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Abstract: The plant hormone jasmonic acid (JA) has an important role in many aspects of plant
defense response and developmental process. JA triggers interaction between the F-box protein COI1
and the transcriptional repressors of the JAZ family that leads the later to proteasomal degradation.
The Jas-motif of JAZs is critical for mediating the COI1 and JAZs interaction in the presence of JA.
Here, by using the protoplast transient gene expression system we reported that the Jas-motif of JAZ1
was necessary and sufficient to target a foreign reporter protein for COI1-facilitated degradation.
We fused the Jas-motif to the SHY2 transcriptional repressor of auxin signaling pathway to create
a chimeric protein JaSHY. Interestingly, JaSHY retained the transcriptional repressor function while
become degradable by the JA coreceptor COI1 in a JA-dependent fashion. Moreover, the JA-induced
and COI1-facilitated degradation of JaSHY led to activation of a synthetic auxin-responsive promoter
activity. These results showed that the modular components of JA signal transduction pathway
can be artificially redirected to regulate auxin signaling pathway and control auxin-responsive gene
expression. Our work provides a general strategy for using synthetic biology approaches to explore
and design cell signaling networks to generate new cellular functions in plant systems.
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1. Introduction

Being autotrophic and fixed in space, plants are under relentless challenges by numerous
environmental stresses. Plant development and growth are superplastic in response to changing
environments. Upon detection of dangers, plants carry out multiple layers of response to coordinate
development and defense, orchestrated by an elegantly organized signaling network of phytohormones,
such as auxin that acts as a general coordinator of plant development and jasmonic acid that mainly
regulates plant response to environmental stimuli [1–3].

Over recent years, mounting lines of studies revealed extensive crosstalk, either synergistic or
antagonistic, among different hormonal signaling pathways [4]. For instance, JA can directly activate
the expression of genes that are involved in auxin biosynthesis to regulate tissue regeneration and
lateral root formation in Arabidopsis [5–7]. While, on the other hand, auxin stimulates adventitious
root formation on Arabidopsis hypocotyls by inducing expression of genes encoding enzymes that are
involved in inactivating JA or reducing JA accumulation [8]. However, the molecular mechanisms
underlying signaling crosstalk are remain poorly understood. Elucidating hormone signaling pathways
is not only important for understanding fundamental questions in plant biology but also crucial for
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breeding programs to enhance stress tolerance and improve yield performance in agricultural crops.
For instance, exogenously applied methyl jasmonate effectively improves the drought tolerance in
soybean (Glycine max L. Merrill) [9], wheat (Triticum aestivum L.) [10], and rice (Oryza sativa subsp.
japonica) [11]. Recently, Zhang et al. succeeded in engineering the JA coreceptor COI1 that allows
for endogenous JA signaling but with reduced sensitivity to pathogen produced phytotoxin [12].
Transgenic Arabidopsis plants expressing this modified COI1 show better resistance to disease-causing
pathogens such as Pseudomonas syringae.

JA is a relatively newly discovered plant hormone class comprised of lipid-derived
small-molecules [13,14]. JA regulates plant defense responses against biotic and abiotic stresses,
and affects plant development as well [15–17]. Our present knowledge about JA signaling pathway
are largely from studies of the model plant Arabidopsis thaliana [13,18–20]. JA is biosynthesized
from membrane lipid α-linolenic acid via the octadecanoid pathway [21]. Once synthesized, JA is
further adenylated at the carboxylic end by a JA-amido conjugate synthase to form the final bioactive
derivative, jasmonoyl-isoleucine (JA-Ile) [22,23]. JA-Ile is perceived by a coreceptor complex consisting
of the F-box protein CORONATINE INESENSTIVE 1 (COI1) and the JASMONATE ZIM-DOMAIN
(JAZ) family of transcriptional repressors [24–26]. COI1 is the substrate-recognition component of the
Skp1/Cullin/F-box protein (SCF) ubiquitin E3 ligase complex, SCFCOI1 [27,28].

