation X ≰ Y is used to indicate that it is not

true that X ≤ Y. Here, the relation ‘≤’ is not a linear
relation, thus X ≰ Y does not necessarily imply that Y <
X. In the case where X ≰ Y, we say that SX, Y does not
correspond to a valid sub-instance (Figure 15b). The
notations 0̄ and N will be used in order to denote the
first position (0, 0, ..., 0) and the last position (n0, n1, ...,
nm-1) in S, respectively. The notations which were used
previously for intervals, are extended as follows: [X, Y]
denotes the set of all positions Q such that X ≤ Q ≤ Y,
(X, Y) denotes the set of all positions Q such that X < Q

< Y, [X, Y) denotes the set of all positions Q such that X
≤ Q < Y, and (X, Y] denotes the set of all positions Q
such that X < Q ≤ Y. Note that while previously these
notations referred to intervals with sequential order
defined over their elements, now the notations corre-
spond to sets, where we assume that the order of ele-
ments in a set is unspecified.
Inside and outside properties with respect to multiple

string instances are defined in a similar way as for a sin-
gle string: An inside property bX, Y is a property that
depends only on the sub-instance SX, Y, where an out-
side property aX, Y depends on the residual sub-instance
of S, after excluding from each string in S the

Figure 13 The vertical decomposition in the Outside VMT algorithm, for the case where |I| ≤ |J|. (a) AI, J sustains the pre-condition (see
Figure 12 for notations). (b) AI, J is partitioned vertically to AI,J1 and AI,J2, where AI,J1 is computed recursively. (c) If μi, j is of the form ⊕ qÎ(j,n]

(ai, q ⊗ bj, q), then the pre-condition for computing AI,J2 is established, by updating AI,J2 to be
(
AI,L ⊗ (βJ2,L)T

)
⊕ AI,J2

(in this example L
= J1, since I ends before J1 starts. The corresponding sub-matrix of b is not shown). In the case where μi, j = ⊕qÎ[0,i)(bq, i ⊗ aq, j), the pre-
condition is met without any need for performing a matrix multiplication. Then, AI,J2 is computed recursively (not shown).

Figure 14 The horizontal decomposition in the Outside VMT algorithm, for the case where |I| >|J|. (a) AI, J sustains the pre-condition (see
Figure 12 for notations). (b) AI, J is partitioned horizontally to AI1,J and AI2,J, where AI1,J is computed recursively. (c) If μi, j is of the form ⊕qÎ[0,

i)(bq, i ⊗ aq, j), then the pre-condition for computing AI2,J is established, by updating AI2,J to be AI2,J ⊕
(

(βL,I2)T ⊗ AL,J

)
(in this example

L = I1, since I2 ends before J starts. The corresponding sub-matrix of b is not shown). In the case where μi, j = ⊕qÎ(j,n] (ai, q ⊗ bj, q), the pre-
condition is met without any need for performing a matrix multiplication. Then, AI2,J is computed recursively (not shown).

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 14 of 22

corresponding substring in SX, Y. In what follows, we
define Multiple String Inside VMT problems, and show
how to adopt the Inside VMT algorithm for such pro-
blems. The “outside” variant can be formulated and
solved in a similar manner.

Definition 3 A problem is considered a Multiple
String Inside VMT problem if it fulfills the following
requirements.

1. Instances of the problem are sets of strings, and the
goal of the problem is to compute for every sub-
instance SX , Y of an input instance S, a series of
inside properties β1

X,Y , β2
X,Y , . . . , βK

X,Y.
2. Let SX, Y be a sub-instance of some input instance
S. Let 1 ≤ k ≤ K, and let μk

X,Ybe a value of the form

μk
X,Y = ⊕Q∈(X,Y)

(
βk′

X,Q ⊗ βk′′
Q,Y

)
, for some 1 ≤ k’, k” ≤

K. Assume that the following values are available:
μk

X,Y, all values βk′
X′,Y ′for 1 ≤ k’ ≤ K and SX’, Y’ a strict

sub-instance of SX, Y, and all values βk′
X,Yfor 1 ≤ k’ <

k. Then, βk
X,Ycan be computed in o (||S||) running

time.
3. In the multiplication variant that is used for com-
puting μk

X,Y, the ⊕ operation is associative and com-
mutative, and the domain of elements contains a
zero element. In addition, there is a matrix multipli-
cation algorithm for this multiplication variant,
which running time M(n) over two n × n matrices
satisfies M(n) = o(n3).

Note that here there is an additional requirement with
respect to the single string variant, that the ⊕ operator
is commutative. This requirement was added, since
while in the single string variant split positions in the
interval (i, j) could have been examined in a sequential
order, and the (single string) Inside VMT algorithm

retains this order when evaluating μk
i,j, here there is no

such natural sequential order defined over the positions
in the set (X, Y). The ⊕ commutativity requirement is
met in all standard variants of matrix multiplication,
and thus does not pose a significant restriction in
practice.
Consider an instance S = (s0, s1, ..., sm-1) for a Multiple

String Inside VMT problem, and the simple case where
a single property set b needs to be computed (where b
corresponds to all inside properties of the form bX, Y).
Again, we compute the elements of b in a square matrix

Table 3 The outside VMT algorithm

Outside-VMT (s, b)
1: Allocate a matrix A of size ||s|| × ||s||, and initialize all entries in
A with j elements.

2: Call Compute-Outside-Sub-Matrix ([0, n], [0, n]), where
n is the length of s.

3: return A

Compute-Outside-Sub-Matrix (I, J)

pre-condition: The values in A[0,I], [J,n], excluding the values in AI,J, are
computed.

If μi,j = ⊕qÎ[0,i) (bq,i ⊗ aq,j), then AI,J = (b[0,I),I)T ⊗ a[0,I),J. Else, if μi,j =
⊕qÎ(j,n] (ai,q ⊗ bj,q), then AI,J = aI,(J,n] ⊗ (bJ,(J,n])T.
post-condition: A[0,I], [J,n] = a[0,I], [J,n].

