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A B S T R A C T   

Background and purpose: Neoadjuvant Chemotherapy (NAC) followed by concurrent chemoradiotherapy (CCRT) 
is promising in improving the survival rate for advanced nasopharyngeal carcinoma (NPC) patients relative to 
CCRT alone. However, not all patients respond well to NAC. Therefore, we aimed to develop and evaluate a 
modified radiomics model for the NAC response prognosis in NPC patients. 
Methods: A total of 165 patients with biopsy-proven locally advanced NPC were retrospectively selected from the 
database of our hospital. 85 out of them were for training and cross-validation, while the other 80 patients were 
for independent testing. All patients were treated with NAC and underwent MRI inspection, including T1- 
weighted (T1), T2-weighted (T2), and contrast-enhanced T1-weighted (T1-cs) sequences before and after two 
cycles of NAC. We classified the patients into the response or non-response groups by the Response Evaluation 
Criteria in Solid Tumors 1.1 (RECIST 1.1). Radiomics features were extracted from the primary and lymph node 
gross tumor volume in each sequence. To further improve the predictive performance, the permutation of 
multiple combinations of extraction parameters has first ever been investigated in the NAC prognosis for NPC 
patients. The model was constructed by logistic regression and cross-validated by bootstrapping with a resam-
pling number of 1000. Independent testing was also implemented. In addition, we also applied an imbalance- 
adjusted bootstrap strategy to decrease the bias of small samples. 
Results: For the cross-validation cohort, the resultant AUC, sensitivity, and specificity in terms of 95% confidence 
interval were 0.948 ± 0.004, 0.849 ± 0.005, and 0.840 ± 0.010. For the independent testing cohort, the model 
reached an AUC of 0.925, a sensitivity of 0.821, and a specificity of 0.792. There was a significant difference in 
the estimated radiomics score between the response and non-response groups (P < 0.005). 
Conclusions: An MRI-based radiomics model was developed and demonstrated promising capability for the in-
dividual prediction of NAC response in NPC patients. In particular, we have optimized the multiple combinations 
of texture extraction parameters with the permutation test and observed an encouraging improvement of the 
prediction performance compared to the previously published studies. The proposed model might provide 
chances for individualized treatment in NPC patients while retrenching the cost of clinical resources.   

Introduction 

Nasopharyngeal carcinoma (NPC) is one of the prevailing rare ma-
lignancies in Southeast Asia, with an annual incidence of up to 500 cases 
per million individuals for the endemic high-risk areas [1], and the 
global mortality of NPC could be 72,987 individuals per year [2]. In 
clinical practice, radiotherapy (RT), especially intensity-modulated RT, 
is the most common treatment for NPC due to the intrinsic high radio- 
sensitivity of the nasopharynx [3]. Besides, as have been 

demonstrated by abundant studies, the survival rate of NPC patients 
could be further prolonged by combining RT with chemotherapy, such 
as the extensively applied concurrent chemo-radiotherapy (CCRT), 
adjuvant chemotherapy (AC), and neoadjuvant chemotherapy (NAC) 
[4–8]. Specifically, NAC is implemented before standard CCRT or RT, 
which is a promising alternative for locally advanced NPC with poten-
tially decreased distant failure, and increased overall survival rate 
[9,10]. 

However, in clinical practice, not all NPC patients respond 
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effectively to NAC, and individual differences could exist in tumor 
control rate and progression [11,12], which could play a significant 
prognostic influence on the disease-free and overall survival rates [13]. 
Therefore, predicting the response of NAC for NPC patients may play a 
considerably important role in avoiding the unnecessary side effect of 
NAC, paving the way towards precision and individualized therapy, and 
benefiting the quality of life for NPC patients. 