Under normal growth conditions when JA levels are low, JA-responsive genes are actively repressed
by the JAZ repressors which physically associate with JA-network MYC transcription factors. Arabidopsis
genome encodes 13 JAZ repressors [29]. JAZs belong to the plant-specific TIFY protein family which is
defined by the presence of TIFY-motif within a larger conserved ZIM domain [30,31]. The TIFY-motif
is involved in mediating the JAZ interaction with Novel Interactor of JAZ (NINJA). NINJA serves as
an adaptor protein to recruit the TOPLESS (TPL) and TPL-related (TPR) transcriptional corepressors [32].
TPL and TPRs are members of the evolutionarily conserved Groucho/Tup1-type corepressor family that
coordinate the formation of transcriptional repression complexes with histone-modifying enzymes such
as histone deacetylases (HDACs), resulting in a suppressive chromatin state inaccessible to transcription
machineries [33,34]. Therefore, the JAZ-NINJA-TPL complex represses MYC transcriptional activity
through recruitment of HDACs in order to restrain JA response. Upon pathogen or insect attack when
JA concentration reaches a threshold in the cell, JA directly triggers COI1 binding to JAZ proteins,
resulting in the ubiquitination and subsequent degradation of JAZ repressors via the 26S proteasome
thereby releasing MYC-dependent transcription of JA-regulated genes. Protein ubiquitination is
an important post-translational process that is regulated by at least three main families of enzymes:
ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3) [35].
Protein substrates are specifically recruited by the E3 ligases to the proximity of E2, which attaches the
ubiquitin moiety to a lysine residue in the targets [36]. Targets may be monoubiquitinated by single
ubiquitin in one position or several positions, or polyubiquitinated by a chain of ubiquitin polymers.
So far, ubiquitination sites in JAZ proteins have not been identified. In addition to containing a central
ZIM domain, JAZ proteins also contain a highly conserved C-terminal JA associated- (Jas-) motif [29].
The Jas-motif was found to be the minimal region being indispensable and adequate to mediate the
JAZ-COI1 interaction.

Interestingly, the growth hormone auxin and the defense hormone JA share mechanistically
conserved ligand perception and signal transduction mechanisms [37]. Auxin is perceived by
a protein complex containing the F-box protein Transport Inhibitor Response 1 (TIR1) and the
auxin/indole-3-acetic acid (Aux/IAA) transcriptional repressor proteins [38,39]. The Aux/IAA proteins
directly interact with TPL corepressors through an ethylene response factor-associated amphiphilic
repression (EAR) motif to form the Aux/IAA-TPL repressive complex that represses auxin response
factors (ARFs) at the promoter region of auxin response genes [40]. In the presence of auxin, Aux/IAA
repressors are ubiquitinylated by the SCFTIR1 complex [41]. IAA6 and IAA19 of the Aux/IAA family
are conjugated with polymeric ubiquitin chains at multiple lysine residues [42]. Polyubiquitination
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of Aux/IAAs leads them to degradation by the 26S proteasome pathway. Degradation of Aux/IAA
releases the transcriptional activity of ARF regulators.

Previously, we have reconstituted the core JA signaling pathway in transiently transformed
protoplasts [43]. Analysis of the stability of a JAZ1-fLuc fusion protein Li et al. recapitulated the
JA-induced degradation of JAZ1 repressor by COI1 and confirmed that the Jas-motif was important
for this degradation. The protoplast transient gene expression system offers invaluable opportunities
for studying subcellular protein localization, transcriptional regulation, genome editing, and plant
synthetic biology [44,45]. Because of its flexibility and convenience, protoplast expression system
has become a useful tool for analyzing cellular signaling mechanisms. Using a similar approach,
we investigated the stability of a Jas-fLuc fusion protein in Arabidopsis protoplast cells and determined
that the Jas-motif alone is necessary and sufficient to mark the nonrelated fLuc reporter to targeted
protein degradation. This result further inspired attempts to artificially connect the JA signaling cascade
to manipulate gene expression of the auxin pathway by tagging the Jas-motif to the Aux/IAA proteins.
Our study provides the basis for generating further understanding of the molecular and cellular
mechanisms of hormone action, which could eventually facilitate strategies for crop engineering to
produce more and better foods.

