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Abstract

Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal
networks, or disease spreading in social networks. Substantial insight into a system’s organization can be obtained by
reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on
Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB) and Posterior
Weighted Averaging (PWA) methods. We introduce a special case of PWA, cast in nonparametric form, which we call the
normalized count (NC) algorithm. NC efficiently reconstructs random and small-world functional network topologies and
architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over
commonly used correlation methods. With experimental data, NC identified a functional and structural small-world
topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics.
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Introduction

Cascade-like dynamics is characterized by the succession of

events, or processes, that are causally related, and is frequently

encountered in many complex systems (networks) across disci-

plines. For example, single cells in living organisms maintain

metabolic, protein and gene-interaction networks with mostly

unidirectional signaling cascades in which nodes represent

metabolites, proteins and genes respectively [1–3]. At the next

higher level of cell to cell interactions such as the brain, pyramidal

neurons in the cortex connect with thousands of other neurons [4]

thereby supporting cascades of neuronal activity in the form of

waves [5], neuronal avalanches [6] and synfire chains [7,8].

Cascade-like dynamics also occurs in many social networks such as

the spread of epidemics [9] and gossip [10] in human networks as

well as human travel itself [11]. This cascading dynamics carries

the signature of the underlying statistical interdependencies

between the interacting nodes, which are summarized by the

functional network topology, represented by adjacency matrix

indicating whether two nodes interact or not, and architecture

[12], represented by a weighted graph which additionally indicates

the magnitude of each interaction. The relationship between the

cascading dynamics and the functional network is often poorly

understood, even though reconstructing the network from the

observed dynamics can provide crucial insights into the causal

interactions between the nodes as well as the overall functioning of

a complex system [13]. Of similar challenge remains the problem

of how the functional architecture relates back to the structural

organization of a network, that is to its physical nodes and physical

connections between nodes [14]. While very similar dynamics can

arise from fundamentally different network structures, e.g. for

small neuronal networks with diverse elements [15], for large

networks such as the human cortex the global brain dynamics has

been shown to reflect fairly accurately the underlying structural

connectivity, i.e. cortex anatomy [16,17]. It is therefore critical to

identify new approaches that provide insight into the functional

and structural organization of a network based on the observed

dynamics.

Correlations in the dynamics between nodes have been

successfully used to identify functional links in relatively large

networks such as obtained from MEG or fMRI recordings of brain

activity (e.g. [18–20]). A pure correlation approach, however, is

prone to induce false connectivities. For example, it will introduce

a link between two un-connected nodes, if their activities are

driven by common inputs [21,22]. More elaborate approaches

such as Granger Causality [23], partial Granger Causality [24],

partial directed coherence (for a review see [25]), and transfer

entropy [26] partially cope with the problem of common input,

however, these methods require extensive data manipulations and

data transformations and have been mainly employed for small

networks [27,28].

Here, we propose a new method that efficiently reconstructs the

functional architecture of a network from the dynamics. In the

theoretical part of the manuscript, we first introduce two different
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Bayesian approaches to reconstruct the network topology from the

observed cascades: (1) the Iterative Bayesian (IB), and (2) the

Posterior Weighted Averaging (PWA) with equal link priors. We

then use PWA to derive the Normalized Count (NC) approach, a

simple and efficient nonparametric algorithm that requires very

little knowledge about the dynamical rules underlying activity

cascades. We show that the NC, which is a hybrid between a

Bayesian approach and a correlation method, performs almost as

well as the IB when the exact probabilistic rules of the dynamics

known. Using simulations, we demonstrate the utility of these

algorithms for reconstructing random, small-world and scale-free

network architectures from activity cascades modeled by subcrit-

ical, critical, and supercritical branching processes.

We apply our approach to neuronal avalanches, which are the

activity cascades in the brain. It has been shown [6,29,30] that

they spontaneously emerge in superficial layers of cortex, both in

vitro (acute slices and slice cultures) [29–32] and in vivo [33]. They

have also been demonstrated recently in the spike activity of

dissociated cortex cultures [34,35]. The network architecture that

gives rise to neuronal avalanches is currently not known, although

neuronal avalanches have been simulated in networks with scale-

free [36,37], fully connected [38], random [39], and nearest-

neighbors [37,40] topologies. Here we demonstrate a small-world

functional topology of neuronal group formation in neuronal

avalanches.

Methods

Theory
Bayesian network reconstruction from cascade

dynamics. The cascade dynamics on a network can be

described as a sequence of events e, e: se,te,Aef g, indicating the

node, the time and the amplitude of an event respectively. We

assume here that the observed sequence, O, can be described by

some underlying network structure, N , which we are trying to

reconstruct, and certain probabilistic rules, p OjNð Þ. If p OjNð Þ is

known, then the most accurate reconstruction of N from the

observed dynamics is obtained using the Bayesian approach [41–

43], which relies on the Bayes rule

P N cjOð Þ~ p OjN cð Þp N cð ÞP
N c

p OjN cð Þp N cð Þ , ð1Þ

where the index c indicates a particular instance of network

topology (adjacency matrix), N c, P N cjOð Þ is the posterior

probability of having N c, given the observation O, p N cð Þ is the

a priori (prior) probability, and p OjN cð Þ is the term that

incorporates the above mentioned knowledge about the

dynamics. The sum in the denominator is over all possible

network configurations.

Exploring all possible topological configurations for a complete

network with N nodes is a daunting task, since that number is on

the order of 2N2

, making this approach computationally

intractable. To reduce the problem, we assume that the activation

of a given target node j (descendant; see Figure 1A) can be caused

only by a finite set of events sl ,tl ,Alf g,l~1, . . . ,na, occurring on

source nodes sl (ancestors) at prior times. The index c now

enumerates all link configurations (topologies) by which the na

active source nodes can connect to the target node j. This reduces

the number of configurations to be explored to 2na , where na is the

number of active source nodes considered. Thus, when exploring a

particular topological configuration N c, the activation depends

only on ncƒna active nodes that connect to the target (see

example in Figure 1A with na~5 and nc~3). The number na is

not fixed and changes in time as different target nodes are

explored. The na relevant ancestors are usually obtained using a

cut-off time difference beyond which the activation of the target is

impossible or unlikely. When the cascade dynamics is recorded in

the form of a raster (see Figure 1B), the event times tj are

discretized and events are placed into bins of fixed duration Dt,
which allows a fixed number of preceding bins to be used in order

to determine the na relevant source nodes. A single observation Oj

then reduces to a statement that an event e: j,te,Aef g occurred

on the target node j, given the set of ancestor events sl ,tl ,Alf g, or,

for binned data, Oj can also state that a node j was not active

within a given time bin t. Thus, the reconstruction of the whole

network, N R is subdivided into many simple Bayesian estimation

steps focusing on a single target node and its corresponding subset

of source nodes. We call this a single target estimation step (STES).

To obtain N R we combine these simple STES using two

approaches that differ mainly in the way of handling the priors:

(1) the Iterative Bayesian (IB), which starts with equal priors and

builds them iteratively, and (2) the Posterior Weighted Averaging

(PWA), for which the case of equal prior probabilities for link

existence is explored. Both approaches are described in detail

following the description of the dynamical model that we use in

this work as an example, thus obtaining the dynamics term

p OjN cð Þ in Equation 1. Finally, we derive a nonparametric

method based on PWA, that we call normalized count (NC)

approach, to be used for reconstructing networks from point

process dynamics.
Cascade dynamics: branching point process on a

network. For many dynamical processes on a network it is

reasonable to assume that the activation of a target node, j,
depends only on a finite set of prior events sl ,tl ,Alf g. Then,

p OjN cð Þ can be written as a general function of the event times,

tj{tsl
, l~1, . . . ,na, amplitudes Asl

, Aj , as well as N c and other

parameters needed to describe the dynamics.

In this work we focus on a specific type of cascade dynamics,

i.e., a branching point process in which the probability pij that

a given network node i will activate node j is fixed (Figure 1C).

The branching process is specified in the form of a directed

Author Summary

In many complex systems found across disciplines, such as
biological cells and organisms, social networks, economic
systems, and the Internet, individual elements interact
with each other, thereby forming large networks whose
structure is often not known. In these complex networks,
local events can easily propagate, resulting in diverse
spatio-temporal activity cascades, or avalanches. Examples
of such cascading activity are the propagation of diseases
in social networks, cascades of chemical reactions inside a
cell, the propagation of neuronal activity in the brain, and
e-mail forwarding on the Internet. Although the observa-
tion of a single cascade provides limited insight into the
organization of a complex network, the observation of
many cascades allows for the reconstruction of very robust
features of network organization, providing valuable
insight into network function as well as network failure.
The current work develops new algorithms for an efficient
reconstruction of relatively large networks in the context
of cascading activity. When applied to the brain, these
algorithms uncover the structural and functional features
of gray matter networks that display activity cascades in
the form of neuronal avalanches.

Network Reconstruction from Dynamical Cascades
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weighted graph with weights equal to pij thus forming the

network architecture [12]. The network topology is defined by

the links which have non-zero probabilities of activation pij .

Depending on the values of pij , subcritical, critical and

supercritical regimes can be observed for many network

topologies.

Given heterogeneous probabilities pij for each source node i to

activate the target node j, and the net configuration N c in which

Figure 1. Bayesian network reconstruction from cascade dynamics. (A) The basic subnetwork motif for the Bayesian method consists of a
target node j and na active source nodes sl recorded as pairs sl ,tlð Þ indicating the node and the time for each event. All possible network
configurations N c with na source nodes will be explored. A particular configuration with na~5 and nc~3 existing links is shown indicating that
some of the active nodes will be able to directly influence the activation of the target node j (solid line: directed link exists), whereas others will not
(broken line: directed link absent). (B) Discretization of the cascade dynamics in time steps of length Dt on a network with N nodes (active nodes
labeled black). (C) A branching process on a network is simulated by assigning activation probabilities to each outgoing link, here between source
nodes 2 and 6 and target nodes 1, 4, and 7 (broken line: link absent). (D) An example of a Bayesian estimation given the observation O1 on a 3 node
network (STES). Numbers indicate link activation probabilities. Red: links that will be modified given the target node 2. (E) The four configurations,
N 1 through N 4 , when the node 2 is the target node, showing their prior and posterior probabilities for the observation O1 shown in (D). The
posterior probabilities are used to calculate new link priors in the next estimation step by summing all posterior configuration probabilities, p N cjOð Þ
for those configurations containing the specific link l. For example, only the second and fourth configuration posterior probabilities are added for the
link 1R2.
doi:10.1371/journal.pcbi.1000271.g001
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nc links from the na active nodes exist ncƒnað Þ, the probability

that the node j is active at time tj is

p Oj

��N c

� �
~1{ 1{pextð Þ P

nc

l~1
1{psl j

� �
, ð2Þ

where sl indicates the node index for the lth active source node,

and pext represents the probability that the activation occurred

through some external means outside the chain of cause and effect

within the cascade, or simply noise.

