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Extracellular vesicles are mediators of cell-cell communication playing a key role in both
steady-state and disease conditions. Extracellular vesicles carry diverse donor-derived
cargos, including DNA, RNA, proteins, and lipids that induce a complex network of signals
in recipient cells. Due to their ability to capture particulate matter and/or capacity to
polarize and orchestrate tissue responses, myeloid immune cells (e.g., dendritic cells,
macrophages, etc.) rapidly respond to extracellular vesicles, driving local and systemic
effects. In cancer, myeloid-extracellular vesicle communication contributes to chronic
inflammation, self-tolerance, and therapeutic resistance while in autoimmune disease,
extracellular vesicles support inflammation and tissue destruction. Here, we review cellular
mechanisms by which extracellular vesicles modulate myeloid immunity in cancer and
autoimmune disease, highlighting some contradictory results and outstanding questions.
We will also summarize how understanding of extracellular vesicle biology is being utilized
for novel therapeutic and diagnostic applications.
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1 INTRODUCTION

Extracellular vesicles (EVs) are phospholipid bilayer-bound particles shown to be produced by all
tested cell types. These cell-derived vesicles are released into the extracellular space accumulating in
tissue, circulation and other fluids (1). Studies on EV cargo, subtype heterogeneity, and cell
responses have shown they play diverse roles in health and disease. EV cargos include protein, DNA,
mRNA, non-coding RNA and lipids from the donor cell, with specific cargo enrichment depending
on cell status and EV subtype (2). The three most examined subtypes of EVs are apoptotic bodies
(ABs), ectosomes and exosomes, though novel EV subtypes are still being identified. EVs can elicit
potent autocrine, paracrine, and systemic responses in many cell types including in macrophages,
endothelial cell, and lymphocytes (3). EV responses have been shown to regulate physiological
processes including inflammation and tissue regeneration (3). Therefore, EVs are increasingly
recognized as key mediators of intra- and inter-cellular communication, akin to cytokine signals.
However, unlike most cytokines, EVs are highly stable and carry diverse cargo allowing EVs to drive
complex responses both locally and at distant sites. Responses to EVs are dictated by many factors
including capture mechanisms and physiological context. EVs are internalized via multiple
mechanisms including receptor-mediated and lipid-raft mediated endocytosis, phagocytosis, and
pinocytosis (3). Depending on route of internalization, EV cargo is delivered to different cellular
compartments driving rapid recycling, interaction with endosomal receptors, and/or antigen
org March 2022 | Volume 13 | Article 8185381
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presentation leading to different responses (4). EV responses via
cell surface receptor interactions have also been reported,
especially in cells that are poor at EV capture. For example,
exosomal PD-L1 binds to PD-1 on the surface of T cells and
TIM-4 has been shown to interact with phosphatidylserine on
ABs, both driving immune suppression (5, 6).

In this review, we focus on EV responses in myeloid cells.
Myeloid cells (e.g., macrophages, neutrophils, dendritic cells) are
a key component of innate and adaptive immunity
outnumbering other immune cells in most tissues. Importantly,
myeloid cells can readily capture particulate materials and are
key drivers and modulators of inflammation and tissue repair.
Therefore, myeloid cells are likely highly responsive to EVs,
driven by their receptor expression and/or capacity for
phagocytosis and pinocytosis. Physiological context has
become an important consideration in understanding EV
responses, dictating which cargos are loaded into EVs as well
as how recipient cells respond, including their capacity for
uptake and stress or activation status (7). As such, EVs can
serve opposing roles in autoimmunity and cancer depending on
the inflammatory context. At steady-state innate cells capture
EVs maintaining homeostasis and self-tolerance. In cancer, these
mechanisms may function to dampen immune surveillance and
promote chronic inflammation (8). EVs also play a progressive
role as their systemic accumulation increases as we will later see
in the example of metastasis. In autoimmunity, we see that the
same EV cargo can promote the breakdown of immune tolerance
driven by the inflammatory milieu.

Understanding how EVs drive physiological processes and
identifying representative EV cargo signatures in pathological
states is being utilized for therapeutic targeting and disease
diagnosis. However, the role of EVs is only partially
understood as the field of EV research is currently still in its
infancy, and requires refinement in limitations of detection and
isolation (1) as well as resolving contradictory results. The
excitement around uncovering new biological mechanisms
driven by these small particles, however, is generating rapid
progress in the field. Here, we will examine what is known
regarding mechanistic interactions between EV cargo and
myeloid cells—defining a paradigm for understanding the
mixed responses to EV cargo. We will also comment on the
viability of therapeutic opportunities EVs generate, including
inhibitory targeting of biogenesis and transfusion of EVs with an
artificial therapeutic load and as vaccines.
2 EV HETEROGENEITY