1: if I = [i, i] and J = [j, j] then

2: If i ≤ j, compute ai,j (in o (||s||) running time) by querying
computed values in A and the value μi,j which is stored in Ai,j.
Update Ai,j ¬ ai,j.

3: else

4: if |I| ≤ |J| then

5: Let J1 and J2 be the two intervals such that J2J1 = J, and |
J2| = ⌊|J|/2⌋.

6: Call Compute-Outside-Sub-Matrix (I, J1).

7: if μi,j is of the form ⊕qÎ(j,n] (ai,q ⊗ bj,q) then
8: Let L be the interval such that L(J, n] = (J2, n].

9: Update AI,J2 ←
(
AI,L ⊗ (βJ2,L)T

)
⊕ AI,J2

.

10: end if

11: Call Compute-Outside-Sub-Matrix (I, J2).

12: else

13: Let I1 and I2 be the two intervals such that I1I2 = I, and |
I1| = ⌊|I|/2⌋.

14: Call Compute-Outside-Sub-Matrix (I1, J).

15: if μi,j is of the form ⊕qÎ[0,i) (bq,i ⊗ aq,j) then

16: Let L be the interval such that [0, I)L = [0, I2).

17: Update AI2,J ← AI2,J ⊕
(

(βL,I2)T ⊗ AL,J

)
.

18: end if

19: Call Compute-Outside-Sub-Matrix (I2, J).

20: end if

21: end if

Figure 15 Multiple String VMT. (a) An example of a Multiple String VMT instance, with three strings. A sub-instance SX, Y consists of three
substrings (where X = {i0, i1, i2} and Y = {j0, j1, j2}). (b) Here, since j1 < i1 we have that X ≰ Y, and thus SX, Y does not correspond to a valid sub-
instance. (c) A valid split of the sub-instance is obtained by splitting each one of the corresponding substrings sp

ip ,jp into a prefix sp
ip ,qp

and a
suffix sp

qp,jp
.

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 15 of 22

B of size ||S|| × ||S||, and show that values of the form
μX, Y correspond to results of vector multiplications
within this matrix. For simplicity, assume that all string
sp Î S are of the same length n, and thus ||S|| = (n + 1)
m (this assumption may be easily relaxed).
Define a one-to-one and onto mapping h between

positions in S and indices in the interval [0, ||S||),
where for a position X = (i0, i1, ..., im-1) in S,

h(X) =
∑m−1

p=0 ip · (n + 1)p. Let h-1 denote the inverse

mapping of h, i.e. h(X) = i ⇔ h-1(i) = X. Observe that X
≤ Y implies that h(X) ≤ h(Y), though the opposite is not
necessary true (i.e. it is possible that i ≤ j and yet h-1(i)
≰ h-1(j), as in the example in Figure 15b).
Each value of the form bX, Y will be computed and

stored in a corresponding entry Bi, j, where i = h(X) and
j = h(Y). Entries of B which do not correspond to valid
sub-instances of S, i.e. entries Bi, j such that h-1(i) ≰ h-1

(j), will hold the value j. The matrix B is computed by
applying the Inside VMT algorithm (Table 2) with a
simple modification: in the base-cases of the recurrence
(line 2 in Procedure Compute-Inside-Sub-Matrix, Table
2), the condition for computing the entry Bi, j is that h

-1

(i) ≤ h-1(j) rather than i ≤ j. If h-1(i) ≤ h-1(j), the property
βh−1(i),h−1(j) is computed and stored in this entry, and
otherwise the entry retains its initial value j.
In order to prove the correctness of the algorithm, we

only need to show that all necessary values for comput-
ing a property bX, Y are available to the algorithm when
the base-case of computing Bi, j for i = h(X) and j = h
(Y) is reached. Due to the nature of the mapping h, all
properties bX’,Y’ for strict sub-instances SX’,Y’ of SX, Y cor-
respond to entries Bi’, j’ such that i’ = h(X’) and j’ = h(Y’)
and i’, j’ Î [i, j]. Therefore, all inside properties of strict
sub-instances of SX, Y are available according to the pre-
condition. In addition, at this stage Bi, j contains the
value Bi,(i,j) × B(i,j),j. Note that for every Q Î (X, Y), q =
h(Q) Î (i, j) (Figure 16a), and thus bX, Q ⊗ bQ, Y = Bi, q

⊗ Bq, j. On the other hand, every q Î (i, j) such that Q
= h-1(q) ∉ (X, Y) sustains that either X ≰ Q or Q ≰ Y
(Figure 16b), and therefore either Bi, q = j or Bq, j = j,
and Bi, q ⊗ Bq, j = j. Thus, Bi, (i, j) × B(i,j),j = ⊕QÎ(X,Y)

(bX, Q ⊗ bQ, Y) = μX, Y, and according to the Multiple

String VMT requirements, the algorithm can compute
bX, Y in o(||S||) running time.
The following theorem summarizes the main result of

this section.
Theorem 3 For every Multiple String (Inside or Out-

side) VMT problem there is an algorithm whose running
time over an instance S is o (||S||3). When the problem
sustains the standard VMT settings, the running time of
the algorithm is Θ (M(||S||)), where M(n) is the running
time of the corresponding matrix multiplication algo-
rithm over two n × n matrices.