To date, many studies have demonstrated the potential capability of 
multi-modality magnetic resonance imaging (MRI) in characterization 
and prognosis assessment [14,15]. While in recent years, it is advanced 
for quantitative imaging analysis via an emerging technology, radiomics 
[16–18]. Acted as imaging biomarkers, it could characterize the tumor 
heterogeneity and histological changes, therefore decoding the hidden 
traits to the genetic and molecular levels and benefiting the treatment 
decision [30]. For NPC, while previous studies have investigated the 
potential prognostic ability of radiomics in terms of local and distant 
failure [19], classification of distinct survival groups [20], local recur-
rence [21], and CCRT treatment response [22], limited efforts have been 
made for the NAC response prediction [23,37]. With an area under the 
receiver operating characteristic curve values (AUC) [27] to be 
0.82–0.86, the published result demonstrated a promising capability of 
NAC prognosis prediction in NPC patients. However, there still exists a 
promotion space for predictive performance. Besides, independent 
testing should also be complemented to evaluate the prediction perfor-
mance more comprehensively. Furthermore, to provide therapeutic 
guidance in the clinic, there is still an urgent demand to develop a more 
accurate predictive model for NAC response in NPC patients. 

This study aims to improve the effectiveness of MRI radiomics for 
pretreatment prediction of the response to NAC in patients with locally 
advanced NPC. The permutation and combination of multiple texture 
extraction parameters, which were demonstrated to be effective for soft- 
tissue sarcomas prognosis [24], has first ever been investigated in the 
NAC response prognosis for NPC patients. Besides, to further validate 
the predictive performance, independent testing is implemented. The 
imbalance-adjusted bootstrap strategy is also applied to decrease the 
defect of small samples. 

Methods and materials 

Patients 

We collected data from Sichuan Cancer Hospital & Institute. 
Informed consent has been obtained from all patients, and anonymiza-
tion was implemented subsequently with in-house codes. A total of 200 
patients with biopsy-proven locally advanced NPC (stage III–IVb) 
treated by platinum-based NAC before radiotherapy were enrolled in 
this study (100 between January 2009 to December 2014, 100 between 
June 2016 to February 2018). Based on the inclusion and exclusion 
criteria where samples with lesion diameter smaller than 5 mm, inade-
quate NAC (at least two cycles), treatment elsewhere, or lacking MRI 
inspections, the final study population was composed of 165 patients. 
The 85 patients treated between June 2016 to February 2018 were 
allocated to the training (cross-validation) cohort, while the rest 80 
patients treated between January 2009 to December 2014 were to the 
testing cohort. The selected cohorts were staged by the 7th edition of the 
American Joint Committee on Cancer/Union for International Cancer 
Control TNM staging system [25]. T1-weighted (T1), contrast-enhanced 
T1-weighted (T1-cs), and T2-weighted (T2) MRI sequences were before 
and after the second cycle of NAC. All patients received NAC treatment, 
consisting of two to three cycles of GP regimen (gemcitabine 1000 mg/ 
m2/day on days 1–8, cisplatin 25 mg/m2/day on days 1–3), TP regimen 
(docetaxel 60 mg/m2/day on day 1, cisplatin 25 mg/m2/day on days 1 
to 3), and FP regimen (cisplatin25 mg/m2/day on days 1–3, and 5-fluo-
rouracil 500 mg/m2/day on days 1–3) at a two-week interval before the 
initiation of radiotherapy. 

Imaging acquisition and tumor segmentation 

A 1.5 T MR scanner (Magnetom Avanto, Siemens Medical Solutions, 
Erlangen Germany) was utilized for the image inspection, where the 
reception time and echo time were 650 ms and 11 ms for T1; 940 ms and 
11 ms for T1-fs; 4280 ms and 95 ms for T2, respectively. Besides, the 
matrix size was 256 × 224, the pixel spacing was 0.8 mm × 0.8 mm, and 
the slice spacing was 3.3 mm. 