There are currently three well described subtypes of EVs,
differentiated by size and the cell processes responsible for
their production. Apoptotic bodies are the largest and most
studied class of EVs produced as a result of programmed cell
death (2). Ectosomes and exosomes are smaller on average,
jointly called small EVs (sEVs), and are produced by living
cells. Differentiating the two sEVs, ectosomes are shed directly
from the cell surface while exosomes (the smaller of the two sEV
categories) originate from the cellular lumen bearing protein
Frontiers in Immunology | www.frontiersin.org 2
markers of their endocytic origin (9). The first EVs to be reported
were ABs (50nm-5mm), as apoptosis was being closely studied in
the 1960s (10). Microparticles (MPs, 50nm-1mm), also referred
to as ectosomes, were first described in 1967 in the context of
platelets and blood coagulation (11). The smallest EVs, exosomes
(30-150nm) were first identified in the early 1980s (12, 13) in the
study of transferrin receptor loss during reticulocyte maturation.
These two sEV subtypes collectively were shown to be produced
by healthy living cells of nearly all types—with EV dysfunction
observed under cellular stress (14). The details of EV biogenesis
have been recently reviewed elsewhere (3) and will not be
covered here. Although the intracellular origin of the each EV
subtype can be tracked, attempts to describe EV biogenesis and
heterogeneity is confounded by overlapping size and biomarker
criteria (2). Moreover, new classes of EVs are continually being
identified including exophers (15), cytokine vesicles (16) and
midbody remnants (17). The lack of consistent nomenclature in
the field and biomarker oversimplification has driven pragmatic
researchers to choose simpler terms like small and large EV to
broadly understand biological functions.
2.1 Classical and Non-Classical
EV Subtypes
Correctly characterizing and naming EVs is necessary for
understanding each EV’s distinct physiological role. In a recent
review, Kalluri and LeBleu streamline EVs into two categories,
EVs shed from the plasma membrane of the cell as ectosomes,
and EVs originating from intracellular compartments as
exosomes (9). While this system works for such classical EVs,
other particles must be included as non-classical subtypes
(Figure 1). Specifically, this taxonomic classification of EVs
does not fully capture EV heterogeneity, especially pertaining
to large EVs. While some large EVs like oncosomes (<10mm),
shed from the membrane of amoeboid tumor cells, fit into their
system as ectosomes, ABs and exophers do not (18). ABs can
neither be characterized as large or small EVs because of their
wide size range nor as ectosomes or exosomes produced by live
cells because they are formed out of complete cell components
from dying cells. Also, the 4 mm exophers described recently in
cardiomyocytes (15) and neurons (19), though containing
intracellular mitochondrial components are too large to meet
the exosome biogenesis criteria. Since exosome production
involves formation of intraluminal vesicles (ILVs), exosomes
are limited to ILV size between 30nm and 150nm (2). Further,
Nicolás-Ávila et al. predict that production of exophers is related
to autophagy dependant waste removal of abnormal
mitochondria and protein, while exosomes are considered
active agents of cell communication—although this has proven
difficult to confirm. The authors also highlight that exophers are
unrelated to ABs since apoptosis is not expected in quiescent
cardiomyocytes or neurons. To enable accurate classification of
such particles and to attribute responses correctly, we must
include both exophers and ABs into the taxonomy of EVs.
Inclusive criteria allow better resolution between particles,
prevent misclassification, and can improve our understanding
of complex EV responses.
March 2022 | Volume 13 | Article 818538
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To create consistency across different EV subtypes, the
minimal information for studies of extracellular vesicles
(MISEV) 2018 statement recommended the use thorough
biomarker characterization of EVs (20). However, authors also
acknowledge that defining EVs by biomarkers that reflect their
biogenesis also leads to significant overlap between EV subtypes.
Importantly, this limits tracking of EVs in vivo resulting in a lack
of knowledge on rates of production and physiologically relevant
EV concentrations. Consequently, most studies rely on in vitro
derived EVs from a single cell or body fluid source used for
treatment in vitro or for in vivo transfer. EV isolation methods
rely on size- and density-based ultracentrifugation, size-
exclusion columns, polyethylene glycol precipitation or
microfluids-based immunoprecipitation, with each method
yielding a partially pure EV population (1). Although small (s)
EVs and be easily separated from large (l)EVs using these
isolation methods, sEV isolation results in co-precipitation of
other species in biofluid or media (16, 21). Heterogenous EV
Frontiers in Immunology | www.frontiersin.org 3
preparations confound our understanding of EV cargo
signatures as well as cellular responses to EV treatment. More
sophisticated isolation procedures, definitive biomarkers, basic
biogenesis research, and nanoscale experimentation will be
required for progress in this field. In the meantime, these
limitations must be considered while studying the role EVs
play in physiological processes.
3 TUMOR EVS AND
MYELOID-DRIVEN INFLAMMATION

The heterogeneous cell populations in solid tumors and
hematological malignancies produce a diversity of EV
populations, changing by disease stage and therapeutic
intervention. Understanding the diversity of EV populations
within the tumor microenvironment (TME) as well as their
nuanced effects on tumor pathology has been confounded by
FIGURE 1 | Taxonomic tree depicting EV heterogeneity. Diversity in EV populations can be grouped into classical and non-classical subtypes. Classical EVs are
produced by health living cells; either shed from the cell surface as ectosomes, also called microparticles, or derived from inside the cell as exosomes. Although
exosomes and ectosomes carry similar cargos including proteins, lipids, and nucleic acids, species of endocytic origin (e.g., HSPs, mtDNA) are only expected in
exosomes. Non-classical EVs tend to be larger and correspond to a wide array of cell processes and include species like apoptotic bodies from dying cells,
exophers released from neurons and cardiomyocytes as metabolic waste, and oncosomes derived from certain tumor cells. Non-classical subtyping allows for a
better understanding of novel EVs that do not fit classical criteria preventing their misclassification. Cargos in each non-classical EV subtype are distinct but not fully
understood. EV, Extracellular vesicle; HSP, Heat shock protein; mtDNA, Mitochondrial DNA.
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isolation and biomarker limitations. However, extensive
characterization of immune responses to EVs in multiple
cancer models have revealed the key role EVs play in chronic
inflammation and immune tolerance. Innate immune cells are
often abundant in the TME and express a wide array of receptors
that capture or interact with EV particles suggesting that EVs
regulate immunity by impacting innate immune function in the
local tumor milieu. Supporting this prediction, studies have
shown blocking EV production by tumor cells correlates with
decreased overall immune responses in the TME (5) and
increased myeloid cell infiltration, suppressive polarization,
and differentiation (22–24) In this section, we will describe
known molecular mechanisms of tumor EVs driven
dysfunction in myeloid immune cells promoting chronic
inflammation and immune tolerance in the tumor.