6 Concluding remarks
This paper presents a simplification and a generalization
of Valiant’s technique, which speeds up a family of algo-
rithms by incorporating fast matrix multiplication pro-
cedures. We suggest generic templates that identify
problems for which the approach is applicable, where
these templates are based on general recursive proper-
ties of the problems, rather than on their specific algo-
rithms. Generic algorithms are described for solving all
problems sustaining these templates.
The presented framework yields new worst case run-

ning time bounds for a family of important problems.
The examples given here come from the fields of RNA
secondary structure prediction and CFG Parsing.
Recently, we have shown that this technique also applies
for the Edit Distance with Duplication and Contraction
problem [45], suggesting that it is possible that more
problems from other domains can be similarly acceler-
ated. While previous works describe other practical
acceleration techniques for some of the mentioned pro-
blems [14,25,28,32-38], Valiant’s technique, along with
the Four Russians technique [28,30,31], are the only two
techniques which currently allow to reduce the theoreti-
cal asymptotic worst case running times of the standard
algorithms, without compromising the correctness of
the computations.
The usage of the Four Russians technique can be

viewed as a special case of using Valiant’s technique.
Essentially, the Four Russians technique enumerates
solutions for small computations, stores these solutions

Figure 16 The h mapping. The notations X, Y, and Q, refer to the positions (i1, i2, i3), (j1, j2, j3) and (q1, q2, q3) which are illustrated in the figure,
respectively. (a) A position Q Î (X, Y) is mapped to an index q Î (i, j), where i = h(X) and j = h(Y). (b) Some indices q Î (i, j) correspond to
positions Q = h-1(q) such that Q ∉ (X, Y). This implies that either SX, Q or SQ, Y are not valid sub-instances of S.

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 16 of 22

in lookup tables, and then accelerates bigger computa-
tions by replacing the execution of sub-computations
with queries to the lookup tables. In the original paper
[29], this technique was applied to obtain an O(log n)
improvement factor for Boolean Matrix Multiplication.
This approach was modified in [30] in order to acceler-
ate Min/Max-Plus Multiplication, for integer matrices in
which the difference between adjacent cells are taken
from a finite interval of integers. While in [30] this tech-
nique was used ad hoc for accelerating RNA folding, it
is possible to decouple the description of the fast matrix
multiplication technique from the RNA folding algo-
rithm, and present the algorithm of [30] in the same fra-
mework presented here. The latter special matrix
multiplication variant was further accelerated in [45] to

O
(

n3

log2n

)
running time, implying that RNA folding

under discrete scoring schemes (e.g. [6]) can be com-

puted in O
(

n3

log2n

)
time, instead of in O

(
n3log3 log n

log2n

)
time

as implied by the fastest Min/Max-Plus Multiplication
algorithm for general matrices [27].
Many of the current acceleration techniques for RNA

and CFG related algorithms are based on sparsifica-
tion, and are applicable only to optimization problems.
Another important advantage of Valiant’s technique is
that it is the only technique which is currently known
to reduce the running times of algorithms for the non-
optimization problem variants, such as RNA Partition
Function related problems [10,12] and the WCFG
Inside-Outside algorithm [43], in which the goals are
to compute the sum of scores of all solutions of the
input, instead of computing the score of an optimal
solution.
Our presentation of the algorithm also improves upon

previous descriptions in additional aspects. In Valiant’s
original description there was some intersection between
the inputs of recursive calls in different branches of the
recurrence tree, where portions of the data were re-
computed more than once. Following Rytter’s descrip-
tion of the algorithm [42], our formulation applies the
recurrence on mutually-exclusive regions of the data, in
a classic divide-and-conquer fashion. The formulation is
relatively explicit, avoiding reductions to problems such
as transitive closure of matrix multiplication [23,26] or
shortest paths on lattice graphs [42]. The requirements
specified here for VMT problems are less strict than
requirements presented in previous works for such pro-
blems. Using the terminology of this work, additional
requirements in [23] for Inside VMT problems are that
the ⊕ operation of the multiplication is commutative,
and that the ⊕ operation distributes over ⊕. Our expli-
cit formulation of the algorithm makes it easy to
observe that none of the operations of the presented

algorithm requires the assumption that ⊕ distributes
over ⊕. In addition, it can be seen that the ⊕ operation
is always applied in a left-to-right order (for non-Multi-
ple String VMT problems), thus the computation is cor-
rect even if ⊕ is not commutative. In [42], it was
required that the algebraic structure (D, ⊕, ⊗) would
be a semiring, i.e. adding to the requirements of [23] an
additional requirement that D also contains an identity
element 1 with respect to the ⊕ operation. Again, the
algorithms presented here do not require that such a
property be obeyed.
The time complexities of VMT algorithms are dic-

tated by the time complexities of matrix multiplication
algorithms. As matrix multiplication variants are essen-
tial operations in many computational problems, much
work has been done to improve both the theoretical
and the practical running times of these operations,
including many recent achievements
[24,27,40,41,46-50]. Due to its importance, it is
expected that even further improvements in this
domain will be developed in the future, allowing faster
implementations of VMT algorithms. Theoretical
sequential sub-cubic matrix multiplication algorithms
(e.g. [24]) are usually considered impractical for realis-
tic matrix sizes. However, practical, hardware-based
fast computations of matrix multiplications are gaining
popularity within recent years [40,41], due the highly
parallelized nature of such computations and the avail-
ability of new technologies that exploit this parallelism.
Such technologies were previously used for some
related problems [51,52], yet there is an intrinsic
advantage for its utilization via the VMT framework.
While optimizing the code for each specific problem
and each specific hardware requires special expertise,
the VMT framework conveniently allows differing the
bottleneck part of the computation to the execution of
matrix multiplication subroutines, and thus off-the-
shelf, hardware tailored optimized solutions can be
easily integrated into all VMT problems, instead of
being developed separately for each problem.

Appendix
A RNA Partition Function and Base Pair Binding
Probabilities
The following example is a simplified formalization of
the RNA Partition Function and Base Pair Binding
Probabilities problem [10]. The example demonstrates
the Inside-Outside VMT settings, with respect to the
Dot Product variant. This problem requires the compu-
tation of several inside and outside properties for every
sub-instance of the input.
As in Section 3.1, we consider the RNA folding

domain. Here, instead of looking for an optimal folding

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 17 of 22

of an input RNA string s, we attempt to answer the fol-
lowing questions:

1. For a given folding F of s, what is the probability
that s folds spontaneously to F?
2. For every pair of indices a and b, what is the
probability that a spontaneous folding of s contains
the base-pair a • b?