Equation 2 also allows for the reconstruction of networks in

situations when the cascades are recorded in continuous time and

when the magnitude of the individual node activities are different,

in which case pij are adjusted using some function pF to account

for differences in times and amplitudes, i.e.,

pF
ij ~pF ti,tj ,Ai tið Þ,Aj tj

� �
,pij

� �
, ð3Þ

where Ai tið Þ and Aj tj

� �
are the amplitudes of events occurring at

time ti and tj respectively. In the current work we treat the cascades

as a pure point process, and ignore the effect of the amplitudes.

Often, neither all of the pij nor the precise function pF are

known and the branching dynamics might be replaced with its

mean-field approximation, pd~SpijT. The term ‘‘mean-field’’

used here should not invoke the mean field theory (or self-

consistent field theory) in statistical mechanics, but rather its more

general meaning, designating any approach in which the actual

probability density function p xð Þ is replaced by the delta function

located at its mean value, pMF xð Þ:d x{SxTð Þ. In such case,

calculations are much easier and the probability of observing the

target node j being active at time tj is simply given by

p j,tj

��N c

� �
~1{ 1{pextð Þ 1{pdð Þnc : ð4Þ

which now depends only on nc.

Iterative Bayesian (IB). Using the IB approach, we attempt

to reconstruct a network represented by a set of N N{1ð Þ
probabilities, N IB

R :pl , with pl being the probability that a given

link l exists. From these individual link priors, the prior probability

for a particular network configuration p N cð Þ is obtained by

p N cð Þ~ P
l[N c

pl

� �
P

l=[N c

1{plð Þ
� �

ð5Þ

where the product on the left contains nc terms and the product on

the right na{nc terms. Knowing both the priors and the dynamics

terms, the posterior probabilities, P N cjOð Þ, for each

configuration N c can be calculated using Equation 1. The

posterior probability for a particular link l, pPl , is obtained by

summing P N cjOð Þ over those configurations N c that contain the

link l (see Figure 1D and 1E),

pPl ~
X
N c :l[N c

P N cjOð Þ: ð6Þ

The subset of links inN IB
R that participated in the current STES will

be updated with their posterior values, i.e. pl~pPl , essentially

modifying the priors used in the next STES. Initially, the link priors,

pl are assigned some small value for all links, and then this iterative

procedure is continued until all target nodes are exhausted.

By examining the Eqs. 5 and 6, one can see that the links that

acquire a probability pl of 0 or 1 will remain at these probabilities.

To avoid this, link probabilities pP smaller than some prescribed

threshold value pmin are set to pmin. The minimal threshold value

is usually chosen to be equal to the initial small prior probability

assigned to each possible link and is on the order of 1=N. In the

presence of noise, the upper boundary pPl ~1 cannot be reached.

If the final posterior probability for the existence of a link is higher

than some threshold pt, the link is significant, otherwise it doesn’t

exist. A natural choice for the threshold is pt~0:5.

Posterior weighted averaging (with equal link priors). A

shortcoming of the IB is that it weighs heavily recent events, while

early data are likely to be ignored. This can lead to reconstruction

errors if sudden bursts of noise, in particular towards the end of an

experimental observation, are encountered. As an alternative to

the IB, we developed the PWA approach. Here, at each STES, we

start with the same, pre-assigned, set of prior link probabilities, pl .

For convenience, we assume that no a priori knowledge about the

network N exists and hence make all link priors equal to some

fixed value pb pl~pb for all lð Þ. Then, we obtain the posterior

probabilities pP at each individual Bayesian STES for na links

according to Equation 6. We then derive a weighting factor which

is used to combine the individual STES in order to obtain a global

measure of connectivity between any two nodes. In order to find

the proper weighting factor, we note that when the posterior

probability for a link is equal to the prior probability, i.e. pP~pl ,

no information is gained and we assign zero weight to such a case.

When the posterior probability is 1 we set the desired weight to 1.

The suggested weighting factor can then be written as

wP
l tð Þ~ pPl tð Þ{pl tð Þ

1{pl tð Þ ~
pPl tð Þ{pb

1{pb

, ð7Þ

where the index t now enumerates different STES, or, in the case

of binned data, different time bins.

When pl~pb, the prior for a given network configuration

c, p N cð Þ, can be written as a function of the number of existing

links, nc, and the number of active source nodes, na,

p N cð Þ~pr nc,nað Þ~pnc

b 1{pbð Þna{nc : ð8Þ

Based on Equation 1, the posterior probability of a particular

network configuration N c, that has nc existing links out of na

possible links, Pc nc,nað Þ, can be written as

Pc nc,nað Þ~
pc

D nc,pij

� �
pr nc,nað Þ

Pnorm
, ð9Þ

where pc
D nc,pij

� �
is the dynamics term for the configuration c

(Equation 2), and Pnorm is the normalization term

Pnorm~
X

all N c

pc
D nc,pij

� �
pr nc,nað Þ: ð10Þ

The pij in Equation 9 indicates that pc
D depends on the individual

activation probabilities pij between nc active nodes and the target

node j.

The posterior link probability for a given link l, pP, is then the

sum of all Pc nc,nað Þ for configurations i that contain l. This can be

written as

pPl nað Þ~
Pna

k~1 pr k,nað Þ
P
N k

pk
D k,na,pFð Þ

Pnorm
, ð11Þ

Network Reconstruction from Dynamical Cascades
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where the second sum goes over all network configurations N k for

which nc~k and which contain the link l[N k, that is, over all

possible configurations of the remaining k{1 remaining existing

links and na{1 active source nodes. Since links can have different

activation probabilities, the second sum in Equation 11 cannot be

simply enumerated and full and tedious evaluation of the

expression is needed. However, in the simpler case of equal

activation probabilities (Equation 4) the second sum in Equation

11 contains
na{1

k{1

� �
equal terms, i.e.,

pP nað Þ~

Pna{1
k~1

na{1

k{1

� �
2 k,nað Þ

Pna

k~0

na

k

� �
2 k,nað Þ

, ð12Þ

where the dynamic and the prior terms are compounded into

2 nc,nað Þ~pD ncð Þpr nc,nað Þ. Using Eqs. 4, 8, and 12, a closed form

expression for the weights in Equation 7 becomes

wP nað Þ~
h

1{h

Hn

1{Hn

, ð13Þ

where h~pbpd and Hn~ 1{pextð Þ 1{hð Þn. We will use this

expression to develop a nonparametric network reconstruction

algorithm in the next section.

A nonparametric normalized count approach. While the

Bayesian approaches allow for the best possible estimate at each

step, it requires that the prior probabilities as well as the

probabilistic rules of the dynamics are known. Unfortunately,

these assumptions are often too strong in real-world situations and

we therefore aim to develop a network reconstruction algorithm in

conjunction with the Bayesian approach that (a) relies on little or

none a priori knowledge about the system, that is, it is potentially

nonparametric, (b) is efficient, i.e. simple and easy to implement

yet robust in the reconstruction, and (c) is not prohibitive for large

networks. We will apply this nonparametric method directly to the

time binned neuronal activity cascades in which optimal binning

width Dt is used [30–32], so that the na source nodes for a target

node within bin t are identified by the active nodes in the

preceding time bin, t{1 (see the Discussion section for an

extension to the continuous time dynamics).

The structure and the dynamics are related as is the case for a

critical cascade dynamics on a network. Using this we develop a

nonparametric approach for network reconstruction. Assuming that

a critical branching process is observed for pd~pc
d , the average

node degree, SkdT, and pc
d are related by pc

dSkdT~1. Further-

more, the edge density, or sparsity of the network, pS provides a

natural choice as the best guess for the uniform link prior,

pb~SkdT=N , suggesting that h in Equation 13 can be written as

h~1=N. In order to extend the use of this algorithm to subcritical

and supercritical regimes, we use the branching parameter, sd ,

which determines the dynamical regime, with sd~1 for critical

dynamics, and sdv1 and sdw1 for subcritical and supercritical

dynamics respectively. Thus, pd~sdpc
d and h~sd=N. We set

pext~0 since the actual level of noise is typically not known and to

account for noise we will use pairwise shuffling (see Methods). Since

the number of nodes, N, will be known, the weighting factor

(Equation 13) now becomes a function of na and sd only

wP nað Þ~
sd N{sdð Þna{1

Nna{ N{sdð Þna
: ð14Þ

This expression can be simplified further, if the dynamics is

‘‘sparse’’ so that the cascade activity at any time bin does not

consume a large portion of the whole network na%Nð Þ. This is a

reasonable assumption for a branching process in which sd is not

much larger than 1. We approximate Equation 14 in two ways.

The first one keeps the parameter sd ,

wP nað Þ~
1

na

N{sdna

N{sd

ð15Þ

and the second one is nonparametric,

wP nað Þ~
1

na

: ð16Þ

Generally, wP can take on negative values, however, in

Equation 15, the negative values are an artefact of the

approximation and we set wP nað Þ~0 whenever na§N=sd . A

rough estimate of sd can often be obtained from the observed

data, which then renders even Eqs. 14 and 15 nonparametric, but

with a caveat that the measured branching parameter might also

be influenced by the network topology and thus differ from the

purely dynamical sd . In networks in which the distribution of the

node degrees is rather narrow, however, the two values will agree

well.