3.1 EV Dysfunction in the
Tumor Microenvironment
Addressing the role EVs play in tumor pathophysiology begins
with understanding the nature of EV production in the TME.
While increased plasma EV concentration in cancer patients
compared to healthy donors has been reported for many tumor
types (25), production of EVs by the tumor and tumor-
associated cells cannot be directly confirmed with current
methodology. However, several studies suggest that tumor-
associated cells produce higher levels of EVs with unique
molecular signatures. EV biogenesis genes like Rab27 are
upregulated in tumors and associated with poor prognosis
(26). Further, hypoxia (27–30) and the cytokine milieu (e.g.
IFNg, TGFb) in the TME modulate EV biogenesis and cargo
loading (31). Basal levels of stress (7, 14) and therapeutic
interventions like radiation (32) can also alter EV levels and
composition. The normal response to stress via the tumor
suppressor p53 was shown to drive exosome biogenesis via the
TSAP6 protein, suggesting abnormal exosome production by
p53 mutated tumor cells (33). Activating KRASmutations, found
in many different tumor types, have been shown to control
miRNA loading into exosomes. McKenzie et al. found lower
levels of let-7a miRNA packaged into exosomes when Ago2 is
phosphorylated by the activated KRAS (34). Let-7a miRNA has
Frontiers in Immunology | www.frontiersin.org 4
been show to target KRAS with decreased levels been reported in
KRAS and BRAF tumors (35). Furthermore, high levels of let-7a
were shown to promote anti-tumor microglia activation (36),
suggesting a role for exosomes on innate myeloid cell responses.
Together, tumor mutations and TME stimuli may drive a
unique EV signature impacting systemic and local tumor
immune responses.
3.2 EVs and the Tumor Wound Hypothesis
Tumor promoting inflammation and immune suppression in the
TME has been understood by drawing parallels between the
tumor and a healing wound (37). In the “tumor wound” concept,
the TME hijacks wound healing mechanisms driving
immunosuppressive and reparative stages of inflammation
without resolution stage, resulting in a chronic wound-like
state. In injured tissue damaged cells release a wide range of
damage-associate molecular patterns (DAMPs) including heat
shock proteins (HSPs), Glypicans, HMGB1, mitochondrial DNA
(mtDNA) driving the production of alarmins (IL-1, IL-33) and
other effectors that recruit and activate immune effectors via
pattern-recognition receptors (PRRs) (38). In the TME, tumor-
derived DAMPs can include mitochondrial components released
due to the Warburg effect, miRNA and HSPs released due to
genetic mutations and other factors like hypoxia. These DAMPs
have been widely reported in tumor EVs across many tumor
models (Table 1) and can drive inflammation in the tumor. In
the healing wound, other signals from the unvascularized
repairing tissue, hypoxia for example, drive a switch from
acute inflammation to tolerance, where alternatively activated
myeloid cells promote the immunosuppressive, pro-angiogenic
and fibrotic stages of wound healing. A growing tumor is
similarly supported by the suppression of anti-tumor
immunity, angiogenesis and fibrosis. The mechanisms that
sustain tumor growth in an unresolving state are not fully
understood. However, the continuous exposure to EV-DAMPs
to myeloid cells poised for particle capture, may contribute to
tumor promoting inflammation. The signalling pathways
stimulated upon EV exposure point to a key role of EV-
mediated induction of tumor promoting inflammation.
TABLE 1 | Examples of EV cargo effects on signalling in myeloid cells.

Cargo Species Function on myeloid immune cells

DNA gDNA Micronuclei (39) Cytoplasmic STING activation in dendritic cells
mitoDNA (40) Endosomal TLR9-mediated suppressive macrophage polarization

RNA miRNA (41) STAT3-mediated MDSC activation
Y-RNA (42) TLR7 mediated PDL-1 upregulation in monocytes
dsRNA (43) TLR3-mediated neutrophil recruitment at metastatic sites
lncRNA-HOTAIRM1 (44) MDSC expansion via STAT3