To evaluate the NAC early response, MR scans at two different time 
points were inspected, where the pre-treatment examination was at 
4.32 ± 1.57 days (range 1–7 days) before NAC, and the two-cycle-end 
examination was at 42.77 ± 2.41 days (range 39–46 days) after the 
initiation of NAC. Two expert radiation oncologists delineated the pri-
mary and lymph node gross tumor volume (GTV) with MIM (MIM 
Software Inc., Cleveland) on the two MR inspection time-points. Dice 
similarity coefficient (DSC) [34,35] was computed between the two 
groups of segmentation to optimize the quality of delineation. As rec-
ommended by [36], we set the acceptance of the DSC threshold to be 
0.7. If the segmentation had a DSC lower than 0.7, a re-delineation was 
implemented by discussion to guarantee the revised DSC achieve the 
threshold. The segmented GTV was exported in DICOM format to Matlab 
R2015a (The Math Works, MA, USA) for DSC computation and 
smoothed according to the strategy in [26] to prepare for the texture 
extraction process. 

Criteria for NAC response 

We evaluated the early response of NAC by the Response Evaluation 
Criteria in Solid Tumors 1.1 (RECIST 1.1) [27] and took the T1-cs 
sequence to assess the lesion response. NPC patients with complete 
response (CR) or partial response (PR) were classified into the response 
group. NPC patients with stable disease (SD) or progressive disease (PD) 
were classified into the non-response group. 

Radiomics feature extraction 

For all the MR sequences before NAC treatment, four shape features 
were extracted from the GTV region, including the volume, the longest 
diameter, the smallest polyhedron containing the tumor region (Solid-
ity), and the best fitting ellipsoid (Eccentricity), respectively [24]. Be-
sides, three first-order features and forty texture features were 
computed, including the skewness, kurtosis, gray-level histogram, gray- 
level co-occurrence matrix (GLCM), gray-level run-length matrix 
(GLRLM), gray-level size zone matrix (GLSZM), and neighborhood gray- 
tone difference matrix (NGTDM). Specifically, we applied the 3D anal-
ysis with 26 connecting voxel units for texture extraction [24]. Fig. 1 has 
illustrated the radiomics features extracted in this study. 

To explore the potential of different extraction parameters and 
further improve the predictive performance, we implemented a per-
mutation test [24] with multiple combinations of extraction parameters 
for the first-order and texture features concerning the weighting for 
wavelet band-pass filter (WW: 0.5 0.67 1.0 1.5 2.0), the isotropic voxel 
size (IS: pixel 1 mm 2 mm 3 mm 4 mm 5 mm), the type of quantization 
algorithm (QA: Equal Lloyd), and the number of gray levels for quan-
tization (GL: 8 16 32 64). Consequently, a total of 31,920 radiomics 
features were extracted from GTV on the multi-sequence MR images 
using a toolbox developed by Vallieres [24] on MATLAB. 

Feature selection 

To avoid the over-fitting problem caused by relevance and redun-
dancy, a feature reduction process was implemented in the training 
cohort. The stepwise forward selection scheme [24] was adopted to 
collectively pick up the most valuable 25 features from the large initial 
set after the permutation test. Specifically, with the selected i-1 number 
of features, the ith one was to maximize 

Y. Wang et al.                                                                                                                                                                                                                                   



Clinical and Translational Radiation Oncology 33 (2022) 37–44

39

argmax
i

[|r(xi, y)| +
∑i− 1

k=1

2(i − k)
i(i − 1)

⋅(1 − MIC(xk, xi))] (1)  

where y was the outcome vector of the NAC response, r(xi, y) was the 
Spearman’s rank correlation coefficient between feature xi and y, MIC 
(xk, xi) was the maximal information coefficient between the selected 
feature xk and xi [28]. We repeated the feature selection process 25 times 
and finally ranked the most valuable 25 features to build the prognosis 
model for NAC response. 

Predictive model development 

The reduced 25 features were weighted linearly as candidate pre-
dictors to build a multivariable logistic regression model in the training 
cohort. In this study, the linear classification model with p features was 
developed as 

g(x) = c0 +
∑p

i=1
cixi (2)  

where g(x) was the predicted radiomics score of the model, xi was the ith 

Fig. 1. Illustration for the radiomics features extracted in this study.  