The Partition Function physical model allows answer-
ing these questions. When applied to RNA folding, it is
assumed that for every folding F of s, it is possible to

assign a weight w(F) = e
−E(F)

kBT , which is proportional to

the probability that s spontaneously folds according to
F. Here, E(F) is the energy of F, kB is the Boltzmann
constant, and T is the temperature. Then, the probabil-

ity that s folds according to F is given by w(F)
Z
, where the

normalizing factor Z is called the Partition Function and
is given by

Z =
∑

F′ a folding
of s

w(F′).

Note that a naive computation of the RNA folding
partition function would require the examination of all
possible foldings of the input instance, where the num-
ber of such foldings grows exponentially with the length
of the instance [53]. In [10], McCaskill showed how to
efficiently compute the partition function for RNA fold-
ing in Θ(n3) running time. In addition, he presented a
variant that allows the computation of base-pairing
probabilities for every given pair of indices in the RNA
string. We next present a simplified version of McCas-
kill’s computation. For the sake of clarity of presenta-
tion, assume that w(F) = e|F|, where |F| is the number of
base-pairs in F, and assume that non-complementary
base-pairs are not allowed to occur. This simplification
of the weight function allows focusing on the essential
properties of the computation, avoiding a tedious
notation.
For the “inside” phase of the computation, define two

sets of inside properties b1 and b2 with respect to an
input RNA string s. The property β2

i,j is the partition
function of the substring si, j, i.e. the sum of weights of
all possible foldings of si, j. The property β1

i,j is the sum
of weights of all possible foldings of si, j that contain the
base-pair i • (j - 1). For j ≤ i + 1, the only possible fold-
ing of si, j is the empty folding, and thus β1

i,j = 0 (since
there are no foldings of si, j that contain the base-pair i

• (j - 1)) and β2
i,j = 1 (since the weight of the empty

folding is e0 = 1). For j > i + 1, β1
i,j and β2

i,j can be recur-
sively computed as follows.
First, consider the computation of β1

i,j. Observe that if
si and sj - 1 are not complementary bases, then there is
no folding of si , j that contains i • (j - 1), and thus
β1

i,j = 0. Otherwise, every folding F of si, j that contains i
• (j - 1) is obtained by adding the base-pair i • (j - 1) to
a unique folding F’ of si+1, j-1, where w(F) = e|F| = e|F’|+1

= e · e|F’|. Therefore, β1
i,j is given by

β1
i,j = δi,j−1β

2
i+1,j−1,

where δi, j - 1 = e if si and sj-1 are complementary
bases, and otherwise δi,j-1 = 0.
Now, consider the computation of β2

i,j. Every folding F
of si, j in which j - 1 is paired to some index q, i < q < j
- 1, is obtained by combining a folding F’ of the prefix
si, q with a folding F” of the suffix sq, j, where F” contains
the base-pair q • (j - 1). In addition w(F) = e|F| = e|F’|+|F”|

= e|F’| · e|F”| = w(F’) · w(F”). Thus, the sum of weights of
all possible different foldings of this form, denoted by
μ2

i,j, is given by

μ2
i,j =

∑
q∈(i,j−1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
F′ a folding

of si,q

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
F′′ a folding of

sq,j which
contains q • (j − 1)

{w(F′) · w(F′′)}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
∑

q∈(i,j−1)

{β2
i,q · β1

q,j}.

Since β1
j−1,j = 0, μ2

i,j can be written as

μ2
i,j =

∑
q∈(i,j)

{β2
i,q · β1

q,j}.
In addition to foldings of the above form, the set of

foldings of si , j contains foldings in which j - 1 is
unpaired, and foldings in which j - 1 is paired to i. The
set of foldings of si, j in which j - 1 is unpaired is exactly
the set of foldings of si,j-1, and their sum of weights is
given by β2

i,j−1. The sum of weights of all foldings in

which j - 1 is paired to i is given by β1
i,j, and thus

β2
i,j = μ2

i,j + β2
i,j−1 + β1

i,j.

The computation of the inside property sets b1 and b2

abides by the Inside VMT requirements of Definition 1
with respect to the Dot Product, and thus may be com-
puted by the Inside VMT algorithm. The partition func-
tion of the input RNA string s is given by Z = β2

0,n.
The second phase of McCaskill’s algorithm computes

for every pair of indices a and b in s, the probability
that a spontaneous folding of s contains the base-pair a
• b. According to the partition function model, this
probability equals to the sum of weights of foldings of s
which contain a • b, divided by Z. Therefore, there is a

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 18 of 22

need to compute values that correspond to sums of
weights of foldings which contain specific base-pairs.
We will denote by gi, j the sum of weights of foldings of
s which contain the base pair i • (j - 1). The probability
of a base-pair a • b is thus γa,b+1

Z . In order to compute
values of the form gi, j, we define the following outside
property sets a1, a2, a3 and a4.
A value of the form α1

i,j reflects the sum of weights of
all foldings of si,j that contain the base-pair (i - 1) • j. A
value of the form α2

i,j reflects the sum of weights of all
foldings of si,j that contain a base-pair of the form (q -
1) • j, for some index q Î [0, i). A value of the form α3

i,j

reflects the sum of weights of all foldings of si,j that con-
tain a base-pair of the form j • (q - 1), for some index q
Î (j, n], and a value of the form α4

i,j reflects the partition
function of si,j, i.e. the sum of weights of all foldings of
si,j.
Every folding F for s in which the base-pair i • (j - 1)

is included can be decomposed into two foldings F’ and
F”, where F’ is a folding of si, j that contains i • (j - 1),
and F” is a folding of si,j. Similarly as above, this obser-
vation implies that the sum of weights of all foldings of
s that contain i • (j - 1) is

γi,j = β1
i,j · α4

i,j.