In principle, the PWA method can be applied to any local

measure (at the level of a single STES). In the present study, we

use the coincidence count between successive time steps,

fi tð Þfj tz1ð Þ, for each link i?j, where fk tð Þ~1, if an event

occurred on node k during the time bin t, or 0 otherwise. While

the coincidence count is a measure of correlation, it does not

measure the actual traffic in a network. In order to estimate the

topology N R, as well as the traffic WCij , we apply PWA that is we

take the average of all one-step estimates weighted by wP tð Þ for a

given link i?j. This yields the general expression for the weighted

count WCij ,

WCij~
1

Wnorm

XNp

t~1

wP tð Þfi tð Þfj tz1ð Þ: ð17Þ

Here, we are not concerned with the overall scaling factor for

WCij , except for making it independent of Np, and we use

Wnorm~Np. To make WCij less dependent on particular

weighting scheme one can use Wnorm~
PNp

t~1 wP tð Þ.
By replacing the weighting factor wP in Equation 17 with those

in Eqs. 14 through 16 we obtain three efficient and simple

nonparametric measures, which we label NC
Eð Þ

ij , NC
Að Þ

ij and NCij

respectively. The expression for NCij is particularly simple and is

the basis of the NC approach:

NCij~
1

Wnorm

XNp

t~1

1

na tð Þ fi tð Þfj tz1ð Þ: ð18Þ

Thus, situations with a large number of potential source nodes are

weighted less in the reconstruction process. The only parameter

needed is the bin size, for which an optimal value can be found

independently as described in [30–32], hence it is a nonparametric

approach.

Other nonparametric approaches. A naive nonparametric

approach that one can take to identify directed influence is simply

to wait for the instances where exactly one source node is active

assuming that active nodes in the near future are causally related

Network Reconstruction from Dynamical Cascades
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to this ancestor. This single source (SS) approach, although simple, is

useful to establish a reference for computationally more elaborate

methods. This approach employs only a subset of all observations,

thereby increasing the likelihood of missed links in the network,

which reduces the efficiency of the network reconstruction. As will

be shown, the SS approach is also prone to large errors in the

presence of noise.

Alternatively, the correlation in activity between nodes is

commonly used to reconstruct networks from the observed

dynamics. It requires a significance threshold, i.e., the expected

correlation produced only by chance obtained from either

theoretical predictions or by applying nonparametric randomiza-

tion techniques in order to make a decision whether a particular

correlation between two nodes is significant, thus establishing the

existence of a link. Here we use the frequency count (FC) approach

for which all occurrences of successive node activations are

counted,

FCij~
1

Vnorm

XNp

t~1

fi tð Þfj tz1ð Þ: ð19Þ

The FC is directly related to correlation, or conditional

probability, depending on the normalization factor used. Here

we use Vnorm~Np. Like all correlation based techniques, the FC

approach suffers from the problem of assigning the correct causal

structure when multiple source nodes are encountered.

Shuffling
For each pair of nodes, we can determine some scalar measure

of connectivity. For example, these can be node to node

correlations, or the FC approach (Equation 19), or the NC

approach using NC
Eð Þ

ij , NC
Að Þ

ij or NCij Ultimately, we are trying

to use these estimates as a measure of directed influence or causal

traffic for each link in the underlying network. However, these

measures will also include a contribution from non-causal

correlations arising when pairs of nodes are active close in time

but had a common ancestor at some prior time during the cascade,

or share common inputs directly. We thus have to determine the

statistical significance for each of the scalar connectivity estimates.

The null-model is obtained by randomizing the recorded activity

cascades using constrained pairwise shuffling. In this randomization

procedure, the times of two randomly selected, active nodes

i and j will be switched, such that the node i active at time ti, will

be assigned time tj and vice versa.

This shuffling method is straightforward to implement for

continuous time events, in which case the time interval distribution

will be preserved. For binned data, one will encounter situations

where the time bin tj already has node i active, and vice versa, in

which case the shuffle is aborted and a new pair of nodes is sought.

Shuffling in this way preserves the average activity at each node as

well as the occupation of time bins with active nodes and thus the

dynamical regime of the underlying branching process (see

Results). To obtain the resampled dataset, the pairwise switching

is repeated nS times, nS being comparable to the total number of

active nodes in the dataset.

By repeating this procedure, NR resampled datasets are

obtained, each with its corresponding NC
rð Þ

ij estimate. We use

the distribution of the NC
rð Þ

ij to determine the threshold value

NC
pð Þ

ij for the given significance level p. The number of shuffled

replicates used to obtain the connectivity estimate at a significance

level p is NR~fo=p, where fo is the ‘‘over-shuffling’’ factor, usually

5 or 10. We obtain the topology, i.e., the adjacency matrix of the

estimated network at the significance level p as

aij~
1 NCijwNC

pð Þ
ij

0 otherwise

(
ð20Þ

and the architecture as

wij~aij NCij{NC
pð Þ

ij

� �
ð21Þ

Hence the reconstructed network is a weighted, directed graph,

NNC
R : wij

� 	
, which depends on the prescribed level of confi-

dence, and is supposed to be a measure of causal traffic in the

network. Note that by using shuffling, we can determine a separate

threshold for each link, thus reducing the bias towards more active

nodes and reducing the contribution from correlations in the

absence of interactions. When comparing reconstruction results

using shuffling and individually derived thresholds with results

based on a single common threshold in order to determine the

significance of links, we always used the best possible (oracular)

single threshold, since in our simulations the original network was

known. We also investigated in our simulations if the threshold

pt~0:5 in the IB approach is indeed optimal and it turns out that

choosing pt anywhere in the range between 0.1 and 0.9 yields very

similar estimates.

Simulation of Network Topology and Architecture
We simulated the branching process dynamics on 4 different

network topologies ranging from a random connectivity with low

clustering to a small-world connectivity with high clustering [44].

For the Erdös-Rényi (ER) network, N nodes were connected

randomly with fixed probability pER resulting in an average node

degree SkdT~ N{1ð ÞpER&NpER and randomly assigned link

directionality. In the Watts-Newman (WN) network [45], each

node had 2K outgoing links to its K nearest neighbors, after which

new links were added randomly with probability pWN to introduce

long-range connections. This algorithm produces a small-world

topology with a high clustering coefficient and an average degree

SkdT~NpWNz2K similar to the topology described by Watts

and Strogatz [44]. In our simulations we used K~4. Neither the

ER nor the WN topology take into account that many networks

self-organize and expand through growth, e.g. cortical neuronal

networks. We therefore also tested two growth models that achieve

a small-world topology with high clustering coefficients. The

Barabasi-Alberts (BA) [46] model uses a preferential attachment

rule in which the probability of attachment from a new node is

proportional to the node degree of the existing nodes. Each new

node establishes m new outgoing links starting initially with m0

disconnected or fully connected nodes. The resulting topology is

scale-free in which the degree distribution decays according to a

power law with a slope of 23. Here we use m~m0~5 and an all-

to-all connectivity for the initial network seed. The BA model

requires a new node to attain some knowledge about the degree

distribution in the network, which might pose a problem for large

networks. In contrast, spatial growth networks [47] do not require

global information about the existing network during develop-

ment. We used the Ozik-Hunt-Ott (OHO) network [48], which is

initialized with m0 nodes on a circle and all-to-all connectivity. In

this network, a new node, whose location is chosen randomly on

the circle, attaches preferentially to its m nearest neighbors with

outgoing links, hence its growth rule is named geographical

preferential attachment. The OHO network is not scale-free, but

has a clear small-world property with a high clustering coefficient
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Cm~2~C 2ð Þ~ 3
2

ln 3{1&0:648, C mð Þ§C 2ð Þ
� �

that is indepen-

dent of the number of nodes. Its average node degree is simply

given by SkdT~2m for large networks. In our simulations, we

used m~6 C 6ð Þ&0:665ð Þ. The initial seed for the OHO network

is the m|m network with an all-to-all connectivity. We note that

for both growth models the number of outgoing links was m for

each node and that both models incorporate a subnetwork (the

initial seed) with maximal clustering that is particularly difficult to

reconstruct in the supercritical dynamical regime.

For each topology, we created specific network architectures by

using constant individual link activation probabilities pij~pd , or

alternatively, by drawing from a uniform distribution, or truncated

Normal distributions (e.g. N 3,1ð Þ=6 truncated within the range

[0,1] and then scaled to SpijT~pd ).

Different dynamical regimes for each topology were explored on

networks with N~5000 nodes and an average node degree of

SkdT~10. The quality of network reconstruction as a function of

reconstruction algorithm, network topology, and network archi-

tecture was studied using N~60 nodes and SkdT~10, which

approximates the number of electrodes from planar integrated

micro-electrode array recordings for neuronal avalanches and the

corresponding node degree. For the BA and OHO network, the

average degree is discretized since it directly depends on the

integer parameter m, (SkdT~2m for undirected case). Here we

used mBA~5 and mOHO~6,SkdT~12.

Simulation of Network Dynamics
The branching process dynamics was simulated as follows. A

source node i was selected randomly according to some initiation

probability distribution (see below) and activated. In the next time

step, all outgoing links emanating from i will have a chance to

activate its neighbors j (targets) with the corresponding link

activation probability pij . Each activated target now becomes a

source for the next generation of active nodes, and this is repeated

for successive time steps until no active nodes are found.

Heterogeneity in node initiation was simulated by assigning the

node initiation probability from a truncated Gaussian profile,

e{ x2
n

2s2
A

, where xn is the normalized set of ordered node indices so

that all nodes span the profile from {zsA to zsA, and z is the

heterogeneity parameter. Thus, the probability of choosing the

center node (the most active one) was a factor of e
z2

2 times larger

than the probability of choosing the two edge nodes (the least

active ones). We used z~1,2, or 5, hence the ratios were <1.65,

7.4, 2.76105 respectively.

We evaluated three different dynamical regimes of the

branching process. In the critical regime, one active node at time

t{1 on average will lead to exactly one active node in the next

time step t and the distribution of avalanche sizes obeys a power

law with a slope of 21.5 [49]. In the ER network, the critical

regime is reached if the average link probability

pc
d~1=SkdT~1=NpER, for k%N and for WN networks,

pc
d~1= NpWSz2Kð Þ. Conversely, sub- and supercritical regimes

of the branching process were simulated at

pd~pc
d



2 and pd~2pc

d , respectively. For the BA and OHO

networks, a power law spanning a large range of avalanche sizes

was difficult to identify, although their sub- and supercritical

regimes were similar to those in ER and WN networks. We

therefore used for those simulations a value for pc
d that yielded the

closest fit to a power law size distribution between the sub- and

supercritical regimes (see also Figure 2). A refractory period

ensured that an avalanche ended once, or before, all nodes in the

network were activated, a constraint that assured termination of

the process particularly when simulating supercritical dynamics.