2. Materials and Methods

2.1. Plant Materials and Cultural Conditions

Arabidopsis thaliana of the Columbia (Col-0) ecotype was used throughout this study. Arabidopsis
coi1 (Salk035548) [46] mutant seeds were surface sterilized by exposure to chloric gas produced from the
mixture of 100 mL 12% sodium hypochlorite (Carl Roth, Karlsruhe, Germany) and 3.5 mL 37% Salzsäure
(Carl Roth, Karlsruhe, Germany) in a sealed desiccator for at least 3 h. To select homozygous plants,
the coi1 seeds were sown on MS-agar plates (Duchefa, Haarlem, The Netherlands) containing 50 µM
methyl jasmonate (Sigma-Aldrich, Darmstadt, Germany) [47]. Arabidopsis plants were germinated
and grown in a growth chamber (Percival Scientific, Germany) under a 12-h-light/12-h-dark regime at
22/20 ◦C with 80–100 µmol photons m−2 s−1.

2.2. Molecular Cloning

Two types of reporter vector were used in this study: the protein-fusion reporter vector and the
promoter-driven reporter vector. The GATEWAY (GW) destination vector UBQ10pro:HA-GW-fLuc [43]
was used to clone protein-fusion reporter vectors. The Jas-motif coding sequence of JAZ1 (Jas) was
obtained by polymerase chain reaction (PCR) using pDONR207-JAZ1 [43] as template with primer set
JAS-gw-d1/JASnostop-gw-r1(All primer sequences are listed in Table 1). The JasAA mutant variant was
amplified by PCR with primer set JASA-gw-d1/JASnostop-gw-r1. The Jas and JasAA PCR products
flanked by the attB sequence were cloned into pDONR207 (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s instructions. The resulting entry clone pDONR207-Jas and -JasAA were recombined
with the destination vector to produce the final protein-fusion reporter vectors UBQ10pro:Jas-fLuc and
UBQ10pro:JasAA-fLuc. The SHY2 gene coding sequence was obtained by PCR using pDONR207-SHY2
(pDONR207-IAA3) [48] as template with primer set SHY2-gw-d1/SHY2nostop-gw-r1. The PCR
product flanked by the attB sequence were cloned into pDONR207, yielding the entry clone
pDONR207-SHY2nostop. Three PCR reactions were used to obtain the JaSHY chimera coding
sequence, one reaction used the pDONR207-Jas as template with primer set SeqL1/JASHY-r1 to
amplify a Jas sequence that encloses a 5′-portion of SHY2 coding sequence. A second PCR reaction
used pDONR207-SHY2nostop as template with primer set JASHY-d1/SeqL2 to amplify the SHY2
coding sequence that encloses a 3′-portion of Jas coding sequence. The PCR products from these
two reactions contain complementary sequences that allow the products to anneal as template in
a third PCR reaction with primer set SeqL1/SeqL2. The chimeric product containing the attL sequence
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was directly recombined with the destination vector to produce the protein-fusion reporter vector
UBQ10pro:JaSHY-fLuc.

The GW destination vector pBGWFL7 [49] was used to clone promoter-driven reporter vector.
The DR5 promoter sequence was amplified from the DR5-GUS construct [50] with primer set
DR5-gw-d1/DR5-gw-r1. The PCR product containing DR5 promoter sequence was cloned into
pDONR207, resulting entry clone pDONR207-DR5pro for recombing with the destination vector
pBGWFL7 to produce the promoter-driven reporter vector DR5pro:fLuc.

The GW destination vector UBQ10pro:HA-GW [48] was used to clone effector vectors. The ARF7
gene coding sequences were obtained by PCR using Arabidopsis cDNA as template with primer
set ARF7-gw-d1 and ARF7-gw-r1. The JaSHY chimera coding sequence was amplified using
UBQ10pro:JaSHY-fLuc as template with primer set JAS-gw-d1/SHY2-gw-r1. The PCR products
were cloned into pDONR207 resulting entry clones pDONR207-ARF7 and -JaSHY. pDONR207-ARF7,
-SHY2 and -JaSHY were recombined with the destination vector to produce the effector vectors
UBQ10pro:ARF7, UBQ10pro:SHY2, and UBQ10pro:JaSHY. Construction of the effector vectors
UBQ10pro:COI1 and UBQ10pro:COI1lrr13 was described in [43].