Mitochondria Cardiac autophagy (15) Phagocytic clearance by macrophage supports tissue homeostasis
Lipids Phosphatidylserine (45) Receptor-mediated regulatory macrophage polarization
Cytokines TGF-b1 (46) Dendritic cell driven T cell suppression
Self-antigen MART1 (47) Delivery of tumor antigen to activated dendritic cells
Checkpoint molecules PDL1 (5) Delivery of PDL1 to myeloid cells leads to systemic T cell exhaustion
Integrins Tissue specific integrin signature (48) Integrins prime Kuppfer cells for liver metastasis
Microbiome components Gram negative cell wall components (49) TLR-4 ligands in bacterial EVs activate innate immune cells
March 2022 | Volume 13 | Article 818538
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3.2.1 Vesicular TLR-Ligand Driven Inflammation
Myeloid cells express a battery of pattern-recognition receptors
including Toll-like receptors (TLR), retinoic-acid inducible gene
(RIG-I), and stimulator of interferon genes (STING) that are
highly responsive to DAMPs allowing rapid immune reactivity to
tissue injury (50). In the tumor, EV-DAMPs have been shown to
engage both plasma membrane-localized TLRs (e.g., TLR2 and
TLR4) and endosomal TLRs (e.g. TLR3, 7, and 9) driving potent
responses via the transcription factor, NFkB (51). In breast
cancer, palmitoylated proteins in tumor EVs can act as TLR2
ligands leading to upregulation of proinflammatory cytokines
and chemokines including CCL2, IL-6 and GCSF in
macrophages (52). TLR2 ligand, HMGB-1 was also found in
lung cancer and shown to drive NF-kB-dependent metabolic
reprogramming of macrophages at metastatic sites (53). Also
using a lung cancer model, Fabbri et al. demonstrated that
exosomal miRNAs (i.e. miR-21 and miR-29a) induce IL-6 and
TNFa in macrophages via a TLR7-NFkB dependent mechanism
promoting inflammation and metastasis (54). Similarly,
exosomal RNA can activate TLR3 promoting neutrophil
recruitment at metastatic sites via induced expression of CXCL
chemokines (43). To offer further insight into which RNA
species are EV associated, an atlas of vesicular and non-
vesicular RNA from healthy biofluids was recently published
(55). In pancreatic cancer, sEVs from were shown to carry
genomic dsDNA (56) that act as a TLR-9 ligand activating
myeloid cells (57). However, Jeppesen et al. showed that
genomic dsDNA-TLR9 ligands are secreted from tumor cells
independent of exosomes, while HSP-TLR2 and RNA-TLR7
ligands are enriched in sEVs (21). Jeppesen et al. argue that
genomic DNA (gDNA) does not exist in the same subcellular
location for endosomal loading required for exosome biogenesis.
However, gDNA may become exosome associated, adhering to
positively charged EVs prior to capture by donor cells. The
presence of double stranded mitochondrial DNA (mtDNA) is
less controversial due to subcellular location. MtDNA has been
observed in breast and prostate cancer EVs at higher
concentrations that noncancer epithelia (58). Although transfer
of mt-DNA between cell types is likely EV-mediated, most
researchers have studied the role of mt-DNA alone. Mt-DNA
has been shown to induce TLR9-mediated NF-kB activation
driving regulatory polarization in macrophages in liver cancer
(59) as well as activation of neutrophils in various forms of injury
(60). Further, non-immune cancer-associated fibroblasts were
also shown respond to mt-DNA via TLR-9 contributing to
therapeutic resistance to taxanes (40). In addition to
inflammatory modulation, mutations in tumor mt-DNA can
also regulate mitochondrial metabolism in recipient cells (61) but
have not been well-studied in the context of myeloid immunity.
Size-based EV isolation procedures leading to the co-
precipitation of non-vesicular nucleic acids and other
molecules will confound data on EV-mediated gene induction
until more specific isolation methods are found.

DAMP-TLR activation in myeloid cells can drive both pro-
inflammatory and regulatory responses via mechanisms that are
not fully understood. One hypothesis is that pro-inflammatory
Frontiers in Immunology | www.frontiersin.org 5
effectors are expected to drive pleiotropic effects on immune cells
and other cells of the body, supporting both inflammatory and
suppressive responses in a context dependent manner. In the
context of macrophages in chronic conditions, experts have
encouraged a spectrum polarization model over the
dichotomous M1-M2 model, which better describes acute
conditions. This integrative spectrum model also allows for a
better understanding of chronic inflammation driven by tumor
EVs. Interestingly, EV studies described here show upregulation
of both pro- and anti-inflammatory cytokines and effectors in
myeloid cells pointing to concomitant responses to mixed EV
cargo. Secondly, chronic exposure to TLR ligands drives negative
feedback mechanisms that lead to reduced inflammatory
cytokine and increased regulatory cytokine production. Repeat
treatments with DNA drive tolerance in macrophages via TLR-9
as seen by reduced TNFa production (62), mimicking the
chronic nature of EV responses. This chronic exposure to TLR
ligands is also expected to dictate hematopoietic outcomes
starting in the bone marrow, driving a myeloid differentiation
bias leading to reduced lymphoid to myeloid ratios in blood (63),
with trained immunity being a common feature of aging and
cancer pathophysiology (64).

3.2.2 STAT3 Driven Inflammation
Upon TLR activation of NFkB transcriptional program a further
activation of STAT3 is driven by autocrine IL-6 stimulation, in
turn amplifying the overall inflammatory response (65). Chalmin
et al. demonstrated the TLR2 ligand Hsp70, found on the
exosome surface, activates STAT3 in MDSCs via autocrine
action of IL-6 (66). These activated MDSCs produce IL-10 and
upregulate arginase 1 activity inhibiting T cell proliferation. The
EV-driven IL-6-STAT3 axis was also shown to keep bone
marrow precursors in an immature state inhibiting the
differentiation to mature DCs capable of anti-tumor responses
(24). A STAT3 regulatory signature was also observed in
monocytes treated with glioblastoma exosomes correlating with
increased interferon-ɣ production (67). A similar TLR2/4-
STAT3 response driven by HSPs was seen in bone marrow-
derived dendritic cells (BMDCs) promoting a pro-tumor IL-6,
PGE-2, IL-1, and TNF response after exosome treatment (68).