It is now left to show how to compute values of the
form α4

i,j. This computation is showed next, via a
mutually recursive formulation that also computes
values in the sets a1, a2, and a3.
Every folding of si,j that contains (i - 1) • j is obtained

by adding the base-pair (i - 1) • j to a unique folding of
si−1,j+1 . As before, this implies that

α1
i,j = δi−1,j · α4

i−1,j+1.

Every folding of si,j that contains a base-pair of the
form (q - 1) • j, for some q Î [0, i), can be decomposed
into two foldings F’ and F”, where F’ is a folding of sq, i,
and F” is a folding of sq,j that contains (q - 1) • j. Again,
this implies that the sum of weights of all such foldings
is given by

α2
i,j =

∑
q∈[0,i)

{β2
q,i · α1

q,j}.

Similarly, it can be shown that

α3
i,j =

∑
q∈(j,n]

{α4
i,q · β1

j,q}.

Finally, consider the computation of α4
i,j. Note that the

set of all foldings of si,j in which j is unpaired is exactly
the set of all foldings of si,j+1, and thus the sum of

weights of all such foldings is α4
i,j+1. In every other fold-

ing of si,j, j is either paired to i - 1, or to some index q -
1 such that q Î [0, i) or q Î (j, n]. Therefore,

α4
i,j = α4

i,j+1 + α1
i,j + α2

i,j + α3
i,j.

It can now be verified that the computation of the
property sets a1, a2, a3, and a4 sustains all require-
ments from an Outside VMT problem as listed in Defi-
nition 2, therefore the Base Pair Binding Probabilities
problem may be computed by the Outside-VMT
algorithm.

B RNA Simultaneous Alignment and Folding
The RNA Simultaneous Alignment and Folding (SAF)
problem is an example of a Multiple String VMT pro-
blem, defined by Sankoff [15]. Similarly to the classical
sequence alignment problem, the goal of the SAF pro-
blem is to find an alignment of several RNA strings,
and in addition to find a common folding for the
aligned segments of the strings. The score of a given
alignment with folding takes into account both standard
alignment elements such as character matchings, substi-
tutions and indels, as well as the folding score. For
clarity, our formulation assumes a simplified scoring
scheme.
We use the notation of Section 5 regarding multiple

string instances, positions, and sub-instances. Let Q =
(q0, q1, ..., qm-1) be a position in a multiple string
instance S = (s0, s1, ..., sm-1). Say that a position Q’ =
(q’0, q’1, ..., q’m-1) in S is a local increment of Q if Q <
Q’, and for every 0 ≤ p < m, q’p ≤ qp + 1. That is, a
local increment of a position increases the value of each
one of the sequence indices of the position by at most
1, where at least one of the indices strictly increases.
Symmetrically, say that in the above case Q is a local
decrement of Q’. The position sets inc(Q) and dec(Q)
denote the set of all local increments and the set of all
local decrements of Q, respectively. The size of each one
of these sets is O(2m). An SAF instance S is a set of
RNA strings S = (s0, s1, ..., sm-1). An alignment A of S is
a set of strings A = (a0, a1, ..., am-1) over the alphabet
{A, C, G, U, -} (’-’ is called the “gap” character), satisfy-
ing that:

• All strings in A are of the same length.
• For every 0 ≤ p < m, the string which is obtained
by removing from ap all gap characters is exactly the
string sp.

Denote by |A| the length of each one of the strings in
A, and by Ar = (a0

r ; a1
r ; . . . ; am−1

r) the rth column of A.
Observe that an alignment column Ar corresponds to a
sub-instance of the form SQ , Q ’, where Q’ is a local

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 19 of 22

increment of Q. The position Q = (q0, q1, ..., qm-1) in S
satisfies that for every 0 ≤ p < m, qp is the number of
non-gap characters in ap

0,r. The position Q’ = (q’0, q’1, ...,

q’m-1) satisfies that for every 0 ≤ p < m, q’p = qp if ap
r is

a gap, and otherwise q’p = qp +1 (see Figure 17).
A folding F of an alignment A is defined similarly to a

folding of a single RNA string, except for the fact that
now each pair a • b in F represents a column-pair in an
alignment rather than a base-pair in an RNA string. Call
a pair (A, F), where A is an alignment of an SAF
instance S and F is a folding of A, an alignment with
folding of S (Figure 17b). Define the score of an align-
ment with folding (A, F) to be

score (A, F) =
∑

0≤r<|A|
ρ(Ar) +

∑
a•b∈F

τ (Aa, Ab)

Here, r is a column aligning score function, and τ is a
column-pair aligning score function. r (Ar) reflects the
alignment quality of the rth column in A, giving high
scores for aligning nucleotides of the same type and
penalizing alignment of nucleotides of different types
or aligning nucleotides against gaps. τ(Aa, Ab) reflects
the benefit from forming a base-pair in each one of
the RNA strings in S between the bases corresponding
to columns Aa and Ab of the alignment (if gaps or
non-complementary bases are present in these col-
umns, it may induce a score penalty). In addition,
compensatory mutations in these columns may also
increase the value of τ(Aa, Ab) (thus it may compensate
for some penalties taken into account in the computa-
tion of r(Aa) and r(Ab)). We assume that both scoring
functions r and τ can be computed in O(m) running
time. In addition, we use as arguments for r and τ
sub-instances of the form SQ, Q ’, where Q’ is a local
increment of Q. In such cases, SQ, Q’ corresponds to a
unique alignment column, where r and τ are computed
with respect to this column.
The goal of the SAF problem is to find the maximum

score of an alignment with folding for a given SAF
instance S. In order to compute this value, we define a

set b of inside properties with respect to S, where bX, Y is
the maximum score of an alignment with folding of SX, Y.
Similarly to single RNA string folding (Section 3.1), we

think of two kinds of alignments with foldings for the
sub-instance SX, Y : type I are alignments with foldings
in which the first and last alignment columns are paired
to each other, and type II are alignments with foldings
in which the first and last alignment columns are not
paired to each other.
Consider an alignment with folding (A, F) of type I.