Random node activation independent from the ongoing

dynamics, i.e. due to noise or external inputs, was implemented

such that any node on the network could be activated with

probability pext per time step, expressed as pextN|100%. We used

a level of 20% for all simulations with noise, which translated on

average into the random activation of one node every five time

steps, independent from the ongoing dynamics. Note that

randomly activated nodes did not initiate new cascades, otherwise

they would increase reconstruction efficiency since the patterns of

Figure 2. Cascade size distributions obtained from simulations of subcritical, critical, and supercritical branching process dynamics
on different network topologies. (A) 3D plots of the avalanche size distributions ranging from the subcritical (low pd , front) to supercritical (high
pd , back) dynamics of the branching processes simulated on 4 different network topologies with N~5000, SkdT~10 for OHO SkdT~12ð Þ. The link
probability pd is constant for all links, and served as a control parameter for different dynamical regimes. (B) Size distributions for all 4 topologies at
three particular values of pd , subcritical (blue), critical (black), and supercritical (red) regimes (see the indicated cross-sections in (A)). The distribution
of avalanche sizes s in the critical branching process regime follows a power law with slope of 23/2 (dashed line). A clear critical point is observed for
ER and WN networks, while for OHO and BA a power law was observed only for a portion of the size values but not for the full range.
doi:10.1371/journal.pcbi.1000271.g002
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activity in the ‘noise-induced’ cascades would also be influenced in

the same manner by the underlying network that we are trying to

reconstruct. While noise was used universally, in some instances

we also tested the robustness of the algorithms to time jitter,

implemented such that every active node at time t was displaced

into time bin tz1 or t{1 with 20% chance.

Reconstructing N R from Cascade Dynamics
We applied the NC, FC, IB, and SS algorithms to different

instances of the simulated cascade dynamics on all four network

topologies and different architectures. Because the algorithms were

described in detail in the Theory section, here, we focus on

additional, practical issues.

When reconstructing a network using IB, we used a cut-off

value for the number of active nodes considered, nmax
a ~16, above

which the IB iteration is skipped. Those iterations would take a

significant portion of the evaluation time and yield only a slight

gain in the posterior probability. While this diminished somewhat

the performance of the IB particularly in the supercritical regimes,

larger values of nmax
a would have resulted in impractically long

reconstruction times.

In order to establish significance for various network parame-

ters, we used two randomization techniques, the Erdös-Rényi

randomization (ER) and the degree sequence preserving random-

ization (DSPR) [50,51]. In ER randomization, links were

completely randomized in order to obtain an ER network with

an equivalent number of nodes, links, and weight distribution as in

the original network. This randomization destroys any correlations

and changes the node degree distribution. In the DSPR, two

directed links were chosen randomly between four different nodes,

and then the target nodes of the two links were switched preserving

the degree distribution. This is repeated many times, and in our

implementation the number of such switches is equal twice the

number of the links in the network (number of links that have not

been switched even once is less than 2%).

Finally, for each of the network reconstructions, the total error,

Ep, was expressed as the number of links that differed between the

reconstructed network N R and the original network N relative to

the total number of links in N ,

Ep~
Ndiff

Ntrue
|100%: ð22Þ

This error counts both false positives, i.e. an estimated link does

not exist, as well as false negatives, i.e. an existing link was not

identified, and because N is usually sparse, the error can far

exceed 100% of the true number of links. The error was averaged

over 10 different realizations for each topology and expressed as

mean6standard deviation, if not stated otherwise. When com-

paring two networks, neither of which represents the ‘‘gold

standard’’, we use the following two measures for comparison.

One is, EU , the percent difference in topology, similar to Ep, but

now expressed as the total number of the differences relative to the

number of the links that exist in either of the two networks. This is

a less stringent measure than the Ep, and the maximal error is

limited to 100%. The second is the Pearson correlation coefficient

between the link weights among the common links in the two

networks, rI , or alternatively, among the links that are in either of

the two, rU .

In order to reduce a potential bias in reconstruction efficiency

from arbitrarily selecting a particular significance level, we chose

the best reconstruction obtained from the significance levels

p~0:005, 0:01, 0:02, 0:05, 0:1, 0:2. Using an over-shuffling fac-

tor of 10, best reconstructions for NC and FC were generally

obtained at pv0:05. In our simulations, we can also measure the

traffic of causal activations through any given link by summing all

the activations that actually occurred between its source and target

nodes. The resulting traffic for each link was compared with the

reconstructed link weights (see Equation 21) to study traffic

estimates using FC and NC.

MEA Recording and Neural Avalanches
Coronal slices from rat dorsolateral cortex (postnatal day 0–2;

350 mm thick) were attached to a poly-D-lysine coated 868 multi-

electrode-array (MEA; Multichannelsystems, Germany) and

grown at 35:50C in normal atmosphere in standard culture

medium without antibiotics for 4–6 weeks before recording (for

details see [29–32]). In short, spontaneous avalanche activity was

recorded outside the incubator in normal artificial cerebrospinal

fluid (aCSF) under stationary conditions (laminar flow of 1–2 ml/

min) for up to 10 hrs. For long-term, pharmacological experiments

a second set of cultures was recorded inside the incubator (for

details on long-term recording conditions see [29]). In short,

MEAs with cultures were placed onto storage trays inside the

incubator, which were gently rocked (<200 s cycle time). For

recording, single cultures grown on the MEAs for 5–6 weeks were

placed into a head stage (MultiChannelSystems, Inc.), which was

affixed to a second tray within the incubator and which had the

exact same motion as the primary storage tray. This allowed

recording from cultures inside the incubator in culture medium

under conditions identical to growth conditions. Bath application

of the AMPA glutamate-receptor antagonist 6,7-dinitro-quinoxa-

line-2,3(1H,4H)-dione (DNQX, 3 mM Sigma) was used to reduce

synaptic excitability in the cortical network. DNQX was directly

added to the culture chamber. For wash, the 800 ml medium was

replaced with normal pre-conditioned culture medium. Analysis

was based on the following time periods of spontaneous activity: 2–

5 hr before, 15–20 hr during DNQX and 2–5 hr after 19 hr of

washing of the drug.

Spontaneous local field potentials (LFP) were low-pass filtered at

50 Hz and sampled continuously at 1 kHz at each electrode.

Negative deflections in the LFP (nLFP) were detected by crossing a

noise threshold of 23 SD followed by negative peak detection

within 20 ms and nLFP peak times and nLFP amplitudes were

extracted. Neuronal avalanches were defined as spatiotemporal

clusters of nLFPs on the MEA. In short, a neuronal avalanche

consisted of a consecutive series of time bins with width Dt that

contained at least one nLFP on any of the electrodes. Each

avalanche was preceded and ended by at least one time bin with

no activity. Without loss of generality, the present analysis was

done with bin width Dt, estimated individually [30]. Dt ranged

between 2{6 ms for different sets of cultures. Avalanche size was

defined as (1) the number of active electrodes that constitute an

avalanche, i.e. the number of nLFPs, and (2) as the sum of absolute

nLFP amplitudes on active electrodes. In the former case, size

ranged from 1 to 60 (corner electrodes were missing on the array),

whereas in the latter case size ranged from 5 mV (lowest detection

level of an nLFP) up to several thousands of mVS.

Results

Dynamical Regimes and Cascade Size Distributions
During activity cascades, an active node on average can activate

less than 1, exactly 1, or more than 1 node in the next time step in

correspondence to the subcritical, critical, and supercritical

dynamical regime of a branching process. We therefore identified

these three dynamical regimes for each of the 4 topologies by

calculating the corresponding cascade size distributions on
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networks with N = 5000 nodes, SkdT~10 and a constant

activation probability pd for all links. For both the WN and ER

networks, the critical probability, pc
d , was characterized by a

cascade size distribution that followed a power law with a slope of

21.5 as predicted by theory [49] (Figure 2; pc
d~0:095 for ER;

pc
d~0:13 for WN). Conversely, an exponential distribution

characterized the subcritical regime in which most cascades

engaged only few nodes, whereas in the supercritical regime, a

bimodal size distribution revealed that cascades stayed either

relatively small or engaged most of the network. For the BA

network, the distribution of cascades sizes in the subcritical regime

followed a power law with a slope of <23 for sizes ,10,

suggesting that cascades in that regime were dominated by the

degree distribution (slope 23). In contrast, the supercritical regime

was identified by a bimodal size distribution. At the transition to

the supercritical regime, the BA network revealed a power law

slope close to 21.5 for a small range of avalanche sizes (10 to 100

at pd~0:045), which we used to identify the critical dynamics. For

the OHO network, a critical regime was indicated at pc
d~0:07

(mean field prediction was 0.085) at which the cascade size

distribution revealed a corresponding power law with slope of

21.5 (Figure 2), from which it deviates for large cascade sizes.

Thus, given the constraints of a constant pd , the critical regime in

the current simulations represented an approximation of a true

critical dynamics for both the BA and OHO network (Figure 2).

The characteristic size distributions for each dynamical regime

suggest a varying efficiency in reconstructing networks based on

the observed activity cascades. For the subcritical regime, we

expect fewer ambiguous situations with multiple source nodes

(Figure 1C) and thus better accuracy in network reconstruction.

These smaller cascades, however, contain fewer links that can be

estimated per unit time, which should slow the reconstruction

progress. The opposite holds for the supercritical regime where

large cascades allow for a larger percentage of links to be estimated

per unit time, while the reconstruction accuracy might decrease

due to an increase in ambiguous situations. Consequently, we

expect the critical dynamical regime to achieve a balance between

these opposing tendencies in network reconstruction. Additionally,

in subcritical regime much greater number of initial events will not

propagate at all, in which case a reconstruction step cannot be

performed. Thus, it takes much longer time to collect the same

number of STES in the subcritical regime than it does in critical or

supercritical regimes.

NC Robustly Reconstructs ER Networks for All Dynamical
Regimes

We quantified the relationship between the dynamical regime

and the reconstruction efficacy by plotting the total reconstruction

error Ep as a function of number of propagation steps, Np, which

is the total number of successive time bins that both contain at

least one active node. This was done for all three regimes and all

four algorithms (Figure 3; ER topology, N~60, SkdT~10,

uniform link activation probability pd , z~1 for avalanche

initiation; see also Figure 4B). For both FC and NC, the

significance of a link was based on 1000 shuffles. For the IB

algorithm, the correct value of pd was used in the dynamic term

(Equation 4).