EVs have also been shown to control the NFkB-STAT3 axis
via the action of specific miRNA cargo. Both NFkB-driven and
exosomal miR-21a was shown to silence PDCD4, a tumor
suppressor and IL-6 inhibitor, promoting the expansion of
MDSCs in a IL-6/STAT3 dependant manner in lung cancer
(69). Exosomal miR-106b found in colorectal cancer also
suppresses PDCD4 driving both IL-6/STAT3 and mTOR
signalling to promoting regulatory polarization in tumor
macrophages (70). The exosomal miR-222-3p in ovarian
cancer, has been shown to silence SOCS3 in monocytes
promoting a STAT3-mediated regulatory signature in
macrophages including Arg1 and CD206 expression (71). It is
not clear whether the concentration of miRNA in sEVs can reach
a local concentration capable of eliciting an immune response
(72) or whether tumor derived sEVs may be continuously
produced eliciting a cumulative response over time.
March 2022 | Volume 13 | Article 818538
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3.3 EVs and Pre-Metastatic
Niche Formation
EV-macrophage interactions have been implicated in the priming of
the metastatic niche in several studies. In Hoshino et al., exosomes
from tumor cell lines with a liver metastatic ability were compared
to non-metastatic lines and were shown to carry integrin avb5. This
allowed preferential binding to liver-specific cells including CD169+

Kupffer macrophages, driving an inflammatory phenotype via
integrin-mediated Src phosphorylation and upregulation of s100
and fibronectin genes (48). Similarly, in Costa-Silva et al., migration
inhibitory factor (MIF) found in pancreatic cancer exosomes was
taken up by Kupffer macrophages driving TGFb and fibronectin
production priming the liver for metastasis (73). In Peinado et al.,
the receptor tyrosine kinase MET found in melanoma exosomes
was captured by bone marrow progenitors driving vasculogenesis
and promotingmetastasis in a systemic fashion (74). Another group
studying brain metastasis, showed that miR-19a carried from
astrocyte exosomes to tumor cells led to reduction of PTEN and
increased CCL2 via NFkB in tumor cells driving suppressive
myeloid infiltration (75). Interestingly, injection of melanoma EVs
drove downregulation of IFNAR1 in monocytes at distant sites
driving lung metastasis via fibronectin deposition (76). This
downregulation of IFNAR was thought to dependent on p38
expression driven by exosomal mRNA mediated TLR3-NFkB
activation (43, 76). Albeit via differing mechanisms, these studies
all support the pathogenic role of distant EV-mediated cell-cell
communication in tumor metastasis.

3.4 Modulating the Interferon Response
Activation of TLRs in myeloid cells via DAMPs drives both
NFkB and interferon regulatory factor (IRF) signalling.
However, several studies suggest tumor EVs may inhibit
interferon (IFN) expression and IFN responses. In an elegant
approach, Gao et al. injected tumor derived exosomes into mice
infected with both DNA and RNA viruses to examine EV-driven
immune suppression. The data showed that exosome-delivered
epidermal growth factor receptor (EGFR) reduced INFb
expression in macrophages after viral infection (77).
Mechanistically, this was the result of tumor EV-EGFR driven
Mitogen-Activated Protein Kinase Kinase Kinase 2 (MEKK2)
phosphorylation, inhibiting IRF3 dimerization and IFN
production. Similarly, hepatocarcinoma EVs containing
interferon induced transmembrane Protein 2 (IFITM2)
reduced IFNa production by HBV infected dendritic cells (78)
while exosome delivered IRF2 (IRF2 is a repressor of Type I IFN
signaling) limited IFNa/b production in macrophages. EVs can
also directly reduce cellular responsiveness to IFN stimulation.
For example, melanoma EVs can directly down-regulate
interferon alpha and beta receptor 1 (IFNAR1) in myeloid cells
via p38 activation dampening responsiveness to IFN stimulation
(76). IFNAR downregulation was also required for maintaining
suppressive activation in MDSCs (79). Thus, cumulatively the
data suggests EV exposure can have wide ranging impact on IFN
response influencing initial stimulation and downstream IFN-
induced transcriptional programs.
Frontiers in Immunology | www.frontiersin.org 6
EVs produced by tumors also contain self-associated molecular
patterns (SAMPs) that potentially modulate tumor inflammation by
molecular pathways that are distinct from those described above
(80). The siglec-family self-pattern recognition receptors (SPRRs)
bind to self-sialic acid residues abundant on EVs (81).
Hypersialyation has been reported in both solid tumors and
hematological malignancies (82) with sialic acid enrichment on
tumor EVs (83). These surface glycans are required for EV
internalization by many cell types (83). For example, CD169 (also
known as Siglec-1 or sialoadhesin) is an exosome endocytic receptor
for macrophages by binding a2,3-linked sialic acids (84). CD169 is
expressed on sentinel macrophages at key interfaces in the body
(blood-spleen, fetal-maternal, lung-air, etc). In peripheral lymphoid
organs, CD169+ macrophages play a key role in orchestrating the
response to particulate antigens including ABs and virus particles
(85–87). Infection with vesicular stomatitis virus (VSV) induced
CD169 upregulation and recruitment of a DAP12/SHP2/TRIM27
complex (88). This inhibitory complex ubiquitinated and degraded
TBK1, inhibiting IRF3 phosphorylation and downregulating the
type I IFN response (88). Because CD169 is an IFN stimulated gene
(ISG) this mechanism may be a negative feedback loop, promoting
tolerance to self-sialic acids. Supporting this concept, in a mouse
model of HIV, CD169 deletion lead to better control of viral load
with increased IFN-I production (86). Other siglec family receptors
(e.g. Siglec-H, Siglec-G and Siglec-10) also contain immunoreceptor
tyrosine-based inhibitory motifs (ITIMs) or recruit adaptor proteins
with ubiquitinase activity, with the exception of CD33 and Siglec-H
which have activating function (82). Binding of EV sialic acids to
siglecs may similarly attenuate IFN responses, modifying the overall
effect of EV-DAMP signalling viaTLR (89, 90). Specifically, myeloid
siglec-7 and siglec-9 have been shown to reduce HLA-DR and
CD86 expression upon engagement with tumor-derived sialic acids
promoting T cell suppression in the pancreatic TME (91). Siglec+