Table 1. Primer sequences used in this study.

Primer Symbol Primer Sequence (5′-3′)

JAS-gw-d1 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCGAACTTCCTATTGCTAGAAG
JASnostop-gw-r1 GGGGACCACTTTGTACAAGAAAGCTGGGTGAGTATGGTGCCTTTGACGTAAC
JASA-gw-d1 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCGAACTTCCTATTGCTGCAGCAGC
SHY2-gw-d1 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGATGAGTTTGTTAACCTC
SHY2nostop-gw-r1 GGGGACCACTTTGTACAAGAAAGCTGGGTGATACACCACAGCCTAAACC
SHY2-gw-r1 GGGGACCACTTTGTACAAGAAAGCTGGGTCATACACCACAGCCTAAACC
JASHY-d1 TACGTCAAAGGCACCATACATGGATGAGTTTGTTAACCTC
JASHY-r1 TGAGGTTAACAAACTCATCCATGTATGGTGCCTTTGACGT
DR5-gw-d1 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGCCTGCAGGTCGACGGTAT
DR5-gw-r1 GGGGACCACTTTGTACAAGAAAGCTGGGTTTGTAATTGTAATTGTAAATAGT
ARF7-gw-d1 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGAAAGCTCCTTCATCAAATGGAG
ARF7-gw-r1 GGGGACCACTTTGTACAAGAAAGCTGGGTCACCGGTTAAACGAAGTGGCTGAG
SeqL1 TCGCGTTAACGCTAGCATGGATCTC
SeqL2 GTAACATCAGAGATTTTGAGACAC

2.3. Protoplast Transfection and Dual Luciferase Report Assay

Protoplast transfection and dual luciferase assay were performed as described previously in [43,51].
Briefly, 5 µg of protein-fusion reporter plasmids or promoter-driven reporter plasmids and 5 µg of
effector plasmids were co-transfected. To normalize for the experimental variability, 1 µg of the
reference plasmids UBQ10pro:rLuc [48] were added to each transfection. The empty effector plasmids
UBQ10pro:HA [48] lacking the GATEWAY cassette were added, when necessary, to provide for equal
amounts of total DNA in each transfection experiment. Luc activities were determined 16 h after
transfection of protoplasts using the Dual-Luciferase Reporter Assay System (Promega, Mannheim,
Germany) and the Centro XS3 LB 960 Microplate Luminometer from Berthold Technologies (Bad
Wildbad, Germany).

3. Results and Discussion

3.1. The Jas-Motif Is Sufficient to Target Luciferase Reporter for Degradation

Previously, we developed a transient gene expression system in Arabidopsis coi1 mutant protoplasts,
by which the core JA signaling pathway was successful reconstituted [43]. The JAZ1 repressor of JA
signaling pathway was degraded via the 26S proteasome in a JA-induced and COI1- facilitated manner
in the protoplast reconstitution assay. The Jas-motif of JAZ1 protein (referred to as Jas) was required for
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the JA-dependent interaction with COI1 [29]. Substitution mutations at critical residues of Jas abolish
COI1-JAZ1 interaction and confer JAZ1 protein resistant to JA [43].