Figure 3. The NC algorithm (NC) performed robust and with high accuracy in both critical and supercritical regimes even in the
presence of noise. (A) Reconstruction error Ep relative to the original ER network for the four algorithms and all three dynamical regimes
N~60, SkdT~10ð Þ. Left: without noise. Right: with 20% noise. Open arrow: total number of reconstruction steps to reach 1% accuracy for the IB

algorithm (benchmark). (B) The NC algorithm in combination with shuffling is required to reconstruct ER networks for all three dynamical regimes. Ep

is plotted against the number of propagation steps without shuffling (red broken line, single) and with shuffling (black solid line, shuffle) for the FC
(left) and NC algorithm (right). Same network condition as in (A) with 20% noise. Note the robust performance of NC with shuffling in the supercritical
regime. Arrows: reconstruction failure (red), success (black), see text. SS: Single Source. FC: Full Count. NC: Normalized Count. IB: Iterative Bayesian.
Mean and SD obtained from 10 network simulation replicates.
doi:10.1371/journal.pcbi.1000271.g003

Network Reconstruction from Dynamical Cascades

PLoS Computational Biology | www.ploscompbiol.org 9 January 2009 | Volume 5 | Issue 1 | e1000271



In our initial evaluation without noise, the IB algorithm was

superior in reconstructing the network in all three dynamical

regimes. As predicted from the cascade size distributions, its

reconstruction efficiency was higher in the critical regime

compared to the subcritical regime (Figure 3A, left, open arrows).

Importantly, the IB algorithm further improved in the supercritical

regime demonstrating its robust handling of situations with

common inputs, where it achieved a high efficiency that is

N N{1ð Þ~3,540 possible links were estimated in approximately

the same number of propagation steps in order to reach a

reconstruction accuracy of 1%. Similarly, the correlation algo-

rithm FC, while being less efficient than the IB algorithm, faired

better in the critical regime when compared to the subcritical

regime. However, it failed in the supercritical regime to achieve

1% accuracy even for up to 106 propagation steps demonstrating

its sensitivity to correlations due to common inputs (Figure 3A, left,

red arrow). Importantly, our newly developed NC algorithm

clearly overcame the weakness of the FC algorithm and

demonstrated its efficiency in all three regimes (Figure 3A, left,

black filled arrow). We note that the error reported is calculated

with respect to the number of existing links in the network, i.e.

<600 links for N~60 nodes, SkdT~10 out of 3,600 possible

links. Hence a reported error of 1% is equivalent to about 1/

6 = 0.167% overall error in deciding whether a link existed or not.

The simple SS algorithm, by avoiding ambiguous situations,

performed surprisingly well for all regimes and was comparable to

the performances of the IB and NC algorithm. However, the SS

algorithm was highly sensitive to noise and relied on the

assumption that the observed activations completely arose from

the intrinsic dynamics. In fact, when we repeated our simulations

in the presence of 20% noise (Figure 3A, right), SS failed entirely

in all regimes resulting in errors significantly larger than 100%.

Equally important, the IB algorithm now required 4–5 times more

propagation steps to reach an accuracy of 1% in the supercritical

regime; a sensitivity to noise that originated from the iterative

development of the priors over time (Figure 3A, right, open

arrow). In the presence of noise, only the NC algorithm robustly

reconstructed networks with similar efficiency in the critical and

supercritical regime thereby performing even better than the IB in

the supercritical regime (Figure 3A, right). In comparison to the

Figure 4. Robustness of the NC for heterogeneous network dynamics. (A) NC scales well with an increasing number of nodes N in terms of
number of propagation steps, Np (dark blue) and cascades (light blue) needed to reconstruct network topology within 1% accuracy. The number of
needed steps Np (cascades) is normalized by the number of existing links (Nkd , top) and the total number of potential links (N N{1ð Þ, bottom). (B)
Network reconstruction in the face of large heterogeneities in node initiation distribution z~1,2,5. Performance measured in terms of number of
propagation steps to reach 1% Ep (ER network with N~60; SkdT~10, pd~0:1, 20% noise). Inset in B: Density plots of node initiation probability for
z~1,2,5). (C) Comparison of IB, FC and NC, when the actual activation probabilities pij are heterogeneous (normally distributed with z~5) and
temporal jitter is introduced in the cascading dynamics (node activation has a 20% chance to be shifted to (t21) or (t+1)). Note that IB fails to
reconstruct networks under these condition. FC is robust but only in the subcritical and critical regime. In contrast, NC and NC Að Þ perform robustly
for all regimes. Red arrows: reconstruction failure.
doi:10.1371/journal.pcbi.1000271.g004
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standard correlation approach, the NC algorithm provided about

50% improvement in the critical regime and more than a 10-fold

improvement to achieve 3% accuracy in the supercritical regime.

These results demonstrate that NC performed best given (1) its

simplicity, requiring no assumptions about the network connec-

tivity or network dynamics, (2) its high accuracy for all three

regimes, and (3) good reconstruction efficiency of about 2.7

propagation steps per potential link (total N N{1ð Þ links) for the

critical and supercritical regime at 1% reconstruction error.

Improvement in Network Reconstruction Using Pairwise
Shuffling

Correlation methods in network reconstruction commonly

utilize a single, global threshold to identify links, e.g. links are

assumed to exist for all pairwise node correlations that are above a

minimal correlation value (e.g. [18,20,52–54]). However, hetero-

geneous node activation frequencies, as well as other conditions,

might require different significance thresholds for each link. For

the networks in Figure 3, we compared the efficiency in network

reconstruction when establishing link significance using either

shuffling or, alternatively, a fixed, best possible threshold for both

the FC and NC algorithm in the presence of 20% noise. While

shuffling performed slightly worse in the subcritical regime, it

significantly improved reconstruction accuracy in the critical and

supercritical regime (Figure 3B). For the FC algorithm, shuffling

was necessary for an accurate estimation in the critical regime, but

it was insufficient in the supercritical regime where the error Ep

remained high above 1%, even for large numbers of propagation

steps (Figure 3B, red arrow). For the NC algorithm, shuffling was

required to accurately reconstruct a network with supercritical

dynamics (Figure 3B, black arrow). The results, here plotted for

p~0:01, were similar for p~0:001{0:2 (data not shown). This

analysis clearly demonstrates that correlation based methods

benefit from using shuffling estimates for thresholds in the critical

regime. On the other hand, the NC algorithm in combination with

shuffling is required for network reconstructions in the supercrit-

ical regime.

The reconstruction results were obtained on a relatively small

network with N~60 nodes, and a question arises on how well it

performs for larger networks. Since the network model we are

trying to reconstruct has N N{1ð Þ&N2 binary parameters, it is

natural to expect that the number of needed samples, i.e.

propagation steps, for the same reconstruction error should at

least increase proportionally to N2. Using NC to reconstruct an

ER topology from the cascades in the critical dynamical regime,

we demonstrate (Figure 4A) that the number of propagation steps

required for 1% reconstruction accuracy scales approximately

linearly with the total number of potential links in the network, i.e.

it scaled as N2, making it a potentially useful algorithm for

reconstructing larger networks.

Of particular concern for network reconstruction are situations

in which nodes rarely participate in cascade initiations. For

example, initiation sites of neuronal avalanches differ up to an

order of magnitude in avalanche initiation rate [29,32]. Such

heterogeneity should make it more difficult to reconstruct the

topological neighborhood of less active nodes. Nevertheless, as

shown in Figure 3B, the NC algorithm accurately reconstructed

networks with heterogeneities in node initiation frequency up to a

factor of 268,000:1 for all three dynamical regimes and with only a

slight increase in computation for critical and supercritical

regimes.

Finally, we tested the robustness of the IB, FC and NC

algorithms in reconstructing networks with heterogeneous activa-

tion probabilities pij even though the reconstruction algorithms

assume a fixed pd In addition, we introduced a temporal jitter of

20% when binning activity cascades as to account for temporal

imprecision in cascade measurements. As before, the noise level

was 20% and the node initiation heterogeneity was set to z~1.

Under these conditions, the IB failed (Figure 4C) to reconstruct the

networks to 1% accuracy for all dynamical regimes. Similarly, FC

was robust in subcritical and critical regimes, but it failed to reach

below a 10% error in the supercritical regime. In contrast, NC

always reached below 1% reconstruction accuracy, and performed

the best in all regimes. The performance of NC can be further

improved in supercritical regimes when the knowledge of the

branching parameter, sd is taken into account, as in NC
Að Þ

ij

(Figure 4C).

Efficiency of NC To Reconstruct Different Network
Topologies

The NC algorithm also allowed for a robust and accurate

reconstruction of network topologies that differed from random

connectivity. We tested its performance for 4 different topologies

and all three dynamical regimes in comparison to the FC

algorithm (Figure 5; N~60 nodes, SkdT~10, pd~0:1, z~1
and reconstructed with p~0:01 and 1000 shuffles). While the

FC algorithm failed for the OHO topology in the critical regime,

the NC algorithm reconstructed all topologies in the subcritical as

well as critical regime (Figure 5B). Significantly, the FC algorithm

failed to reconstruct any of the small-world topologies in the

supercritical regime, while the NC algorithm reconstructed the

WN as well as the BA network, demonstrated here up to an

accuracy of 0.1%. Only the OHO network provided a limit above

1% in the efficacy in network reconstruction (Figure 5B). This limit

most likely arises because a supercritical dynamics will engage all

nodes most of the time in a highly clustered manner at which

pairwise shuffling becomes too constrained (i.e. shuffling two active

nodes between two different time points). The errors due to

reconstruction will most likely be false positives and random in

nature. Hence the overall network parameters (average clustering

coefficient, mean path length, average degree) might or might not

be affected significantly by the errors of this order of magnitude.

Accordingly, we plotted the reconstructed network parameters as a

function of propagation steps for the OHO network in the

supercritical regime. As can be seen from Figure 5B, even

seemingly high error rates of 10% did not significantly affect the

clustering coefficient, while the average degrees are biased to

larger values, indicating that most of the errors are false positives.