macrophages were also found in the bone marrow, controlling HSC
(92) and erythrocyte egress (93).

These studies collectively show that EVs package both
DAMPs and other endogenous immunity-inducing structures
driving diverse responses in myeloid immune cells (Figure 2).
While one signal from DAMPs provides activation of TLR-
STAT-NFkB pathways resulting in inflammatory cytokine
production, a second signal from self-patterns and other cargo
inhibits the IFN-I response attenuating inflammation and self-
antigen presentation. This results in a unique EV response that
promotes the breakdown of immune surveillance in cancer and
prevents autoimmunity under homeostatic conditions.
4 AUTOIMMUNE EVS
PROMOTE INFLAMMATION AND
TISSUE DESTRUCTION

In cancer studies the popularity of the term “exosome” has resulted
in its use as a generic descriptor of EVs despite its specific endocytic
definition that precludes other EVs (94). In the field of
autoimmunity, outside of apoptotic bodies that have been widely
March 2022 | Volume 13 | Article 818538
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studied, the termmicroparticle (MP) ismore prevalent in the study
of sEVs. Because in vitro derived MPs mainly use lower
centrifugation speeds, these studies capture larger vesicles,
enriching the ectosomal or cell shedding EV phenotype. MPs also
lack endocytic markers like chaperone HSPs and are enriched in
phosphatidylserine (95). Exosomes, have also been studied in
autoimmunity, however, the role they play distinct from other
sEV subtypes is not clear.

Many of the same EV cargo components have been found in
cancer and autoimmunity. Similar to observations in cancer EVs,
higher levels of EVs have been reported in Sjögren’s syndrome,
systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA)
Frontiers in Immunology | www.frontiersin.org 7
compared to healthy individuals (96, 97). Here too, the presence of
DAMPs in EVs drives inflammation in a TLR-dependent manner.
The focus in autoimmune disease has been on the TLR7 and TLR9
ligands DNA and RNA which are abundant in sEVs and apoptotic
bodies found at high concentrations in circulation (98). We have
previously reviewed the systemic effects of ABs in SLE (99), andwill
focus on the role of sEVs in this review. ExosomalmiR-let-7b found
in RA synovial fluid, promoted TLR7 activity in myeloid cells of
inflamed joints, stimulating production of IL-1b and IL-6 (100).
Further, removal of DNA from EVs by circulating DNASE1L3
prevents autoimmunity inhealthymice,while in lupus,DNASE1L3
null mutations and the presence of anti-DNA autoantibodies
FIGURE 2 | Theoretical framework for tumor EV driven myeloid responses. (A) EV capture mechanisms include binding directly to cell surface receptors, direct
fusion, and internalization by pinocytosis, receptor-mediated endocytosis, and phagocytosis. Distinct capture mechanisms deliver EV cargo to compartment-specific
receptors driving diverse EV responses in recipient myeloid cells. (B) A range of tumor EV cargos act together to drive tumor promoting inflammation. Chronic
interaction with EV-DAMPs and other effectors activate NF-kB and STAT3 signalling resulting in accumulation of late-stage cytokines. Also, self-molecular patterns
and other effectors found in EVs attenuate type I IFN production and/or response. These signals can modulate acute inflammation and presentation of tumor
antigens. EV, Extracellular vesicle; DAMPs, Danger-associated molecular patterns; NF-kB, Nuclear factor Kappa B; STAT, Signal transducer and activator of
transcription; IFN, Interferon.
March 2022 | Volume 13 | Article 818538

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Makhijani and McGaha EV Modulation of Phagocyte Biology
protects against DNA degradation promoting inflammation in a
TLR-MyD88-dependent, STING-independent mechanism (101).
HMGB1 has also been found in autoimmune EVs and functions to
promote inflammation via TLR4 in myeloid cells (102). In these
studies, sources of EVs were varied, arising from platelets,
endothelial cells, fibroblasts, and dying lymphocytes. A similar
mechanism was also observed in scleroderma (103). EVs were
also found as immune-complexes (ICs) with the anti-DNA/RNA
autoantibodies characteristic of RA and SLE, promoting
complement-driven, TLR-mediated DC inflammatory activation
(104). EVs were also shown to contain citrullinated self-proteins
contributing to the formation of inflammatory immune complexes
in SLE and RA, drivingmonocyte andmacrophage activation (105,
106). In lupus, ICswere required for ametabolic switch to glycolysis
inmacrophages leading toproductionof IL1 andROS(107), further
exasperating autoimmunity.