To determine whether Jas is not only necessary for JAZ1 degradation, but also sufficient for
targeting a heterologous protein for degradation, the 27 aa Jas coding sequence was placed in frame
upstream of firefly luciferase (fLuc) for translational fusion and the Arabidopsis UBQ10 promoter was
placed upstream of the fusion protein coding region, creating the protein-fusion reporter construct
UBQ10pro:Jas-fLuc (Figure 1A). The protein-fusion reporter construct was transfected alone or together
with the effector construct UBQ10pro:COI1 (Figure 1B). As shown in Figure 2B, the Jas-fLuc activity was
dramatically decreased in the presence of COI1 in coi1 mutant protoplasts. This result suggests that the
Jas sequence that requires for JAZ1 degradation is capable of functioning as a transferable degradation
signal targeting the fLuc reporter protein for proteolysis. In order to check whether the Jas-mediated
fLuc degradation is JA dependent or not, the two critical arginine residues (R205R) of Jas required
for COI1-JA-JAZ1 complex formation was exchanged into alanines (A205A) (Figure 2A), creating the
JasAA-fLuc reporter protein. Interestingly, these amino acid substitutions did not affect JasAA-fLuc
protein accumulation in coi1 protoplasts but caused the reporter protein insensitive to COI1 (Figure 2B).
This result indicates the importance of JA in conferring Jas-mediated fLuc degradation. Thus,
we determined in Arabidopsis protoplasts that Jas alone is sufficient for JA-induced and COI1-mediated
protein degradation, which could be used to develop a JA-inducible protein depletion system. Protein
abundance reflects the balance between protein synthesis and protein degradation. The classical
cycloheximide chase experiment in combination with MG132 treatment, however, is further required
to confirm exclusively that the observed decrease of fLuc activity is indeed linked to the degradation
of the fusion protein via the 26S proteasome pathway. Previously, Larrieu et al. fused the Jas-motif of
JAZ9 (Jas9) to the VENUS variant of the yellow fluorescent protein (YFP) to generate a JA biosensor
named Jas9-VENUS that allows quantitative detection of JA distribution in Arabidopsis with high
spatiotemporal sensitivity [52]. The Jas-fLuc reporter has the potential to serve as a biosensor for
nondestructive detection of the spatial and temporal JA distribution in vivo and in real time.
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Figure 1. Scheme of vectors used for protoplast transient transfections in this study. (A) The
protein-fusion reporter vectors. The coding sequences of wild-type and mutant Jas-motif and the
JasSHY chimeric protein were fused in-frame to the N-terminus of firefly luciferase (fLuc) reporter
gene. Expression of reporter proteins were under the control of the UBQ10 promoter. (B) The effector
vectors. Expression of SHY2, JaSHY chimera, COI1 and COI1 mutant effector proteins were placed
under the control of the UBQ10 promoter. All reporter and effector proteins contain a hemagglutinin
(HA) epitope tag at the N-terminus. (C) The promoter-reporter vector. The auxin responsive DR5
promoter sequence was fused to the firefly luciferase (fLuc) reporter gene. Not drawn to scale.
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Figure 2. The Jas-motif of JAZ1 is sufficient to target fLuc for degradation. (A) Schematic and amino
acid residues of JAZ1 Jas-motif. The red bar indicates residues of the Jas-motif with the sequence
shown below. The red letters highlight wild-type residues and point mutations in Jas and JasAA,
respectively. (B) Arabidopsis leaf protoplasts prepared from coi1 mutant plants were co-transfected with
protein-fusion reporter plasmids encoding Jas-fLuc or JasAA-fLuc under the control of UBQ10 promoter
and effector plasmid encoding COI1 under the control of UBQ10 promoter. Firefly luciferase (fLuc)
activities were normalized to Renilla luciferase (rLuc) activities. Reporter activities of Jas-fLuc without
effector vector were set to one. Values represent means (±SE) of four independently transformed
batches of protoplasts.

In plants, the signaling pathway of JA strikingly resembles to that of auxin, in which the F-box
protein, TIR1 of the auxin pathway or COI1 of the JA pathway, forms SCFTIR1 or SCFCOI1 protein
complex that recognizes the JAZ or Aux/IAA transcriptional repressors of respective pathways
to regulate plant responses [37,53]. In the presence of auxin, TIR1 binds to Aux/IAA to facilitate
ubiquitination and proteasomal degradation of Aux/IAA. The conserved Domain II (known as degron)
of Aux/IAA proteins was determined to be the minimal sequence that is sufficient to mediate TIR1 and
Aux/IAA interaction. The auxin-inducible protein degradation (AID) system was developed as a tool
to conditionally control protein stability in nonplant systems [54–57]. Analogously, it is possible to
develop a JA-inducible protein degradation (JID) system to control protein function in a tunable way.