Fig. 2. Workflow of the prediction model construction process.  
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selected features, and ci was the ith regression coefficient. We then 
conducted logit transformation 

π(x) =
eg(x)

1 + eg(x) (3)  

to intuitively assess the NAC early response in patients with locally 
advanced NPC. The order of the model ranged from 1 to 10 in this study. 
Another stepwise forward strategy [24] was adopted to maximize the 
AUC estimated by bootstrapping (1000 samples). Furthermore, to in-
crease the credibility of the prediction model, an imbalance-adjusted 
bootstrapping strategy [24] was applied, where the probability of a 
negative instance (NAC non-responder) was made equal with that of a 
positive instance (NAC responder). Finally, the model which provided 
the highest AUC was selected as the final model. Fig. 2 summarized the 
workflow of the model construction process. 

Model validation 

For the internal cross-validation, we evaluated the prediction per-
formance by the bootstrapping (1000 samples) with AUC, sensitivity, 
and specificity [31] calculated. We also conducted independent testing 
for the 80 patients who were not involved in building the model. The 
corresponding AUC, sensitivity, and specificity were also computed. 

Clinical application 

Finally, we implemented logit transformation to the estimated 
radiomics scores and displayed the probable NAC early response in NPC 
patients straightforwardly. The probability of a positive response to NAC 
was calculated to help the physician with a more informed decision for 
individualized treatment. 

Results 

Clinical characteristics 

In the whole cohort, 116 patients were classified into the NAC 
response group, while 49 were into the non-response group. Table 1 
displayed the baseline characteristics of the patients. No significant 

differences were observed (P > 0.1) between the response and non- 
response groups to NAC. 

Radiomics signature 

In the training cohort, we firstly investigated the univariate associ-
ation between the extracted radiomics features and the early response to 
NAC by the Spearman’s rank correlation. Fig. 3 depicted the absolute 
value of the correlation coefficients, with the y-axis representing the 
non-texture and texture features from T1, T2, T1-cs sequences, and the 
x-axis representing the varied combinations of extraction parameters. 
Due to the space limitation, the names of the features were not 
completely displayed. Besides, the column side label of the heat-map 
was stratified into four levels, with each one representing the WW, IS, 
QA, GL parameters, respectively. It was observed that the texture fea-
tures generally presented a higher impact on the predictive value rela-
tive to the non-texture features. Besides, the variation in extraction 
parameters also led to differences in the predictive value. After the 
dimensional reduction, 25 radiomics features were selected to build the 
prediction model, consisting of one from T2 and the others from T1-cs 
(Table 2). It could be observed that the features extracted from T1-cs 
presented a higher predictive value than the others. 

Prediction model 

Fig. 4 displayed the estimated distribution of AUC, sensitivity, and 
specificity by the bootstrapping (1000 samples) in the training cohort, 
where the model order ranged from 1 to 10. We visualized the coherent 
ranges of 95% confidence intervals by the error bars. Results showed 
that the prediction performance increased with the increasing model 
order when it was lower than 6. The prediction performance was 
optimal with model order 6. However, when it was higher than 6, the 
prediction performance started to decline. Therefore, we decided to 
choose the six features (index number as 1, 2, 6, 8, 14, 25 in Table 2) to 
build the final prediction model in a manner of logistic regression. 

With bootstrapping (1000 samples), the average AUC, sensitivity, 
and specificity for cross-validation were 0.948 (95% CI: 0.944–0.951), 
0.849 (95% CI: 0.845–0.853), and 0.840 (95% CI: 0.830–0.850). For the 
independent testing cohort, the resultant AUC, sensitivity, and 

Table 1 
Baseline Characteristics of NPC patient in the training-validtion and testing cohorts.  