In type 1 diabetes (T1D) pancreatic b-cell specific destruction is
triggered, rather than the systemic tissue destruction seen in SLE.
Because EV release occurs prior to immune b-cell destruction, EVs
mayplay a role indisease initiation.Using in vitroderivedEVs from
MSC-like cells from theNODpancreas, Rahman et al. show that the
intrinsic endoplasmic reticulum stress in cells of the pre-diabetic
pancreas controls EV cargo driving DC-mediated priming of
autoreactive T and B cells via IFNg upon EV treatment (108).
Moreover, the T1D autoantigens glutamic acid decarboxylase 65
(GAD65), zinc transporter 8 (ZnT8), and b-cell resident glucose
transporter 2 (Glut2) were found within T1D islet EVs (109),
supporting both the EV delivery of self-antigen as well as auto-
antibody-EV immune complex drivenmyeloid cell activation viaFc
receptors. Micro RNA species have also shown to play a key role in
T1D pathogenesis. In addition to targeting many metabolic genes,
the exosomal miR-29 derived from b-cells, also found in tumor
exosomes, also induces TLR7-MyD88 dependent inflammatory
cytokine production, including IFN-I responses (110). Exosomal
miR-29 has also been found at higher levels in type 2 diabetes,
driving metabolic reprogramming of macrophages via TRAF3
promoting systemic insulin resistance (111). Like observations in
cancer and systemic autoimmune diseases, EVs appear to largely
promote inflammation in T1D. However, EV-driven protection
from autoimmunity has also been reported. AhR ligands found in
EVs and other endogenous sources, attenuate autoimmunity in
cases of EAE and lupus (98, 112).

The inflammatory context in autoimmunity and cancer lead
to myeloid responses to the same EV cargo to both break
tolerance and suppress immune responses via mechanisms that
remain elusive. Studies on differences in EV concentration and
IFN induction by autoimmune EVs versus tumor EVs may offer
insights into how this is achieved.
5 EVS AND
THERAPEUTIC OPPORTUNITIES

The most readily apparent application for EVs is their potential
as diagnostic tools. Since they contain biomarkers of cell status,
EVs from blood, ascites, and urine can potentially be utilized to
Frontiers in Immunology | www.frontiersin.org 8
serve as a liquid biopsy diagnostic differentiating healthy from
diseased states. Targets including metabolic peptides, nucleotide
species including circulating tumor (ct)DNA, autoantibody
immune complexes and microbiome-derived EV cargo are
being actively explored for diagnostic purposes (25, 113).
Though finding EV biomarkers that differentiate related
disease states have proven difficult, this line of investigation
may be useful for both cancer and systemic autoimmune
conditions (114, 115). A thorough review of EV cargo
biomarkers being investigated for diagnostic application can be
found elsewhere (116).

As detailed in this review, EVs promote inflammation and
disease pathophysiology by variety of different mechanisms.
Therefore, the inhibition of EV biogenesis using small molecules
agents is being explored as a therapeutic opportunity in both cancer
and autoimmunity. Small molecules including GW4869 and
dimethyl amerlioride, as well as siRNA against proteins in EV
biogenesis pathways, have been used extensively for research and
hold promise in targeting pro-tumor inflammation driven by EV-
DAMPs.However, eachof thesemolecules have exhibitedoff-target
effects on cellular physiology; for example, GW4869 which targets
neutral sphingomyelinase (N-SMase) can also have effects on
autophagy (117). Datta et al. have validated novel exosome
inhibitors using prostate cancer cells, identifying natural small
molecules like Forskolin and antibiotics like Manumycin A as
blockers of exosome biogenesis (118). Rab-GTPase inhibitors,
along with other anti-tumor functions on tumor growth and
cytokine secretion, can also antagonize EV biogenesis and can be
used therapeutically (119). The design and delivery of siRNA
against proteins involved in biogenesis like Rab27a/b in the case
of exosomes may allow for more specific targeting than small
molecule inhibitors (120). However, to identify the best
therapeutic target with the fewest off-target effects, a more
comprehensive understanding of both EV responses and
biogenesis pathways is required.

The targeting of EV capture and response by myeloid immune
cells is another strategy to attenuate chronic inflammation in both
cancer and autoimmunity. As described earlier, the siglec-sialic acid
axismay antagonize IFN-mediated tumordestruction. Several anti-
siglec antibodies are being investigated including anti-siglec-7 and
anti-siglec-33 which target NK cells and immature myeloid cells
respectively attenuating their regulatory function (121). Targeting
other siglecs and scavenger receptors may lead to the abrogation of
EV capture or facilitate delivery of therapeutical active EV cargo.
EV-CD169 interactions in macrophages also drive antigen
presentation in the context of infection and chemotherapy (86,
87). Capitalizing on this observation, Edgar et al. show that
liposomes containing antigens targeted to CD169 via decoration
with sialic acid residues induces CD4 T cell responses, but requires
liposome loading with high-doses of TLR7-IFN promoting
adjuvant for cytolytic CD8 T cell responses (122). The myeloid
responses to EV-DAMPs can be inhibited via the targeting of the
TLR-NFkB pathways. Though this is promising in autoimmunity,
in cancer TLR agonism is being investigated in the clinic due to its
ability to promote tolerance to the tumor (123). However, TLR4
driven myeloid tolerance has also been blamed for paclitaxel
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resistance which acts as a TLR4 agonist (124). Inhibiting this
pathway in cancer may involve timing where, as a neoadjuvant
strategy, EV-DAMP driven NFkB activation can be inhibited
temporarily prior to T cell activation or chemotherapy. Lastly, to
promote MHC loading of tumor neoantigen in APCs after EV
capture, an interesting recycling regulator Rab17 (shown toprevent
presentation of AB derived self-antigens) could be targeted to
promote tumor-specific immune destruction (125). Because EV-
myeloid cell interactions are also part of homeostatic processes,
targeting EV biogenesis, capture and responses to EVs may drive
off-target effects that remain to be fully understood in in vivo
disease contexts.