3.2. The Jas-Tagging Leads the Aux/IAA Protein SHY2 to Be Degraded by the JA Coreceptor COI1

As a proof of concept to develop a functional JA-inducible protein degradation (JID) system,
we fused Jas to the Aux/IAA protein SHORT HYPOCOTYL2 (SHY2, also known as IAA3) and
placed the chimeric protein Jas-SHY2 (JaSHY for short) upstream of fLuc to create the JaSHY-fLuc
fusion reporter. Expression of the fusion reporter was put under the control of the UBQ10 promoter
(UBQ10pro:JaSHY-fLuc, Figure 1A). SHY2, a canonical Aux/IAA protein from Arabidopsis, was selected
for this assay because SHY2 is important in multiple auxin responses, as demonstrated by identification
of an auxin response mutant shy2 which showed a plethora of pleiotropic growth phenotypes, such as
short wavy roots, enlarged cotyledons, short hypocotyls, and extremely dwarfed plants with curled
leaves [58–60]. Again, JaSHY-fLuc was expressed alone or together with the effector COI1 in coi1
protoplasts. Co-expression of COI1 strongly decreased the JaSHY-fLuc activity (Figure 3). Control
experiments were performed using a mutant effector COI1lrr13. In order not to disrupt protein folding,
critical residues of the COI1 13th LRR-motif (YMA384VYV) involved in JA-Ile binding were substituted
with the motif SVL378YFC found in the structurally related auxin receptor TIR1 [43]. Since this mutant
derivate cannot bind to JA, COI1lrr13 had no effect on JaSHY-fLuc reporter accumulation (Figure 3),
demonstrating that Jas tag specifically recruited JaSHY-fLuc to SCFCOI1. These results indicate that the
COI1-mediated degradation of JaSHY-fLuc reporter protein is JA-dependent.
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So far, by tagging Jas to SHY2, we were able to destroy a repressor of the auxin signaling pathway
in a JA-inducible way. Despite this interest, fundamental questions remain regarding the potency and
efficacy of JA-induced and Jas-mediated binding of SHY2 to COI1. And, particularly, whether a Jas
tag at the N-terminus impinges SHY2 protein function requires further clarification. Our work only
represented preliminary results of this concept in isolated protoplast cells.

3.3. Degradation of the JaSHY Chimeric Repressor Liberates ARF7 Transcription Activity

Auxin signaling involves the activation of gene expression by a bevy of ARF factors that bind to
canonical auxin response elements (AuxREs) in auxin-responsive gene promoters [50]. The Aux/IAA
proteins negatively modulate auxin-regulated gene expression as transcriptional repressors through
heterodimerization with the ARF transcription activators. The release of ARF repression in the
presence of auxin by the proteasomal degradation of their cognate Aux/IAA repressors elicits a rapid
transcriptional change [61]. The ARF7-SHY2 signaling module plays a crucial role in many aspects of
plant growth and development [62–64]. Since by introducing a Jas-tag the SHY2 repressor become
degradable by the JA coreceptor COI1 (Figure 3), we sought to rewire the JA signaling pathway to
modulate expression of auxin-responsive gene. We first confirmed that in protoplasts ARF7 strongly
activated the fLuc reporter gene under control of the synthetic auxin-responsive promoter DR5
(DR5pro:fLuc; Figure 1C) as manifested by the increased fLuc bioluminescence (Figure 4). Both SHY2
and JaSHY chimeric repressor drastically repressed the ARF7-activated DR5 promoter activity to
the same level (Figure 4). However, by the addition of COI1, only JaSHY- but not SHY2-mediated
repression was alleviated (Figure 4). These results indicate that the Jas-tag does not influence SHY2
repressive function and the specific removal of the JaSHY chimeric repressor by COI1 leads to the
liberation of ARF7 transcriptional activity. Therefore, by tagging Jas to an auxin repressor, we could
manipulate auxin-regulated gene expression in a JA-inducible and auxin-independent manner.