Let Aa denote the first column in A, and Ab the the last
column in A. Thus, Aa corresponds to some sub-
instance SX, X’, where X’ is a local increment of X, and
similarly Ab corresponds to some sub-instance SY’,Y,
where Y’ is a local decrement of Y. Since a • b Î F, the
alignment with folding (A, F) is obtained by modifying
an alignment with folding (A’, F’) for SX’,Y’, where A is
obtained by concatenating Aa and Ab at the beginning
and ending of A’, respectively, and F = {a • b} ∪ F’ (Fig-
ure 18). The score of (A, F) is given by

score (A, F) = score(A′, F′) + ρ(SX,X′) + ρ(SY ′,Y) + τ (SX,X′ , SY ′,Y).

Figure 17 An SAF instance, and a corresponding alignment with folding. (a) An SAF instance S, composed of three RNA strings s0, s1, and
s2. (b) A possible alignment with folding (A, F) of S, where |A| = 17, and F = {1 • 4, 7 • 15, 9 • 12}. The alignment column A10 is marked. This
column corresponds to the sub-instance SQ, Q’, for Q = (7, 7, 8) and Q’ = (8, 7, 9).

Figure 18 An alignment with folding of type I. The alignment
with folding (A, F) corresponds to the sub-instance SX, Y of the
instance S presented in Figure 17a, where X = (5, 5, 5) and Y = (12,
10, 14). (A, F) is obtained by modifying an alignment with folding
(A’, F’) for the sub-instance SX’,Y’, where X’ = (6, 6, 6) and Y’ = (11, 9,
13) (marked with a blue rectangle). The modification includes the
addition of the two alignment columns A7 and A15 to the
alignment, and the column-pair 7 • 15 to the folding.

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 20 of 22

Therefore, it can be seen that the maximum score of
an alignment with folding of type I is given by

max
X′∈inc(X)
Y ′∈ dec(Y)

{βX′,Y ′ + ρ(SX,X′) + ρ(SY ′ ,Y) + τ (SX,X′, SY ′,Y)}.

Now, consider an alignment with folding (A, F) of type
II. As was shown for the Base-Paring Maximization pro-
blem (Section 3.1), (A, F) can be decomposed into two
alignments with folding (A’, F’) and (A″, F″), where (A’,
F’) is an alignment with folding of SX, Q1 and (A″, F″) is
an alignment with folding of SQ, Y, for some Q Î (X, Y)
(Figure 19). In this case, score(A, F) = score(A’, F’) +
score(A″, F″), and the maximum score of an alignment
with folding of type II is

max
Q∈(X,Y)

{βX,Q + βQ,Y}.

Thus, bX, Y can be recursively computed according to
the following formula:

βX,Y = max

⎧⎪⎨
⎪⎩

(I) max
X′∈inc(X)
Y ′∈dec(Y)

{βX′,Y ′ + ρ(SX,X′) + ρ(SY ′,Y) + τ (SX,X′ , SY ′,Y)},

(II) max
Q∈(X,Y)

{βX,Q + βQ,Y}

⎫⎪⎬
⎪⎭ .

In the computation of term (I) of the recurrence, O
(22m) expressions are examined, and each expression is
computed in O(m) running time. Under the reasonable
assumption that m is sufficiently small with respect to ||
S|| (typically, m = 2), we can assume that m22m = o (||

S||), and even assume that m22m = O
(

M(||S||)
||S||2

)
, where M

(r) is the running time of the Max Plus multiplication of
two r × r matrices.
The computation of term (II) is a Max Plus vector

multiplication of the form μX, Y = ⊕QÎ(X,Y) (bX, Q ⊗ bQ,
Y), and thus the recursive formulation abides by the
standard VMT settings for the Multiple String Inside
VMT requirements, as listed in Definition 3. Therefore,
the SAF problem with an instance S can be solved in Θ

(M (||S||)) = o (||S||3) running time. This result
improves the running time of the original algorithm
[15], which is Θ(||S||3).

Acknowledgements
The research of SZ and MZU was supported by ISF grant 478/10.

Authors’ contributions
SZ developed and formulated the algorithms, template definitions, and
examples. MZU and DT mentored the research, contributed in writing parts
of the manuscript, and were active in revising and preparing the final
manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 10 November 2010 Accepted: 18 August 2011
Published: 18 August 2011

References
1. Eddy SR: Noncoding RNA genes. Current Opinions in Genetic Development

1999, 9(6):695-699[http://view.ncbi.nlm.nih.gov/pubmed/10607607].
2. Mandal M, Breaker R: Gene regulation by riboswitches. Cell 2004,

6:451-463.
3. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy S, Bateman A: Rfam:

annotating non-coding RNAs in complete genomes. Nucleic Acids
Research 2005, , 33 Database: D121.

4. Consortium AFB, Backofen R, Bernhart SH, Flamm C, Fried C, Fritzsch G,
Hackermuller J, Hertel J, Hofacker IL, Missal K, Mosig A, Prohaska SJ, Rose D,
Stadler PF, Tanzer A, Washietl S, Will S: RNAs everywhere: genome-wide
annotation of structured RNAs. J Exp Zoolog B Mol Dev Evol 2007, 308:1-25.

5. Gardner P, Giegerich R: A comprehensive comparison of comparative
RNA structure prediction approaches. BMC bioinformatics 2004, 5:140.

6. Nussinov R, Jacobson AB: Fast Algorithm for Predicting the Secondary
Structure of Single-Stranded RNA. PNAS 1980, 77(11):6309-6313.

7. Zuker M, Stiegler P: Optimal Computer Folding of Large RNA Sequences
using Thermodynamics and Auxiliary Information. Nucleic Acids Research
1981, 9:133-148.

8. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer SL, Tacker M, Schuster P:
Fast Folding and Comparison of RNA Secondary Structures. Monatsh
Chem 1994, 125:167-188.

9. Alkan C, Karakoç E, Nadeau JH, Sahinalp SC, Zhang K: RNA-RNA Interaction
Prediction and Antisense RNA Target Search. Journal of Computational
Biology 2006, 13(2):267-282.

10. McCaskill JS: The equilibrium partition function and base pair binding
probabilities for RNA secondary structure. Biopolymers 1990, 29(6-
7):1105-1119.

Figure 19 An alignment with folding of type II. In such an alignment with folding the first and last alignment columns are not paired to each
other, i.e. the last column is either paired to some other column (as in (a), which consists of columns 1 to 15 of the alignment with folding
presented in Figure 17b), or it is unpaired (as in (b), which consists of columns 1 to 5 of the alignment with folding presented in Figure 17b). In
both cases, the alignment with folding may be decomposed into two alignments with foldings (A’, F’) and (A”, F”), where (A’, F’) is an alignment with
folding for SX, Q and (A”, F”) is an alignment with folding for SQ, Y, for some Q Î (X, Y).

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 21 of 22

http://view.ncbi.nlm.nih.gov/pubmed/10607607
http://www.ncbi.nlm.nih.gov/pubmed/15458580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15458580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6161375?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6161375?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6163133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6163133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16597239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16597239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1695107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1695107?dopt=Abstract

11. Bernhart S, Tafer H, Mückstein U, Flamm C, Stadler P, Hofacker I: Partition
function and base pairing probabilities of RNA heterodimers. Algorithms
for Molecular Biology 2006, 1:3.

12. Chitsaz H, Salari R, Sahinalp SC, Backofen R: A partition function algorithm
for interacting nucleic acid strands. Bioinformatics 2009, 25(12):i365-373.

13. Zhang K: Computing Similarity Between RNA Secondary Structures.
INTSYS ‘98: Proceedings of the IEEE International Joint Symposia on Intelligence
and Systems Washington, DC, USA: IEEE Computer Society; 1998, 126.

14. Jansson J, Ng S, Sung W, Willy H: A faster and more space-efficient
algorithm for inferring arc-annotations of RNA sequences through
alignment. Algorithmica 2006, 46(2):223-245.

15. Sankoff D: Simultaneous Solution of the RNA Folding, Alignment and
Protosequence Problems. SIAM Journal on Applied Mathematics 1985,
45(5):810-825.

16. Sakakibara Y, Brown M, Hughey R, Mian I, Sjolander K, Underwood R,
Haussler D: Stochastic context-free grammers for tRNA modeling. Nucleic
Acids Research 1994, 22(23):5112.

17. Teitelbaum R: Context-Free Error Analysis by Evaluation of Algebraic
Power Series. STOC ACM 1973, 196-199.

18. Dowell R, Eddy S: Evaluation of several lightweight stochastic context-
free grammars for RNA secondary structure prediction. BMC
bioinformatics 2004, 5:71.

19. Do CB, Woods DA, Batzoglou S: CONTRAfold: RNA secondary structure
prediction without physics-based models. Bioinformatics 2006, 22(14):
e90-8.

20. Cocke J, Schwartz JT: Programming Languages and Their Compilers New
York: Courant Institute of Mathematical Sciences; 1970.

21. Kasami T: An efficient recognition and syntax analysis algorithm for
context-free languages. Tech. Rep. AFCRL-65-758, Air Force Cambridge Res.
Lab., Bedford Mass 1965.

22. Younger DH: Recognition and Parsing of Context-Free Languages in
Time n3. Information and Control 1967, 10(2):189-208.

23. Valiant L: General Context-Free Recognition in Less than Cubic Time.
Journal of Computer and System Sciences 1975, 10:308-315.

24. Coppersmith D, Winograd S: Matrix Multiplication via Arithmetic
Progressions. J Symb Comput 1990, 9(3):251-280.

25. Akutsu T: Approximation and Exact Algorithms for RNA Secondary
Structure Prediction and Recognition of Stochastic Context-free
Languages. Journal of Combinatorial Optimization 1999, 3:321-336.

26. Benedí J, Sánchez J: Fast Stochastic Context-Free Parsing: A Stochastic
Version of the Valiant Algorithm. Lecture Notes in Computer Science 2007,
4477:80-88.

27. Chan TM: More Algorithms for All-Pairs Shortest Paths in Weighted
Graphs. SIAM J Comput 2010, 39(5):2075-2089.

28. Graham SL, Harrison MA, Ruzzo WL: An improved context-free recognizer.
ACM Transactions on Programming Languages and Systems 1980,
2(3):415-462.

29. Arlazarov VL, Dinic EA, Kronod MA, Faradzev IA: On Economical
Construction of the Transitive Closure of an Oriented Graph. Soviet Math
Dokl 1970, 11:1209-1210.

30. Frid Y, Gusfield D: A Simple, Practical and Complete O(
n3

log n
)-Time

Algorithm for RNA Folding Using the Four-Russians Speedup. In WABI.
Volume 5724. Springer; 2009:97-107.

31. Frid Y, Gusfield D: A Worst-Case and Practical Speedup for the RNA Co-
folding Problem Using the Four-Russians Idea. WABI 2010, 1-12.

32. Klein D, Manning CD: A* Parsing: Fast Exact Viterbi Parse Selection. HLT-
NAACL 2003, 119-126.

33. Wexler Y, Zilberstein CBZ, Ziv-Ukelson M: A Study of Accessible Motifs and
RNA Folding Complexity. Journal of Computational Biology 2007,
14(6):856-872.

34. Ziv-Ukelson M, Gat-Viks I, Wexler Y, Shamir R: A Faster Algorithm for
Simultaneous Alignment and Folding of RNA. Journal of Computational
Biology 2010, 17(8):1051-1065[http://www.liebertonline.com/doi/abs/
10.1089/cmb.2009.0197].