Parameters Training and Cross-validation Testing 

Responder (n = 59) Non-responder (n = 26) P Responder (n = 57) Non-responder (n = 23) P 

Age (years)bmean ± SD 47.76 ± 12.13 45.15 ± 12.36  0.46 47.28 ± 11.42 48.00 ± 8.74  0.79 
Gender a    0.49    0.55 
Male 45 (76.27%) 18 (69.23%)  41 (71.93%) 15 (65.22%)  
Female 14 (23.72%) 8 (30.77%)  16 (28.07%) 8 (34.78%)  
Tumor stage* a    0.21    0.73 
T1 3 (5.08%) 0  1 (1.75%) 1(4.35%)  
T2 8 (13.56%) 8 (30.77%)  17 (29.82%) 7 (30.43%)  
T3 20 (33.90%) 7 (26.92%)  18 (31.58%) 9(39.13%)  
T4 28 (47.46%) 11 (42.31%)  21 (36.84%) 6 (26.09%)  
Nodal stage* a    0.33    0.13 
N0 (%) 1(1.69%) 1(3.85%)  0 0  
N1 (%) 2 (3.39%) 3 (11.54%)  4 (7.02%) 4 (17.39%)  
N2(%) 37 (62.71%) 12 (46.15%)  38 (66.67%) 10 (43.48%)  
N3(%) 19 (32.20%) 10 (38.46%)  15 (26.32%) 9 (39.13%)  
NAC regimen a    0.89    0.45 
GP 19 (32.20%) 9 (34.62%)  7 (12.28%) 2 (8.70%)  
TP 21 (34.78%) 10 (38.46%)  21 (36.84%) 12 (52.17%)  
FP 19 (32.20%) 7 (26.92%)  29 (50.88%) 9 (39.13%)  
NAC perioda    0.58    0.84 
2 42 (71.19%) 20 (76.92%)  36 (63.16%) 14 (60.87%)  
3 17 (28.81%) 6 (23.08%)  21 (36.84%) 9 (39.13%)  

b Two independent sample t test 
a χ2 test 
* According to the 2009 Union for International Cancer Control 
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specificity were 0.925, 0.821, and 0.792, respectively. 

Clinical application 

Fig. 5 (A) and (B) displayed the NAC response probability as a 
function of the predicted radiomics score g(x) in the cross-validation and 
testing cohorts. The black line denoted the result of the logit 

transformation π(x). The blue dots represented the response group, 
while the red cross represented the non-response group. For the response 
group, the ideal prediction result should be 1. Otherwise, it should be 
0 for the non-response group. In both cohorts, very few cases yielded 
prediction estimates π(x) higher than 0.5 for the non-response group and 
lower than 0.5 for the response group. Therefore, the value 0.5 had the 
potential to classify the cases into the response and non-response groups. 
Besides, the predicted radiomics score of the response group was 
significantly different from that of the non-response group (P < 0.05) in 
terms of the Student’s t-test. 

Discussion 

In this study, a multisequence MRI-based radiomics model was 
developed to individually predict the early response of NAC in advanced 
NPC patients before chemotherapy. The permutation of multivariable 

Fig. 3. Univariate association between the radiomics features and the early response of NAC in terms of the Spearman’s rank correlation. The column side label is 
stratified into four levels with different colors representing different parameters. 

Table 2 
The results of the radiomics feature selection.  