The Reconstruction of Network Traffic Using NC
The traffic on a network, i.e. the network flow, is one of the

most important aspects that characterizes network functionality

[55]. It was reliably estimated by NC for all three dynamical

regimes and most topologies. We studied the correlation between

the known link activation probabilities pij and the estimated link

weights wij on an ER network for which link activation

probabilities were drawn either from a uniform distribution or a

truncated normal distribution between [0,1] with z~5
(N~60,SkdT~10, pd~const, and 20% noise). In Figure 6A it

is shown that for both uniform and normal distributed activation

probabilities, NC did significantly better than FC in relating the

reconstructed weights wij to the original weights prescribed as pij ,

particularly in the supercritical dynamics. Furthermore, when

correlating the estimated wij with the actual traffic in the network,

calculated during the simulation, we found that NC provided a

very good measure of the traffic between two nodes (slope close to

1; Figure 6B and 6C). In contrast, FC significantly underestimated

the traffic for increasingly higher traffic values (slope %1). These
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Figure 5. The NC algorithm reconstructs random and most
small-world network topologies in all three dynamical regimes.
(A) Comparison in reconstruction efficacy between the FC (left) and the
NC algorithm (right; N~60, SkdT~10, pd~0:1,z~1, 20% noise). Ep is
plotted against the number of propagation steps. FC fails to reconstruct
the OHO topology in the critical regime and any of the small-world
topologies in the supercritical regime (red arrows). In contrast, NC
robustly performs in the critical and supercritical regime for most
topologies. Note plot of Ep down to 0.1%. (B) Effect of large Ep on basic
network properties. The clustering coefficient C and excess clustering
coefficient DC (inset) approach the real values (broken red lines) with
increasing number of propagation steps (left). NC reconstruction of the
OHO network in A in the supercritical regime. Right: Corresponding
analysis for SkdT and mean path length SdT. The increase in Ep above
30,000 propagation steps barely affects C, despite slightly increasing
SkdT and decreasing SdT. (n = 3 network simulations).
doi:10.1371/journal.pcbi.1000271.g005

Figure 6. NC improves the reconstruction of the network traffic
for different topologies and critical and supercritical dynam-
ical regimes. (A) NC significantly improves the estimation of link
activation probability pij based on link traffic wij . Correlation between
pij and wij R p,wð Þð Þ plotted for all three dynamical regimes. The mean
and SD for each point were obtained from 10 network realizations. The
figure indicates significant improvement by NC over FC for uniform
(unif) and normal (norm) distributed pij (ER network). (B) NC accurately
estimates link traffic wij . Scatter plot of wij vs. actual traffic for each link
for critical and supercritical regimes and two different link activation
probability distributions. Note that wij as estimated by NC (black dots)
are located along the diagonal (broken line) indicating correct estimates
of local traffic (n = 10 networks combined). (C) Same as in (B), plotted for
WN, BA, and OHO topologies in the supercritical regime with normally
distributed pij . (D) NC estimates the network traffic more accurately
than FC. Slope of linear regression taken from analysis as shown in (B)
and (C) for all topologies, two distributions, and three dynamical
regimes. Note that the slope for NC is closer to 1, compared to FC in
particular for the critical and supercritical regime. Reconstruction
accuracy is low for OHO in the supercritical regime (SkdT~10,z~1,
20% noise). Results taken after Np~80000.
doi:10.1371/journal.pcbi.1000271.g006
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results, obtained on an ER network topology, were also confirmed

for small-world topologies, where NC reliably estimated the traffic

on the WN and BA network for all three dynamical regimes. Only

for the supercritical regime on the OHO network did the NC

algorithm estimate the traffic poorly (Figure 6D, black dots).

However using NC Að Þ further improved the reconstruction in

traffic similar to that of an equivalent ER network (R = 0.72; data

not shown).

The Small-World Topology of Neuronal Avalanches
Given that the avalanche dynamics can be realized on different

topologies (see Figure 2), we used the robust performance of the

NC algorithm for different dynamical regimes and widely varying

network topologies in order to reconstruct the functional topology

and architecture of real neuronal networks that display neuronal

avalanches recorded with integrated planar micro-electrode arrays

(MEA) from neuronal cortex cultures. Spontaneous activity in

these cultures is characterized by negative deflections in the local

field potential (nLFP) indicative of a local synchronization within a

subgroup of neurons near the electrode (Figure 7A–D; [30]). The

organization of nLFPs in the neuronal network takes on the form

of complex spatiotemporal patterns that evolve over successive

time bins (Figure 7E and 7F). These patterns, when interpreted as

successive node activations (see Figure 1B), were used to

reconstruct the functional network topology and network archi-

tecture. Under normal conditions, the dynamics that emerges in

this system [29] is characterized by neuronal avalanches whose

sizes obey a power law with a slope of 21.5 for avalanche sizes

measured in terms of integrated nLFP amplitude or number of

nLFPs indicative of a critical state (Figure 7G, [6,56,57]).

Importantly, the power law in avalanche sizes correlates with a

sequential activation of local neuronal groups that is analog to a

Figure 7. Neuronal avalanches in organotypic cortex cultures recorded with integrated planar micro-electrode arrays (MEA). (A)
Light microscopic image of an organotypic culture from rat somatosensory cortex grown for 12 days on an MEA (square). Electrode positions are
visible as an 868 dot matrix with connecting leads attached. (B) Spontaneous activity at a single electrode is characterized by the occurrence of large
deflections in the local field potential (LFP). (C) A single LFP deflection at higher temporal resolution taken from (B). The negative peak deflection
(nLFP) that crosses a negative threshold (broken line) is characterized by its peak amplitude nLFP tð Þð Þ and peak time t. (D) The nLFP can be
interpreted as the local synchronized activity of a subgroup of active neurons (gray triangles) recorded by a nearby electrode (disc). (E) nLFPs on the
MEA are clustered into periods of high activity separated by periods of relative quiescence (top), an organization that repeats at higher temporal
resolutions (middle and bottom). (F). Sketch of the definition of neuronal avalanches using 5 electrodes on the MEA. A neuronal avalanche arises from
the concatenation of successive time bins of width Dt that contain at least one nLFP. (G,H) Power law in avalanche size distribution with slope of 21.5
for sizes expressed in summed absolute nLFP amplitudes (left) or number of active electrodes, i.e. nLFPs (right; n~7 networks; recalculated from [30]).
doi:10.1371/journal.pcbi.1000271.g007
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critical branching process [29–32]. In the absence of any

knowledge of the real underlying network organization, we

reasoned that the reconstructed network architecture might be

reliable if its features converged with increasing number of

propagation steps in the reconstruction process, e.g. as shown for

the simulated OHO network in Figure 5B. Indeed, the network

parameters such as the clustering coefficient, C, and average node

degree, SkdT, remained largely constant beyond 30,000 propaga-

tion steps. This was in agreement with our simulation results,

where NC achieved a smaller than 1% error estimate for all

topologies in the critical regime within a similar range of

propagation steps (Figure 5). Importantly, despite the relatively

small network size of N&60 and an average degree of

SkdT~15:7 pS~0:27ð Þ, the clustering coefficient of C~0:63
was significantly higher than what would be expected for

corresponding randomized versions of the network

CER~0:29; CDSPR~0:31ð Þ. Similarly, we also plot the excess

clustering DC~C{CDSPR, a network parameter (not a recon-

struction error in C) that measures the clustering coefficient in the

network that is beyond the one of an equivalent randomized

version of the network. Results for DC indicate that the high

clustering coefficient was not simply due to saturation by adding

more and more links into a small network (Figure 8A and 8B).

These networks have nearly a linear relationship between the node

degree and its strength, i.e. the summed weights of all links at a

node, s kð Þ!kd
b, with b&1 (Figure 8D) while Figure 8E shows the

node in- and out-degree distributions SkdT~13ð Þ. The weight

distribution of the links revealed an exponentially decaying tail

demonstrating the presence of a few links with large traffic

(Figure 8F).

Given that the relatively high clustering was achieved with a

small network diameter of SdT~2:21 (Figure 8A and 8B), which

was similar to those of the equivalent randomized networks

SdTER~1:82 and SdTDSPR~1:81ð Þ, our findings demonstrate

that the neuronal cultures with neuronal avalanche dynamics

establish a small-world topology as previously reported in abstract

form [58,59]. The functional network topology of the cortex in vitro

cultures (and acute slices [31]) derived from neuronal avalanches is

compared to the results reported for various neural systems in

Table 1. The networks range from full brain and cortical networks

among different anatomical and functional areas of the brain

[16,44,60–63] to cortical slices and cultures, as well as the neural

network of the nematode C-elegans [44]. The table also shows the

results for 21 cortical networks binned at Dt~4ms (14 were

acquired in the course of the previous studies, and combined with

the current set of 7, also re-binned to the same Dt). The networks

and the sources of this data are listed in the caption. One should

note that these networks, with exception of the C-elegans are not

very sparse, in which case the clustering coefficient will depend on

the size of the network, as the table roughly indicates. A better

Figure 8. Neuronal avalanches reveal a functional small-world topology. (A) The clustering coefficient C converges to a high and constant
value with increasing number of propagation steps for all 7 networks studied. Inset: Average excess clustering coefficient DC for all networks and
different Dt. Note that DC does not represent an error of reconstruction, but an important network property that measures specificity in network
clustering. The quality of reconstruction should be judged by whether or how fast it approaches the correct steady value (B) Corresponding change
in DC (top) and mean path length SdT (bottom)) for the networks reconstructed in A. Small-world topology is defined by a high excess clustering DC
and low SdT. (C) Average change in mean node degree SkdT and C for two significance values in link reconstruction. Note robustness of C to an
increase in significance whether link exists. (D) The node degree is linearly related to the node weight for both in and out degrees. Broken line:
slope = 1. Each network reconstructed at 30,000 steps with links smaller than 20% of the maximal traffic pruned. (E) Node degree distributions for in
and out degrees reveal a predominance of nodes with 10–20 links. (F) Semi-logarithmic plot of link weight probability demonstrates the presence of
an exponential decay (broken line) for links with high traffic. (D–F) All networks from (A) combined.
doi:10.1371/journal.pcbi.1000271.g008
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comparison between these different systems can be achieved by

using the excess clustering DC, found in the range between 0.13

and 0.32, and which shows no obvious dependence on network

size or sparsity.

Correspondence between Functional and Structural
Small-World Topology

Functional connectivities are dynamically modulated even on a

millisecond time scale [21,22]. For example, the functional

connection of a single synapse, i.e. its efficacy to elicit a spike in

a post-synaptic neuron, depends on the depolarization of the post-

synaptic neuron, which itself is linked to the neuron’s inputs from

within the network, i.e. level of network activity. This suggests that

the functional small-world topology reconstructed from the

dynamical cascades, which captures the spatiotemporal organiza-

tion of spiking activity [33], might change with a change in

network activity. On the other hand, local synaptic plasticity

mechanisms such as spike-timing dependent plasticity [64] are

expected to translate successive neuronal activations as reflected in

the spontaneous dynamical cascades into a corresponding increase

in synaptic strength thereby establishing a structural correlate of

the observed dynamics. In that case, the network organization

might be expected to be relatively robust to a decrease in overall

activity levels.

