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�� Knee

Predicting robotic-assisted total knee 
arthroplasty operating time
benefits of machine-learning and 3D patient-specific data

Aims
No predictive model has been published to forecast operating time for total knee arthro-
plasty (TKA). The aims of this study were to design and validate a predictive model to es-
timate operating time for robotic-assisted TKA based on demographic data, and evaluate 
the added predictive power of CT scan-based predictors and their impact on the accuracy 
of the predictive model.

Methods
A retrospective study was conducted on 1,061 TKAs performed from January 2016 to Decem-
ber 2019 with an image-based robotic-assisted system. Demographic data included age, sex, 
height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were 
calculated from CT scans. These inputs were used to develop a predictive model aimed to 
predict operating time based on demographic data only, and demographic and 3D patient 
anatomy data.

Results
The key factors for predicting operating time were the surgeon and patient weight, followed 
by 12 anatomical parameters derived from CT scans. The predictive model based only on de-
mographic data showed that 90% of predictions were within 15 minutes of actual operating 
time, with 73% within ten minutes. The predictive model including demographic data and 
CT scans showed that 94% of predictions were within 15 minutes of actual operating time 
and 88% within ten minutes.

Conclusion
The primary factors for predicting robotic-assisted TKA operating time were surgeon, patient 
weight, and osteophyte volume. This study demonstrates that incorporating 3D patient-
specific data can improve operating time predictions models, which may lead to improved 
operating room planning and efficiency.
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Introduction
Total knee arthroplasty (TKA) operating 
time varies across different patients and is 
dependent on several parameters including 
previous surgery, range of motion (ROM), 
BMI, age, and bone quality. Operating 
time has previously been explored in 
TKA,1,2 with multiple studies indicating that 
prolonged duration can increase patient 
risk for various adverse outcomes,3-5 such as 
infection. Various analyses have focused on 
factors influencing operating time to better 

understand how to improve forecasts.2,6-10 A 
recent study has assessed the factors associ-
ated with variations in operating time.11

An accurate forecast for predicting oper-
ating time may allow for more efficient 
surgical scheduling, can ensure that appro-
priate operating room (OR) staff are available 
for potentially more difficult cases, and can 
avoid case cancellation. While a surgeon 
may accurately predict their mean operating 
time based on historic cases, single surgery 
prediction can be less accurate.12 Predictive 
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modelling is a discipline where algorithms are deployed 
to generate estimates for a specific target output. These 
models learn to identify the relationships between a set 
of features, also called predictors (patient age, BMI, level 
of fitness, etc.) and the selected target (e.g. occurrence of 
a myocardial infarction). Statistical models and machine-
learning techniques identify complex target-predictors 
relationships in a specific dataset.13 Predictive models are 
usually deployed in contexts where the prediction of the 
output is difficult or time-demanding. When the likeli-
hood of an adverse event in the future is high, a proac-
tive intervention can be deployed to modify the course 
of action and avoid such an adverse event.

The increasing availability of large digital healthcare 
datasets has facilitated the application of predictive 
models in different healthcare settings such as cogni-
tive impairment detection,14 prediction of heart failure 
patient readmission,15 or medical image segmentation.16 
The combination of digital healthcare datasets and 3D 
images can generate new factors that may contribute to 
improved prediction of operating time for complex TKA. 
3D imaging has shown improvements in surgical accu-
racy and preoperative planning,17-19 which may translate 
to more accurate operating time predictions.

Thus, the purposes of our study were to design and 
validate a predictive model to estimate operating time 
for TKA based on demographic data, and evaluate the 
added predictive power of CT scan-based predictors and 

their impact on the accuracy of the predictive model. Our 
two hypotheses were: demographic data can be used to 
generate operating time prediction in TKA; and adding 
CT-based 3D image patient-specific features will improve 
operating time prediction accuracy.