In general, the auxin signaling pathway plays an important role in plant development, whereas
the JA signaling pathway primarily regulates plant defense response. Increasing lines of evidence
showed that sophisticated crosstalk between phytohormone signaling pathways fine-tunes the action
of those hormones [4]. The JA and auxin signal transduction pathways are mutually antagonistic [65].

Defense-activated JA signaling pathway inevitably compromises auxin-regulated developmental
processes [66]. However, by introducing JA-inducible degron to the Aux/IAA repressors, it could link
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the JA signaling pathway to control gene expression downstream of Aux/IAA regulators and achieve
both JA and auxin responses simultaneously.Cells 2020, 9, x 8 of 12 
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4. Conclusions

This work showed that the Jas-motif of JAZ1 protein is not only required but also sufficient to
target an unrelated protein such as fLuc to SCFCOI1 for degradation in plant protoplasts. By fusing
the Jas-motif to the SHY2 transcriptional repressor of auxin signaling pathway, we developed a rapid
experimental system to rewire the JA signaling pathway to control auxin-responsive gene expression
(Figure 5). To our knowledge, this is the first development of a JA-inducible protein degradation
system and use of a plant hormone signaling pathway to control gene expression and potentially
physiological response of another plant hormone. We envision that it even may be possible to employ
this system to design crops that overcome the auxin- and JA-mediated growth-defense tradeoffs to
grow substantially health and produce more food than the most productive varieties today.

Cells 2020, 9, x 8 of 12 

 

 
Figure 4. The ARF7 transcriptional activity was released upon JaSHY degradation by COI1. Arabidopsis 
leaf protoplasts prepared from coi1 mutant plants were co-transfected with promoter-driven reporter 
plasmid DR5pro:fLuc and effector plasmids encoding ARF7, SHY2, JaSHY, or COI1 under the control of 
UBQ10 promoter. Firefly luciferase (fLuc) activities were normalized to Renilla luciferase (rLuc) activities. 
Reporter activities of fLuc without effector vector were set to one. Values represent means (±SE) of four 
independently transformed batches of protoplasts. 

In general, the auxin signaling pathway plays an important role in plant development, whereas the 
JA signaling pathway primarily regulates plant defense response. Increasing lines of evidence showed 
that sophisticated crosstalk between phytohormone signaling pathways fine-tunes the action of those 
hormones [4]. The JA and auxin signal transduction pathways are mutually antagonistic [65]. 

Defense-activated JA signaling pathway inevitably compromises auxin-regulated developmental 
processes [66]. However, by introducing JA-inducible degron to the Aux/IAA repressors, it could link 
the JA signaling pathway to control gene expression downstream of Aux/IAA regulators and achieve 
both JA and auxin responses simultaneously. 

4. Conclusions 

This work showed that the Jas-motif of JAZ1 protein is not only required but also sufficient to target 
an unrelated protein such as fLuc to SCFCOI1 for degradation in plant protoplasts. By fusing the Jas-motif 
to the SHY2 transcriptional repressor of auxin signaling pathway, we developed a rapid experimental 
system to rewire the JA signaling pathway to control auxin-responsive gene expression (Figure 5). To 
our knowledge, this is the first development of a JA-inducible protein degradation system and use of a 
plant hormone signaling pathway to control gene expression and potentially physiological response of 
another plant hormone. We envision that it even may be possible to employ this system to design crops 
that overcome the auxin- and JA-mediated growth-defense tradeoffs to grow substantially health and 
produce more food than the most productive varieties today. 

 
Figure 5. Schematic representation of jasmonate-induced, ARF7-mediated auxin responsive gene 
expression in protoplasts. In the absence of JA, the transcriptional activity of ARF7 is repressed by 
the chimeric protein JaSHY. In the presence of JA, JaSHY is degraded by COI1, leading to the 
liberation of ARF7 transcriptional activity. 

Figure 5. Schematic representation of jasmonate-induced, ARF7-mediated auxin responsive gene
expression in protoplasts. In the absence of JA, the transcriptional activity of ARF7 is repressed by the
chimeric protein JaSHY. In the presence of JA, JaSHY is degraded by COI1, leading to the liberation of
ARF7 transcriptional activity.
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