By taking advantage of the NC algorithm to reconstruct

network architectures in subcritical and critical regimes, we tested

the robustness of the functional small-world topology to acute

changes in network activity. We acutely reduced the efficacy of

excitatory glutamatergic fast synaptic transmission in the cultured

networks by bath application of the AMPA receptor antagonist

DNQX (n = 3 networks). As expected, 3 mM of DNQX

significantly reduced the rate of spontaneous cascades by

66+13% pv0:005ð Þ. Thus, in order to compensate for the

reduced number of propagation steps per time, networks were

reconstructed from <20 hr of activity in the presence of DNQX

compared to 2–5 hrs of the control and wash condition. DNQX

also reduced the formation of large avalanches leading to size

distributions more similar to that of a subcritical state, which

clearly deviated from the power law with a slope of 21.5 for the

pre and wash condition (Figure 9A). DNQX significantly reduced

the traffic on the network, which under normal conditions

revealed an exponential distribution (Figures 8 and 9B). Despite

these significant reductions in cascade rate and size as well as link

traffic, the small-world topology of the critical network obtained

before and after DNQX, nevertheless, was reliably reconstructed

during DNQX as indicated by the similarity in the clustering

coefficient C with increasing number of propagation steps

(Figure 9C). On average, C, DC, as well as SdT was not different

between controls and DNQX pv0:05ð Þ. A detailed link-by-link

comparison using EU ,rI , and rU , between the ‘‘pre’’«‘‘wash’’

showed an error of EU~54% and correlations,

rI~0:71, rU~0:68. Similarly, a comparison between

‘‘pre’’«‘‘DNQX’’, and ‘‘DNQX’’«‘‘wash’’ yielded EU~63%,
rI~0:46, rU~0:46 and EU~66%, rI~0:44, rU~0:44, re-

spectively. When the comparison were made between the

randomized versions of each network (ER randomization), the

results were virtually the same for all three cases,

EER
D ~92+1%,rER

I ~0+0:1,rER
U ~{0:22+0:2

� �
. These results

show that while these networks are far from identical, their overlap

is significantly larger than expected by chance.

Discussion

In the present study, we developed a method that derives a

weighted directed graph based on the observed cascade dynamics,

which successfully overcomes ambiguous source and target node

correlations in all dynamical regimes of a branching point process.

Several methods have been previously employed to cope with the

issue of common inputs when using a correlative approach. For

example, using delayed correlations, Cecci et al. [20] demonstrat-

ed power law scaling in human fMRI data even when links with

zero delays indicative of common input were removed. A three-

node motif approach using mutual information allowed to remove

potential links arising from common input resulting in undirected

small-world graphs reconstructed from spontaneous spiking

activity in dissociated cultures [52]. Assuming an Ising-model

underlying pairwise node correlations, non-directed functional

connections have been estimated for networks of up to 10 nodes

from spontaneous neuronal activity in vitro [65,66] and genetic

interactions [67]. Although, the last approach is able to identify

common input situations, it results in non-directed graphs, in

contrast to our approach which also reconstructs directed network

traffic.

Table 1. Network properties for some known neural systems: C-elegans [44]; Rat Cortex in vitro, Acute Slice (average of n~4
datasets, binned at 4 ms) [31]; Macaque Brain [61]; Macaque Visual and Somatosensory Cortex [61]; Cat Brain [62]; Rat Cortex in
vitro, Cultures n~21ð Þ, binned at 4 ms [29,30]; Rat Cortex in vitro Cultures n~7ð Þ, gathered at 1 ms and re-binned at 2 ms [30]; Cat
Cortex [62]; Macaque Visual Cortex [60].

Network N Skd T pS SdT SdTDSPR C DC

C-elegans 297 7.9 0.03 4.00 3.06 0.24 0.15

Rat Acute Slice (n = 4) 50 5.6 0.12 2.94 2.40 0.33 0.19

Macaque Brain 71 10.5 0.15 2.34 2.06 0.51 0.26

Macaque (Vis-SM) 47 10.7 0.23 2.05 1.90 0.61 0.23

Cat Brain 95 22.4 0.24 1.92 1.81 0.54 0.15

Rat Culture (n = 21) 58 15.7 0.27 2.14 1.81 0.55 0.25

Rat Culture (n = 7) 59 15.8 0.27 2.21 1.81 0.63 0.32

Cat Cortex 52 15.7 0.31 1.81 1.71 0.60 0.19

Macaque Visual 32 9.8 0.32 1.76 1.71 0.59 0.13

The networks are ordered by increasing sparsity pS .
doi:10.1371/journal.pcbi.1000271.t001
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Bayesian Approaches to Network Reconstruction
The Bayesian approaches described here differ from the so-

called Bayesian networks, or belief networks [68–70], which

specialize in the reconstruction of directed, acyclic graphs with a

smaller number of configurations to be explored. In order to

reconstruct cyclic graphs, ‘‘loopy’’ Bayesian network approaches

[71] can be used, however, they are, even in their approximate

form, NP-hard [72]. Bayesian networks are particularly useful in

small networks when precise Bayesian inference is required for

each link. In contrast, the IB or PWA approaches in the present

study are meant for the reconstruction of large networks from

large datasets. For that purpose we derived and tested new

methods for reconstructing the functional network topology and

traffic from dynamical network cascades. We made the Bayesian

methodology feasible by dividing the observations and the network

into individual target activations with the corresponding active

subnetworks (STES). The essential computational reduction was

achieved by using the assumptions of (a) only the events in the near

past (the source nodes) are a potential cause for an activation event

in the cascade and (b) the activation events of two different target

nodes that have common source nodes are independent. Both

assumptions make sense in neuronal networks such as the cortex,

in which events in the near past predominantly influence the

present state of a neuron and where the synaptic transmission of a

neuron at different postsynaptic sites is independent. All these

methods rely on the assumption that the underlying dynamics is

stochastic. A fully deterministic dynamics would not allow to

discriminate direct from indirect influences.

To combine individual STES and to obtain the reconstructed

network, N R, we used the IB and PWA approach. They enable

one to improve the reconstruction reliability whenever additional

knowledge about the dynamics (or priors in the case of PWA)

becomes available. They are computationally feasible, since their

computational complexity is simply the number of STES, NSTES,

times the complexity of the individual STES. We will assume that

the NSTES needed in an observation for a given reconstruction

accuracy is NSTES!Np!N2 (as was found for NC, see Figure 4A).

Hence, the complexity of the IB is O N22SnaT
� �

, where SnaT is the

average number of na over all STES. It will be likely that SnaT is a

function of N in the critical and supercritical regimes, but less so in

the subcritical regime. When SnaT!N, the exponential complex-

ity O 2Nð Þ of IB can be managed to some degree by introducing a

cut-off value, nmax
a , thus reducing the complexity to O N2

� �
, but

keeping a large pre-factor 2nmax
a . The computational complexity of

Figure 9. Functional small-world topology derived from neural avalanches is robust to an acute reduction in network traffic. (A)
DNQX, which reduces excitatory synaptic transmission between neurons, changes the avalanche size distribution from a critical (power law, broken
line 21.5) to a subcritical (exponential) dynamics in which the presence of large avalanches is significantly reduced (red arrow, single network).
Distributions are calculated before (pre), during reduced excitation (DNQX), and 24 hr after recovery (wash). (B) DNQX also reduces the traffic in the
network (arrow). (C) The clustering coefficient derived from a critical neuronal avalanche dynamics is similar to that derived in the presence of 3 mM
DNQX, (single network). C and DC (inset) is plotted against the number of propagation steps. (D) Directed, weighted architecture for the network in
(A) reconstructed at 35,000 propagation steps for all three conditions. Node degrees (color, node diameter) and link weights (low: gray; high: black)
were scaled between maximum and minimum values of the pre condition respectively. Note the similarities in the existing links and the node
degrees for all three conditions despite significantly lower link weights in the presence of DNQX.
doi:10.1371/journal.pcbi.1000271.g009
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individual STES in PWA will in most cases be equal or less than

O SnaTð Þ. For NC, the individual STES have complexity O 1ð Þ,
hence, the NC has the same low complexity as FC and other

correlation methods, O N2
� �

, but it produces much better

estimates of causal traffic and connectivity, making it a candidate

algorithm for the reconstruction of large networks. Note, that most

of the computational demand in NC comes from shuffling, whose

complexity also is O NSTESð Þ~O N2
� �

. Technical considerations

of this algorithm are discussed in the next paragraph (see also Text

S1 for the implementation summary).

The PWA approach can also be extended to include situations

when the cascade propagation speed is highly heterogeneous, i.e.

the continuous time approach is necessary, and/or when the

amplitudes of the events need to be considered. This will require

some knowledge, or experimental estimate, on how temporal

differences and event amplitudes will affect the activation

probabilities (see Equation 3). In these cases, the equivalent of

the expression in Equation 16 becomes

wP
ij tð Þ~pF

ij tð Þ
,Xna

l~1

pF
sl j

tð Þ, ð23Þ

where psl j is the link activation probability for the link connecting

the lth active source node sl and the target node j. This expression

is obtained in the limit of pb?0. A simple inclusion of the weights

can also be obtained by treating fi tð Þ~Ai tð Þ, in which case na is

not the number of active nodes but the total strength of the sources

na~
P

l Asl
. This more general framework, requiring the

simulation of continuous time dynamics and varying amplitudes

was beyond the scope of this manuscript.

Although PWA was derived from Bayesian considerations,

strictly speaking it is not a Bayesian method, particularly not the

NC algorithm. When PWA uses uniform priors, one can argue

that it is essentially a maximum likelihood method. The difference,

however, with the maximum likelihood approach is that we use

uniform priors on the links, but not the configurations themselves,

which are the elements of our sample space. Thus, different

configurations will get assigned different prior probabilities. When

the prior probabilities for the existence of any link l, pl , are small,

or are assigned based on the sparsity pS of a network, the existence

of a link can be established using a nonparametric measure similar

to correlation. Historically, arguments have been made that, in

situations where prior knowledge is not available, a precise choice

of the prior probability is not crucial [73] as long as the choice is

smooth in the region of high likelihood. Thus, a uniform and

sufficiently small probability will lead to essentially the same final

estimate [74].