Index Feature Names Sequence WW IS QA GL 

1 GLRLM-HGRE T2 2.0 3 Equal 8 
2 GLSZM-SZLGE T1-cs 2 5 16 
3 First order-Skewness 2.0 5  
4 GLCM-Contrast 0.5 4 Lloyd  
5 GLCM-Variance 1.5 3 16 
6 GLCM-SumAverage 2.0 4 Equal 8 
7 GLRLM-SRE 1.5 2 Lloyd 32 
8 GLSZM-HGZE 2 4 Equal 8 
9 GLCM-Dissimilarity 1.0 32 
10 GLRLM-LRE 1.5 2 Lloyd 
11 GLCM-Homogeneity 0.67 4 8 
12 GLRLM-GLN pixel 64 
13 GLRLM-RLN 1.5 
14 GLCM-Correlation 1.0 4 8 
15 GLSZM-SZHGE 0.5 pixel 16 
16 GLCM-Entropy 1.5 3 16 
17 GLRLM-LGRE 0.5 2 32 
18 GLRLM-SRLGE 1.5 5 Equal 16 
19 GLRLM-SRHGE 2 32 
20 GLSZM-LGZE 5 Equal 16 
21 GLRLM-HGRE 5 Equal 8 
22 GLCM-Energy 1.5 3 Lloyd 32 
23 GLRLM-GLV 1 64 
24 GLRLM-LRHGE 4 
25 GLRLM-RLV 0.67 1 32  

Fig. 4. Estimation of the prediction performance with model order 1–10 in the 
training cohort. Error bars represent the standard error of the mean on a 95% 
confidence interval. 
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extraction parameters was implemented to improve the predictive per-
formance. Consequently, the model, composed of 6 texture features (one 
from T2 and the others from T1-cs), demonstrated the optimal predictive 
performance. Compared with the previous studies [23], the proposed 
model could classify the patients into the NAC response or non-response 
groups with improved accuracy, indicating a promising potential to 
individualize the treatment for NPC patients and avoid unnecessary side 
effects. In addition, the estimation of NAC early response could also play 
an important role in the prognosis of clinical outcomes [13,29]. 

In this study, we observed the texture features usually had a higher 
correlation with the NAC early response than the non-texture features. A 
possible explanation was the texture features could effectively charac-
terize the intra-tumoral heterogeneity [32,33]. In addition, the final 
selected features (GLRLM, GLCM) for the NAC prognosis model were in 
good agreement with other studies [50,51,16], given the GLCM could 
differentiate low-grade and high-grade lesions [51] and the GLRLM was 
highly associated with survival [50]. Similarly, we also found these two 
features important for NAC response prognosis. Furthermore, the mul-
tiple extraction parameters posed varying correlations with the NAC 
response. The images could produce different texture measurements 
with the extraction parameters, leading to a better quantitative 
description of the image patterns. Therefore, we deduced that the tumor 
heterogeneity could be better characterized by the texture features from 
multiple combinations of extraction parameters. 

As for the prediction model, the majority of the selected features 
came from the T1-cs sequence, suggesting T1-cs might be better pre-
dictors among others. The high predictive potential to estimate the NAC 

early response in NPC patients was also demonstrated and validated. 
The resultant average AUCs were 0.948 (0.925), 0.849 (0.821), 0.840 
(0.792) in the cross-validation and testing cohorts, respectively, which 
outperformed the previously published results [23,37]. A possible 
reason could be attributed to the contribution of the multiple combi-
nations of extraction parameters. To our best knowledge, this study has 
been the first to incorporate the permutation and combination of mul-
tiple texture extraction parameters into the NAC response prognosis for 
NPC patients. Besides, to further improve the credibility of the predic-
tion results, cross-validation and independent testing were imple-
mented. Since a smaller number of non-responders than responders were 
noticed, we also introduced the imbalance-adjusted bootstrap strategy 
to decrease the statistic bias of small samples during the training pro-
cess. The optimized radiomics model could predict the positive or 
negative response to NAC, enabling insights for risk assessment and 
ultimately benefiting the personalized treatment. 

As has been demonstrated by several studies [9,10], NAC combined 
with chemoradiotherapy is very promising for improving the survival 
rate of advanced NPC patients. The effort to connect radiomics with PFS 
(progression-free survival) and OS (overall survival) should be highly 
recognized since the improvement for PFS and OS is the ultimate goal for 
cancer treatment. However, as the first stage of treatment, not all pa-
tients responded well to NAC. The identification of non-responders 
should also be important. Otherwise, unnecessary toxicity and over- 
treatment could be suffered, deteriorating the PFS and OS with high 
probability. Therefore, this study mainly focused on the prognosis for 
the NAC-only response. Besides, such a prognosis could also help with 

Fig. 5. NAC response probability (response = 1, non-response = 0) as a function of the predicted radiomics score. The black line displays the result of the logit 
transformation to the radiomics score. The blue circles represent the response group. The red crosses represent the non-response group. (A) Cross-validation cohort. 
(B) Testing cohort. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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clinical treatment. For instance, the identification of a non-responder 
might suggest an effort to try alternative therapy combinations to 
improve clinical outcomes. The prognosis of NAC long-term response 
requires further investigation. 