35. Backofen R, Tsur D, Zakov S, Ziv-Ukelson M: Sparse RNA folding: Time and
space efficient algorithms. Journal of Discrete Algorithms 2010, http://www.
sciencedirect.com/science/article/B758J-511TNF7-1/2/
8d480ed24b345199f8997c1141a47d60.

36. Salari R, Mohl M, Will S, Sahinalp S, Backofen R: Time and Space Efficient
RNA-RNA Interaction Prediction via Sparse Folding. RECOMB 2010,
6044:473-490.

37. Havgaard J, Lyngso R, Stormo G, Gorodkin J: Pairwise local structural
alignment of RNA sequences with sequence similarity less than 40%.
Bioinformatics 2005, 21(9):1815-1824.

38. Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R: Inferring Non-Coding
RNA Families and Classes by Means of Genome-Scale Structure-Based
Clustering. PLOS Computational Biology 2007, 3(4):e65.

39. Zakov S, Tsur D, Ziv-Ukelson M: Reducing the Worst Case Running Times
of a Family of RNA and CFG Problems, Using Valiant’s Approach. WABI
2010, 65-77.

40. Ryoo S, Rodrigues CI, Baghsorkhi SS, Stone SS, Kirk DB, Hwu WmW:
Optimization principles and application performance evaluation of a
multithreaded GPU using CUDA. Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, PPoPP ‘08,
New York, NY, USA: ACM 2008, 73-82.

41. Volkov V, Demmel JW: Benchmarking GPUs to tune dense linear algebra.
Proceedings of the 2008 ACM/IEEE conference on Supercomputing SC ‘08,
Piscataway, NJ, USA: IEEE Press; 2008, 31:1-31:11[http://portal.acm.org/
citation.cfm?id=1413370.1413402].

42. Rytter W: Context-free recognition via shortest paths computation: a
version of Valiant’s algorithm. Theoretical Computer Science 1995,
143(2):343-352.

43. Baker JK: Trainable grammars for speech recognition. The Journal of the
Acoustical Society of America 1979, 65(S1):S132-S132.

44. Bentley JL, Haken D, Saxe JB: A General Method For Solving Divide-and-
conquer Recurrences. SIGACT News 1980, 12(3):36-44.

45. Pinhas T, Tsur D, Zakov S, Ziv-Ukelson M: Edit Distance with Duplications
and Contractions Revisited. In CPM of Lecture Notes in Computer Science.
Volume 6661. Edited by: Giancarlo R, Manzini G. Springer Berlin/Heidelberg;
2011:441-454.

46. Goto K, Geijn R: Anatomy of high-performance matrix multiplication. ACM
Transactions on Mathematical Software (TOMS) 2008, 34(3):1-25.

47. Robinson S: Toward an optimal algorithm for matrix multiplication. News
Journal of the Society for Industrial and Applied Mathematics 2005, 38(9).

48. Basch J, Khanna S, Motwani R: On diameter verification and boolean
matrix multiplication. Tech rep Citeseer 1995.

49. Williams R: Matrix-vector multiplication in sub-quadratic time (some
preprocessing required). Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, Society for Industrial and Applied
Mathematics 2007, 995-1001.

50. Bansal N, Williams R: Regularity Lemmas and Combinatorial Algorithms.
FOCS 2009, 745-754.

51. Rizk G, Lavenier D: GPU Accelerated RNA Folding Algorithm. In
Computational Science - ICCS 2009, Volume 5544 of Lecture Notes in
Computer Science. Edited by: Allen G, Nabrzyski J, Seidel E, van Albada G,
Dongarra J, Sloot P. Springer Berlin/Heidelberg; 1004-1013.

52. Chang D, Kimmer C, Ouyang M: Accelerating the Nussinov RNA folding
algorithm with CUDA/GPU. Signal Processing and Information Technology
(ISSPIT), 2010 IEEE International Symposium on IEEE;120-125.

53. Waterman M: Secondary structure of single-stranded nucleic acids. Adv
math suppl studies 1978, 1:167-212.

doi:10.1186/1748-7188-6-20
Cite this article as: Zakov et al.: Reducing the worst case running times
of a family of RNA and CFG problems, using Valiant’s approach.
Algorithms for Molecular Biology 2011 6:20.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Zakov et al. Algorithms for Molecular Biology 2011, 6:20
http://www.almob.org/content/6/1/20

Page 22 of 22

http://www.ncbi.nlm.nih.gov/pubmed/16722605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16722605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19478011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19478011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7800507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15180907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15180907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16873527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16873527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17691898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17691898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20649420?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20649420?dopt=Abstract
http://www.liebertonline.com/doi/abs/10.1089/cmb.2009.0197
http://www.liebertonline.com/doi/abs/10.1089/cmb.2009.0197
http://www.ncbi.nlm.nih.gov/pubmed/15657094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15657094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17432929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17432929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17432929?dopt=Abstract
http://portal.acm.org/citation.cfm?id=1413370.1413402
http://portal.acm.org/citation.cfm?id=1413370.1413402

	Abstract
	Background
	Results
	Conclusions

	1 Background
	Road Map

	2 Preliminaries
	2.1 Interval notations
	2.2 Matrix notations
	2.3 String notations

	3 The Inside Vector Multiplication Template
	3.1 Example: RNA Base-Pairing Maximization
	3.1.1 The classical algorithm

	3.2 Inside VMT definition
	3.3 The Inside VMT algorithm
	3.3.1 Time complexity analysis for the Inside VMT algorithm
	3.3.2 Extension to the case where several inside properties are computed

	4 Outside VMT
	5 Multiple String VMT
	6 Concluding remarks
	Appendix
	A RNA Partition Function and Base Pair Binding Probabilities
	B RNA Simultaneous Alignment and Folding

	Acknowledgements
	Authors' contributions
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