Technical Considerations of the NC Algorithm
The general methodology of PWA and IB was derived in our

Theory section. We then tested a particular nonparametric

instance of PWA, the NC algorithm, with the goal of reconstruct-

ing large networks from large records of a point process dynamics.

The NC is essentially a weighted correlation measure, with the

weight inversely proportional to the number of potential source

nodes. This weighting is not arbitrary, and if one uses a different

weighting factor, e.g. 1



na
2, it does not perform as well as NC

(data not shown). If one assumes small prior probabilities for each

link, this result becomes intuitive, since the posterior probability

for the existence of simultaneous links is negligible, hence each

link’s probability is inversely proportional to the number of

possibilities, i.e. active source nodes na. Importantly, we did not

assume that pb is small, but only that it is equal to the sparsity of

the network and that the dynamics is near the critical point. This

indicates that the validity of the NC algorithm does not rely on the

precise choice of pb. The more elaborate IB approach with fully

known dynamics established a benchmark that was closely met by

the NC algorithm. The NC algorithm returns the link weights that

are an approximate measure of the causal traffic across each link.

In this paper we tested, using the simulations of a branching point

process on a network, the case when the activation probabilities do

not depend on the magnitude of the events and the event times are

discrete. More general cases can be addressed using an

appropriate activation function in equation 3, and using a

different weighting factor for PWA (see Equation 23).

The advantages and limitations of NC. Advantages: (i) The

NC algorithm is nonparametric and requires no prior knowledge

of the dynamics, but performs close to the IB approach when the

latter fully utilizes that knowledge; (ii) It is computationally as

simple as FC and other correlation methods, but produces much

better estimates of causal traffic and connectivity, particularly for

small-world networks; (iii) the NC algorithm is robust, not only to

changes in the dynamical regime, but also to deviations from the

dynamical assumptions. The NC algorithm performed well when

applied to the branching point process dynamics with large

heterogeneities in initiation rate, heterogeneities in activation

probabilities, pij , and uncertainty to temporal binning, in contrast

to IB and FC (Figure 4C).

Limitations: (i) the NC is not as specific, or reliable, as the

Bayesian Networks when the existence of a particular link in a

network is to be established; (ii) The selection of na prior events as

the potential sources requires some knowledge about the

dynamics. The fixed time cut-off, of time-binned events that we

use in this work, might fail when more complex temporal

dependences between the nodes are encountered; (iii) The NC

relies on shuffling to obtain the null-model nonparametrically.

However, shuffling can be constrained in certain dynamical

conditions, for example, in the subcritical and supercritical

dynamical regimes (see the subsection on Shuffling below).

In general, we envision this algorithm to be used for a general

network topology when the dynamics of the network is moderately

sparse, i.e. when the number of active nodes at any time is not very

large, as opposed to correlation based methods which work only

when the dynamics is extremely sparse. Note that even a dense

network can be reconstructed, provided the observed dynamics is

sparse. We expect NC to work well in situations where the

correlation methods are commonly used, but with an added

advantage that it will be less sensitive to changes in the dynamical

regime. The algorithm summary is given in Text S1.

The influence of network size and the length of

observation on network reconstruction. We note that

when increasing the network size while keeping the average

degree constant, a network reconstruction error of 1%, which is

relative to the existing links in the network, becomes more and

more stringent as N increases and the sparsity pS of the network

drops pS~10=Nð Þ. For example, while the error rate per potential

link is Etot~0:167% for N~60, this changes to

Etot~0:033% for N~300. Furthermore, as N grows the

minimal achievable error rate, min Ep, becomes finite and grows

as N increases. For N~300, min Ep~0:29%, while for

N~600, min Ep~5:5+0:4% min Etot~0:09%ð Þ. For very large

and very sparse networks a different shuffling scheme with

additional constraints might improve this accuracy limit. For

example, one could consider to partially shuffle the record of

dynamical cascades, e.g. where the number of pairwise shuffles is

one quarter of the total number of active sites in the dataset i.e.

using eight times less pairwise shuffles than the default that we use

Network Reconstruction from Dynamical Cascades

PLoS Computational Biology | www.ploscompbiol.org 17 January 2009 | Volume 5 | Issue 1 | e1000271



throughout the paper. In this case, the minimal achievable error

for N~600 is min Ep~2:4+0:3%, but requires a 20% longer

data record (data not shown).

As our results show, the number of needed propagation steps Np

is on the order of few multiples of N2. Since the shuffling is not

guaranteed to provide an accurate null model, having too many

observations will tend to introduce false positives. Thus, of

particular concern is the stability of the reconstructed architecture

as a function of observation length. Often, reconstructions are

done based on the whole, a priori defined length of recording.

Robustness can be demonstrated by repeat analysis of subdivisions

of the record [75] or devising records of different lengths [10],

including the calculation of a cut-off parameter [75]. In the

present study, robustness of the reconstructed network was

demonstrated by the convergence of a set of network parameters

towards a reasonable constant value with increasing number of

propagation steps. Naturally, this convergence was particularly

robust for the clustering coefficient C, which in contrast to the

average degree, is less affected by the erroneous addition of

random links. Importantly, this convergence occurred for the

neuronal networks at around the same number of propagation

steps as was expected from our network simulations and was

robust to changes in the dynamical regime. In general, any

quantity that is not sensitive to the addition of random links will be

robust to the existence of the false positives in the reconstruction.

Shuffling To Increase Reconstruction Reliability
Shuffling of the original time series is commonly used to

establish a priori statistical distributions for the null-hypothesis.

Our results clearly demonstrate that pairwise shuffling significantly

improves the reconstruction accuracy in the critical and

supercritical regime. On the other hand, this method imposes

strong limitations resulting in a conservative model that not only

maintains the average activity rate of each node, which prevents

the introduction of correlations due to rate modulation [22], but

also the exact lifetime and size distribution of cascades, thus

ensuring that the shuffled raster remains in the same dynamical

regime. This shuffling method reaches its limits in the supercritical

regime with highly synchronized cascades, e.g. when almost all

nodes become active within 1 time step for most cascades, in which

the constraints of the pairwise shuffling limit its statistical power.

Similarly, pairwise shuffling becomes constrained in the subcritical

regime because of the limited number of nodes participating in

cascades. Alternative methods combined with pairwise shuffling,

such as temporal jittering, using a smaller portion of the raster to

determine thresholds, or limiting total number of shuffles, might

improve reconstruction efforts further in these cases.

The ad hoc use of a global threshold in order to extract a

functional connectivity from correlation matrices is often justified

by providing a range of thresholds for which the obtained results

are robust [18,20,52–54]. In the present study, we obtained

thresholds for each potential link, which significantly outper-

formed the global threshold approach in the critical and

supercritical regimes. The calculation of a probability value using

a conservative model, i.e. maintained firing rate and cascade sizes

and durations also naturally allows these thresholds to be

interpreted in terms of significance for individual link existence.

As shown in Figure 8C, topological features were shown to be

robust for different significance thresholds.

Branching Process Dynamics
Our simulation of the branching process incorporated a

refractory period during which a node remained inactive before

being able to participate in a cascade again. Thus, the simulated

dynamics represents a branching process only in the limit of large

number of nodes N . Notably, refractory periods for nodes are

common in many real systems, where they arise from energy

limitations such as transport capacities and where they serve

several major purposes, such as limiting the rate with which each

node engages in the network dynamics and terminating cascades

in the supercritical regime. In the temporal domain, refractory

periods support the formation of non-recurrent dynamics in an

otherwise recurrent network. For example, in neuronal networks,

each neuron after its action potential is not responsive to the near

future neuronal feedback [76], or in epidemics [9] typically studied

in Susceptible-Infected-Removed models [77], in which infected

individuals acquire immunity against re-infection supporting the

view of epidemic spread as an essential forward cascade with little

recurrence. While we have addressed the existence of different

dynamical regimes on different topologies, we have not studied

comprehensively all possible issues that might affect the dynamics

of the network, e.g. network modularity [78]. Despite the dynamic

feed-forward aspects of most cascades, the resulting functional

architecture is not limited to acyclic graphs because potentially

recurrent links between nodes that do not engage in one cascade

can be active during other times.

Small-World Functional Topology of Cortical
Microcircuits

In the present study, we derived the directed, weighted

functional architecture of superficial cortical layers [29,31] grown

on planar integrated micro-electrode arrays. We demonstrated

that a small-world functional topology of neuronal avalanches is

robust to an acute reduction in network traffic, suggesting that it

potentially arises from a corresponding structural small-world

topology of cortical micro-circuits.

The neuronal avalanche dynamics that arises in these layers in

vitro parallels layer formation in the intact animal [33]. The

reconstruction of the architecture was based on neuronal avalanch-

es, dynamical cascades that form in analogy to a critical branching

process [29,30] for which our simulations show robust and accurate

network reconstruction using the NC algorithm. The estimated

clustering coefficient stabilized as predicted from our network

simulations. Importantly, a similar topology was recovered from

acute, subcritical network dynamics in the presence of DNQX. This

suggests that the subgraph described by a cascade does not depend

on the overall state of the network, but might underlie structural

components of the network as formed by the number and strengths

of neuronal connections. A small-world topology combines short

distances between network sites with high clustering that allows for

diverse functionality of subgraphs, as shown recently for sensory

activities in the visual cortex of the cat [79].

Previous studies in dissociated neuronal cultures have quantified

dynamical cascades during spontaneous neuronal activity using a

variety of measures such as conditional probability [80], pairwise

delayed-correlation indices [81], and sequential ordering [82].

Additionally, functional topologies were derived using correlation

methods with global correlation thresholds [83–85]. As shown in

the present study, the correlation approach might not adequately

address functional connectivity, particular for dissociated cultures

which have been shown to display supercritical dynamical

cascades [82]. Despite these potential limitations, correlation and

mutual information based methods derived non-directed func-

tional small-world topologies from spontaneous activity in

dissociated cortical cultures [52,86], in line with our topological

findings for the neuronal avalanche dynamics in layered cultures.

Our study further quantified the network traffic, which was

characterized by an exponential tail distribution similar to what

Network Reconstruction from Dynamical Cascades
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has been found for the weight distribution in dissociated neuronal

cultures [52] and airport traffic networks [55]. These character-

istics of the small-world architecture formed by neuronal

avalanches provide important constraints for future simulations

of this type of cortical dynamics.

Supporting Information

Text S1 Supporting Information

Found at: doi:10.1371/journal.pcbi.1000271.s001 (0.06 MB PDF)
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