Historically, the tumor node metastases (TNM) staging system has 
served as the major prognostic factor in predicting therapeutic outcomes 
for NPC [39,40]. Although this approach provides frameworks for 
outcome prediction, they are limited by tumor heterogeneity within 
stage categories, hampering accurate prognosis for individual patients 
[41]. According to [37], The training and validation AUC were only 
0.708 and 0.549 by the clinical prognosis model. Besides, anatomical 
MRI has also been widely used to determine the treatment response in 
NPC [42]. For diffusion-weighted (DW) MRI, several studies have vali-
dated that apparent diffusion coefficient (ADCs) could be a valuable 
biomarker to predict the response of NAC [43,44]. However, the find-
ings regarding ADCs might sometimes be confounding. It is demon-
strated that low pretreatment ADCs tend for a better response to NAC 
[44]. However, High ADC values or large ADC increase after the initi-
ation of NAC could also indicate a better chemoradiotherapy response 
[43]. The accurate association between ADCs and NAC response remains 
for investigation. In addition, the Plasma Epstein Barr virus (EBV) DNA 
level has also been widely accepted as a valuable biomarker for NPC 
prognosis. Its predictive potential is successfully validated for recur-
rence, metastasis, and survival of NPC patients [45–47]. The chronic 
inflammation induced by EBV could also be significant for progression 
and aggressiveness in NPV patients [48]. A recent study has also shown 
the complement of NAC before CCRT could reduce distant failure in NPC 
patients with stage N0-1 disease and EBV DNA lower than 4,000 copies/ 
mL [49]. However, the correlation between EBV DNA level and NAC 
response of NPC patients remains to be recognized. 

This study has several limitations that need to be acknowledged. 
First, although the NAC early response was assessed at the end of the 
second cycle for each patient, we did not control the regimen and 
treatment cycles constant, probably influencing the predictive potential 
and introducing confounds for result interpretation. Since different 
physicians might have their personal preference for the regimen and 
deciding the exact number of cycles before treatment is difficult, there 
could be a considerable decrease in the study population if these two 
variables were controlled. The other studies also face this problem 
[37,43], and an increase in the number of enrolled patients could be a 
solution. In addition, although the baseline characteristics between 
training and testing cohorts were not significantly different in Table 1, 
there might still be potential selection bias due to the single-center na-
ture of the study. To address it, external testing in terms of multi- 
institutional cohorts, collected from collaborating institutions or can-
cer imaging archive (TCIA) [38], remains to be explored in our future 
studies. However, the variable control for multicentral study should also 
be specially paid attention to. For example, the NAC regimen in Europe, 
commonly recommended as the TPF combination [52], could be 
different from that in China. Finally, since radiomics has demonstrated a 
significant correlation with tumor pathology, combining molecular and 
genetic biomarkers with the current prognosis model could be an 
attractive extension. The association between radiomics and molecular 
genetic biology in NAC prognosis demands further investigation. 

Conclusion 

In this study, an MRI-based radiomics model was developed and 
demonstrated promising capability for the individual prediction of NAC 
response in NPC patients. In particular, we have optimized the multiple 
combinations of texture extraction parameters by permutation test and 
observed an improved prediction performance relative to the previously 
published works. The proposed prediction model could help the radia-
tion oncologist to a more informed decision for the NAC individualized 
treatment while retrenching the cost of clinical resources 
simultaneously. 
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