Methods
Data sources and population.  A retrospective study was 
conducted on 1,061 robotic-assisted primary TKAs from 
January 2016 to December 2019. Data were obtained 
from two arthroplasty fellowship-trained orthopaedic 
surgeons at two different hospital centres within the USA 
(South County Health, Rhode Island, and The Orthopaedic 
Center, Oklahoma). The Stryker Performance Solutions 
(SPS) Hospital Reported Outcomes database (Stryker, 
USA) was used, which consists of de-identified real-world 
data from electronical health records including patient 
demographic information and patient-specific 3D data 
from CT scans. The robotic-assisted MAKO (Stryker) sys-
tem is an image-based system, using a preoperative CT 
scan to create a 3D model of the patient’s bony anato-
my used for the surgical planning. This robotic platform 
provides real-time 3D feedback to the surgeon on the 
implant position and limb alignment, as well as virtual 
flexion and extension gaps. This robotic-assisted system is 
semiautonomous, with a robotic arm extended by a saw, 
controlled and manipulated by the surgeon.

Demographic data included age, sex, height, weight, 
and laterality. Preoperative CT scans were obtained in this 
same patient cohort, and femoral and tibial axis angles 
(medial proximal tibial angles (MPTA) and lateral distal 
femoral angles (LDFA))20 and osteophyte volume were 
automatically extracted from the 3D images as described 
below. Operating time was defined as incision to closure, 
which were obtained from each hospital’s electronic 
health record system. The time prediction models were 
trained using two datasets: demographic data only, and 
demographic and 3D patient anatomy (e.g. osteophyte 
volume) data. Table I provides an overview of the patient 
population. An exhaustive description of each predictor 
is available in Supplementary Table i.
Osteophyte volume detection.  An osteophyte detection 
algorithm by Imorphics (Stryker, UK) segmented oste-
ophyte volumes. The algorithm, based on training data 
provided by expert segmenters, segmented the out-
er surface of the cortical bone and an osteophyte-free 
surface. Subtracting the osteophyte-free surface from 
the outer surface generated the osteophyte surface 
(Figure  1). Related techniques, using atlases of healthy 
bones instead of an explicit osteophyte-free surface, have 
been validated in previous studies.21

Osteophyte volumes were automatically generated 
per case for the femur and tibia and split into four regions: 
anterior medial, anterior lateral, posterior medial, and 
posterior lateral. The partition used orthogonal planes 

Table I. Patient demographics and 3D anatomy data.

Variable Mean (SD; range)

Patients, n 1,061

Age, yrs 68.2 (8.4; 37 to 95)

Female, % 66

Height, cm 167.6 (10.6; 142.2 to 198.1)

Weight, kg 91.2 (21.6; 41.7 to 180.5)

Left, % 48

CT scan data, °
JLO 172.5 (3.7; 159.1 to 184.1)

JLCA 3.7 (3.1; -7 to 12.9)

LDFA 87 (2.8; 79.3 to 96.7)

MPTA 85.5 (3.3; 68.5 to 102.6)

HKA -5.1 (6.5; -29.9 to 20.3)

Osteophytes volume according 
to area, mm3

Anterolateral femur 1,789 (2,135; 0 to 19,394)

Anteromedial femur 2,060 (2,154; 0 to 23,702)

Posterolateral femur 1,187 (1,713; 0 to 13,968)

Posteromedial femur 2,891 (2,747; 0 to 17,820)

Anterolateral tibia 630 (851; 0 to 7,976)

Anteromedial tibia 696 (849; 0 to 8,005)

Posterolateral tibia 571 (971; 0 to 10,812)

Posteromedial tibia 758 (1,063; 0 to 9,345)

HKA, hip knee ankle angle; JLCA, joint line convergence angle; JLO, joint 
line obliquity; LDFA, lateral distal femoral axis; MPTA, medial proximal 
tibial axis; SD, standard deviation.
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derived from the epicondylar axis and a femur shaft 
centre point for the femur, along with an axis connecting 
the deepest point per tibial plateau (resection landmarks) 
and a tibia shaft centre point for the tibia (Figure 2).
Model development.  Figure  3 outlines the architecture 
used to develop each model. Prior to modelling, the 
input data were analyzed using cross-correlation tab-
ulation, and any inputs with > 0.8 correlation were re-
moved to ensure the model was parsimonious. For ex-
ample, BMI correlated 0.84 with weight (Figure 4), and 
as BMI is a function of height and weight, removing this 
feature would simplify the dataset.