Furthermore, the administration of bioactive EVs is being
investigated in various therapeutic strategies. The use of EVs for
delivery is advantageous over liposomes with the ability to easily
disguise as self in the body. Moreover, EVs decorated with integrins
can target specific tissue sites allowing for specific delivery of
therapeutic cargo (48). In mice, exosomes loaded with IL-12
(exoIL2) were shown to promote an antitumor T cell response,
superior to the recombinant cytokine alone due to the improved
pharmacokinetics (126). Because IFN signalling in APCs drives
antigen presentation and cross presentation to both CD8+ and
CD4+ T cells (127), therapeutic administration of large doses of
EVs loaded with STING agonist dinucleotides (exoSTING) is being
explored to promote adaptive anti-tumor immune responses. Jang
et al. showed that exoSTING exerts tumor control by targeting
APCs preferentially which induces antitumor T cell responses with
long-term memory T cell induction (128). Although STING and
RIG-I activation has been reported in dendritic cells, and other cells
stimulated by EVs (129, 130), it may be attenuated downstream by
Siglec-TBK1-dependant mechanisms in vivo. Limiting IFN-driven
antigen presentation in response to DAMP-containing EVs may be
an evolutionary mechanism to limit excessive self-peptide
presentation and autoimmunity, also serving to limit tumor
neoantigen presentation. Modulating the dose of EVs and
additional modifications to such therapeutically administered
EVs, like sialidase treatment might circumvent regulatory
immune responses. In autoimmunity, these administered EVs
can functions as decoys to autoantibodies. Casella et al. showed
that EVs from oligodendrocytes contain myelin and related
antigens and can be used to subvert myelin destruction in a
model of multiple sclerosis (131). The applications for decorating
or loading EVs with many different cell-targeting or
immunomodulatory agents suggest EVs could be utilized as
versatile payload delivery agents.

EVs have also been explored as cell-free anti-tumor vaccines.
Specifically, vaccination with exosomes derived from tumor
antigen loaded DCs reduced tumor burden by induction of
anti-tumor T cell responses (132). DC-derived sEVs can carry
whole tumor associated antigens (TAAs), TAA peptide-loaded
MHC/HLA, and co-stimulatory signals significantly improving
vaccination efficacy compared to whole tumor lysate vaccination
(133). However, the requirement of MHC molecules for
functionality/immune responses to DC-derived EVs (DEX) is
not clear. For example, Hiltbrunner et al. reported that whole
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antigen in the absence of MHCI and II is sufficient to induce a
DEX-mediated T cell response suggesting internalization and
antigen processing are the key relevant components for EV-
driven immune responses (134). Supporting this prediction,
DEX loaded with antigen can drive stronger in vivo T cell
responses than DC-EVs from an ectosomal origin, suggesting
an involvement of the endocytic compartment in the efficacy of
DEX (135). The clinical success of DEX as vaccines will likely
require large, non-physiological doses of EV particles which
necessitated the large-scale culture of donor-matched DCs
potentially limiting this approach. In contrast to DEX, the
application of the more readily available tumor EVs is
currently limited to DC vaccines primed with tumor EVs.
Andre et al. show that exosomes isolated from melanoma
ascites contain TAAs like MART1 and gp100, and when used
to stimulate donor-matched dendritic cells promote antigen-
specific T cell activation and cytolytic function in vitro (47).
Further. the in vivo injection of DCs treated with in vitro tumor
cell-derived EVs into tumor-bearing mice was reported to drive
tumor rejection in a T cell-dependent manner (136). These DC
vaccine strategies are similarly challenged with the culture and
dosing of DCs at therapeutic concentration as well as HLA-
matching of both EVs and DCs required to induce the desired
anti-tumor response. The pre-dominantly immunosuppressive
role for tumor EVs is supported by a large body of literature and
suggests the direct use of tumor-derived exosomes as TAA
containing vaccines may not be a readily applicable approach
given our current level of understanding.
6 CONCLUSION

Extracellular vesicles take on a wide heterogeneity of subtypes
and relay a specific molecular signature from their cell of origin.
The effects of a diverse EV cargo on myeloid immune cells are
revealing their role in inflammation and diseases of immune
dysregulation including cancer and autoimmunity. In the tumor,
context dependant mechanisms drive a pro-tumor inflammation
both locally and at metastatic sites promoting a breakdown of
immune surveillance, whereas in autoimmunity, mechanistically
similar EV signals promote a breakdown of tolerance and
autoimmune pathology. Importantly, EVs are potent
modulators of the IFN response which may provide protective
function preventing autoimmunity, but also provide a significant
barrier to anti-cancer immunity. EVs are more biologically
complex compared to other cell-cell communication systems
(e.g., cytokines) and this complexity has provided a barrier to our
understanding, but also opportunities to harness EV biology for
therapy. In this vein, the clinical application of EVs is numerous
including disease diagnosis/prognosis, engineered delivery of
therapeutic cargo, and administration of anti-tumor vaccines.
Ultimately, these therapeutic strategies hold great promise but
require much more research for safe and effective execution. In
the final analysis, although great strides towards the
understanding of EVs have been made, this burgeoning field
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promises to reveal novel cellular mechanisms involved in health
and disease.
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