The initial dataset underwent an 85:15 split between 
train and test. As this dataset was skewed towards one 
surgeon (885 to 176), the split was stratified to ensure a 
representative proportion of cases from both surgeons. 
Three models were trained on these datasets: linear 
regression, random forest regression, and CatBoost 
regression. We use the training dataset to train and 
tune the model’s hyperparameters. The training dataset 
underwent a five-fold cross-validation wherein the 
training dataset was split into five subsets (one subset for 
validation and four for training the algorithm). This was 

repeated five times until each subset has been used once 
for validation (Figure  3). Each five-fold cross-validation 
was performed with a different set of hyperparameters, 
and the optimum combination of parameters was then 
retained for the next phase. After hyperparameter tuning 
per model and dataset, we trained the final model on 
the original test split with the defined hyper-parameter 
values. To compare the R² values of the model, we used 
the bootstrap resampling technique. The training dataset 
population underwent resampling with arthroplasties 
and was repeated 100 times. This technique allowed us 
to estimate summary statistics, such as mean and stan-
dard deviation (SD); therefore, these confidence intervals 
were used to compare against the other models. Feature 
importance values were normalized so that the sum of 
importance values equaled 100. The variable importance 
evaluates the difference in model performance between 
the original model, and the model performance with that 
feature excluded.

Results
Predictive factors of operating time prediction.  The over-
all mean operating time was 70.9 minutes (SD 18.9). The 

Fig. 1

Imorphics’ osteophyte detection algorithm identifies the osteophyte volumes in a CT image. Yellow is osteophyte-free surface, red osteophyte volume surface. 
a) and b) CT slices; c) bone volume generated model.

Fig. 2

Tibial bone model regions based on anatomical landmarks.

Fig. 3

Process for developing each predictive model.
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most important features in our operating time prediction 
model were the surgeon and patient weight, followed 
by 12 anatomical parameters derived from 3D CT scan, 
particularly osteophyte volume (Table  II). The predictive 
model based only on demographic data showed that 90% 
of predictions were within 15  minutes of actual operat-
ing time, with 73% within ten minutes and 40% within 
five minutes. Model 2, which included demographic data 
and CT scan data (including osteophyte volume), showed 
that 94% of predictions were within 15 minutes of actual 
operating time, 88% within ten minutes, and 78% within 
five minutes. Predicted versus actual operating time per-
formance of this model is presented in Figure 5.
Model results.  The R² values were significantly im-
proved across all three machine-learning models (Linear 

Regression, Random Forest Regression, and CatBoost 
Regression) once 3D patient-specific information was 
implemented into the dataset (p < 0.001 across all three 
models). Between all three models, the CatBoost regres-
sion model achieved superior performance with an R² val-
ue of 0.764 in Dataset 2 and 0.722 in Dataset 1 (Table III). 
The random forest model achieved an R² value of 0.732 
in Dataset 2 and 0.705 in Dataset 1; the linear regression 
model achieved an R² value of 0.708 in Dataset 2 and 
0.686 in Dataset 1 (Table III).

We derived the optimum model (CatBoost Regression 
on Dataset 2) using the entire training dataset (original 
85% split without bootstrapping) with the optimal tuned 
hyperparameters from the ‘training, tuning and evalua-
tion segment’ of the process (Figure 3).

Fig. 4

Cross-correlation table for all input parameters for dataset 2 (patient demographic and 3D anatomy data) displaying correlation-coefficient. Blue, positive 
correlation; red, negative correlation. ant, anterior; HKA, hip-knee-ankle angle; JLCA, joint line convergence angle; lat, lateral; LDFA, lateral distal femoral axis; 
med, medial; MPTA, medial proximal tibial axis; pos, posterior.
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Discussion
Inefficient surgical scheduling is linked with worse clinical 
outcomes for patients,3-5 as well as staff dissatisfaction and 
avoidable costs for the hospitals.22 As with many other 
surgical interventions, TKA procedures are often scruti-
nized in terms of efficiency with a specific focus on OR 
use. The main finding of this study is the importance of 
3D patient-specific data, particularly osteophyte volume, 
to improve operating time prediction in robotic-assisted 
TKA. Surgeon, patient weight, and osteophyte volume 
were the most significant predictive features in our oper-
ating time robotic-assisted TKA prediction model.

In the context of real-life deployment, our model 
achieved a high level of accuracy in predicting operating 
time. Indeed, when investigating the applications of 
machine-learning in surgical case duration, Tuwatanan-
urak et al22 defined the threshold of 15 minutes as clinically 
significant error. However, they defined case duration as 
the time from entry into the OR to exit from the OR rather 
than incision to closure. In total, 94% of the predictions 
generated by the highest performing model in our study 
were within 15 minutes of the actual operating time. Prior 

knowledge of operating time for each TKA procedure 
has the potential to improve OR schedule management. 
Surgeon can optimize the surgical team composition to 
deal with complex procedures and maximize OR time 
efficiency. Longer cases can be identified in advance and 
scheduling changed accordingly to avoid unexpected 
delays on the day of surgery and last case of the day 
cancellations. Inaccurate estimations of operating time 
can lead to inefficient surgical scheduling, which results 
in both under- and overuse of OR time.22

In our study, the key factor in predicting TKA oper-
ating time was the surgeon. In literature, only one study 
described a method to predict TKA operating time, which 
was composed of operating time estimates self-reported 
by the surgeon compared to their historical averages.12 
They found that when self-reporting, surgeons overes-
timated their own operating time by an average of 18 
minutes per case. However, when incorporating a model 
based on historical averages for each surgeon, these 
predictions showed a significant reduction in overesti-
mations with mean estimation bias reduced to -0.1 to 
0.3  minutes (p < 0.001), regardless of the number of 

Table III. Comparing R² values across three different model types on the two datasets (with and without 3D patient anatomy data).

Dataset Linear regression (SD) Random Forest (SD) CatBoost (SD)

Dataset 1* 0.686 (0.027) 0.705 (0.026) 0.722 (0.030)

Dataset 2† 0.708 (0.028) 0.732 (0.024) 0.764 (0.026)

*Demographic data only.
†Including 3D patient anatomy data.
SD, standard deviation.

Table II. Feature importance from the CatBoost model with 3D patient 
anatomy data.

Feature Variable importance, %

Surgeon ID 77.7

Weight 4.5

Posterolateral femur 1.8

Anterolateral tibia 1.8

Anteromedial femur 1.5

Anterolateral femur 1.4

JLCA 1.2

Posteromedial femur 1.2

Posterolateral tibia 1.2

dHKA 1.1

Anteromedial tibia 1.1

MPTA 1.0

Sex 1.0

Posteromedial tibia 0.8

LDFA 0.8

Age 0.8

JLO 0.6

Height 0.5

Side 0.1

dHKA, diseased hip-knee-ankle angle; HKA, hip-knee-ankle angle; JLCA, 
joint line convergence angle; JLO, joint line obliquity; LDFA, lateral distal 
femoral axis; MPTA, medial proximal tibial axis.

Fig. 5

Predicted versus actual operating time of the best performing model with 3D 
patient-specific data. The diagonal dotted line represents the line of perfect 
prediction. The solid blue line refers to regression line of predicted operating 
time vs actual operating time. Shaded line refers to confidence interval of 
regression line. Histograms refer to distribution of actual (upper x-axis) and 
predicted (right y-axis) operating time.
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cases performed. Nevertheless, this model was less reli-
able for complex cases because only one feature (own 
historical operating times) was assessed in the prediction, 
contrary to our study. Other studies found that surgeon 
experience has an impact on the operating time, without 
exact prediction of this difference.23

Cases that are considered complex TKAs are usually 
due to high BMI or the presence of complex deformi-
ties. Several studies have demonstrated a relationship 
between operating time and risk of perioperative compli-
cations due to high BMI.24,25 Gadinsky et al24 reported a 
mean operating time of 74 minutes (SD 14) for normal 
BMI versus 90 minutes (SD 18) for a BMI > 40 kg/m2 in a 
case-control study on 454 TKAs.24 However, there are no 
studies that have used BMI to predict operating time in 
TKA. The combination of BMI/weight and surgeon expe-
rience in operating on patients with a wide range of BMIs 
must be incorporated in models to increase model gener-
alizability to other geographies.

Complex deformities are highlighted within preop-
erative imaging. 3D imaging, such as CT scans, brings 
relevant data for TKA planning, such as bone deformity, 
osteophyte volume, and bone quality.17 These data have 
shown a demonstrable benefit for TKA with patient-
specific instrumentation (PSI).18 With the development of 
image-based robotic-assisted TKA, the benefits of preoper-
ative 3D imaging have been also realized. Several studies 
suggest that image-based robotic-assisted TKA improves 
surgical accuracy.19,26 This study continues to show addi-
tional advantages of 3D patient-specific data with a 
specific focus on operating time prediction. Two types 
of data were derived from 3D patient scans in our oper-
ating time prediction model: patient morphology (knee 
joint angles) and osteophyte volume. The former can 
be measured on preoperative radiographs. The patient 
morphology was defined in our study by the angles of 
frontal deformity, as measured usually on standard radio-
graphs. Therefore, these measurements on CT scans were 
likely not very helpful in improving the operating time. If 
more complex measurements would be considered (such 
as the femoral rotation, in the axial plane) or in a popula-
tion with complex deformities in two or three plans, the 
CT scan data could probably be more beneficial for the 
surgical planning or the optimization of operating time. 
The osteophytes require 3D imaging to be quantified. 
The presence of osteophytes necessitates extra operating 
time and can lead to complications during knee exposure. 
Decreased ROM caused by anterior or posterior osteo-
phytes can be a secondary factor in longer operating 
time. Posterior osteophyte removal and its impact on the 
extension gap may lead to additional bony cuts or soft-
tissue releases to achieve a balanced knee after TKA. Some 
studies have assessed the impact of osteophyte removal 
on ROM and knee exposure.27,28 No study has assessed the 
impact of osteophytes on operating time. Our predictive 

model was based on accurate quantification of osteophyte 
volume and their localization, which is only attainable if 
derived from 3D images. These data represent a proxy for 
exposure difficulties, potentially limited ROM, and time for 
osteophyte removal.21

Our findings should be considered in light of the key 
limitations of this study. The dataset is composed of a 
limited number of cases which were performed by only 
two orthopaedic surgeons. A dataset containing more TKA 
cases, and encompassing several surgeons and centres, 
is warranted to extend its use to other geographies and 
healthcare systems.Furthermore, this was not a compar-
ative study using demographic data and preoperative 
radiographs to assess the benefit of 3D CT over conven-
tional 2D radiographs. Finally, several parameters were not 
considered in this model. For example, the model did not 
integrate bone quality or bone loss, which can increase the 
difficulty of performing TKA, although these characteristics 
are likely to be more relevant for predicting the risk of early 
complications after TKA rather than operating time.29

With the rise of new technologies, particularly in 
robotic-assisted surgery, it becomes crucial to use preop-
erative and intraoperative data to improve surgeon prac-
tice. Overall, this study has shown that 3D patient-specific 
data can improve machine-learning models to predict 
operating time of robotic-assisted TKA. The most influen-
tial factors for this TKA operating time prediction model 
were surgeon, patient weight, and osteophyte volume. 
A preoperative CT scan has the potential to enable more 
accurate operating time estimation, which in turn may 
improve surgical scheduling.

Take home message
- - 3D patient-specific data can improve operating time 

predictions models, which may lead to improved operating 
room planning and efficiency.

- - The primary features for predicting robotic-assisted total knee 
arthroplasty operating time were surgeon, patient weight, and 
osteophyte volume.

Supplementary material
‍ ‍Table reporting an exhaustive description of each 

predictor of this predictive model.
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