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1. Introduction

1.1. Increasing complexity of neuroscience data Over
the past 20 years, neuroscience research has been radically
changed by two major trends in data production and anal-
ysis. First, neuroscience research now routinely generates
large datasets of high complexity. Examples include record-
ings of activity across large populations of neurons, often
with high resolution behavioral tracking [1–5], analyses of
neural connectivity at high spatial resolution and across large
brain areas [6, 7], and detailed molecular profiling of neural
cells [8–11]. Such large, multi-modal data sets are essential
for solving major questions about brain function [12–14].

Second, the collection and analysis of such datasets requires
interdisciplinary teams, incorporating expertise in systems
neuroscience, engineering, molecular biology, data science,
and theory. These two trends are reflected in the increasing
numbers of authors on scientific publications [15], and the
creation of mechanisms to support team science by the NIH
and similar research funding bodies [12, 16, 17].

There is also an increasing scope of research questions that
can be addressed by aggregating “open data” from multiple
studies across independent labs. Funding agencies and pub-
lishers have begun to aggressively promote data sharing and
open data, with the goals of improving reproducibility and
increasing data reuse [18–20]. However, open data may be
unusable if scattered in a wide variety of naming conventions
and file formats lacking machine-readable metadata.

Big data and team science necessitate new strategies for how
to best organize data, with a key technical challenge being the
development of standardized file formats for storing, shar-
ing, and querying datasets. Prominent examples include the
Brain Imaging Data Structure (BIDS) for neuroimaging, and
Neurodata Without Borders (NWB) for neurophysiology data
[21–24]. These initiatives provide technical tools for storing
and accessing data in known formats, but more importantly
provide conceptual frameworks with which to standardize
data organization and description in an (ideally) universal,
interoperable, and machine-readable way.

1.2. Our labs’ perspective on implementing NWB data
standards In 2019, the Fleischmann and Ritt labs initiated
a collaboration to enhance the Fleischmann lab’s data science
and computational tooling and workflows. We expanded our
team by hiring two research software engineers (RSE), and
by extending collaborations with data scientists and computa-
tional biologists. Similar efforts were underway in the Datta
lab. An early common goal was the standardization of neu-
rophysiology and behavioral data using a framework such as
NWB. In this manuscript, we provide our perspective on op-
portunities and challenges when adopting NWB data stan-
dardization.

Our labs investigate the functions of neural circuits for sen-
sory processing and behavior in mice. Typical experiments
include calcium imaging of neuronal activity in awake, head-
fixed mice during odor presentation, with a number of behav-

ioral readouts including sniffing, running, and facial move-
ments (see Fig. 1). In other experiments, mice are freely
moving, with implanted GRIN lenses for miniscope imag-
ing, odor and reward delivery in nose ports, and behav-
ioral readouts including videographic tracking. Our exper-
imental designs, data generation, and analyses are similar
to many other labs investigating neural circuit mechanisms
for sensory-motor transformations, learning, and memory
(Box 1), though each lab has its own idiosyncrasies imping-
ing on data management.

In this manuscript, we first discuss our motivation and gen-
eral considerations for implementing data standardization.
We then describe the implementation of NWB data conver-
sion pipelines, including domain-specific use cases and solu-
tions for data sharing. We conclude by identifying opportu-
nities for improving future user experience. We hope that by
describing our experience, other labs planning to adopt NWB
will benefit from comparisons with their own needs and ca-
pabilities. We also hope to provide a case study that may be
informative for developers of NWB and similar data science
toolboxes.

Box 1. Fleischmann Lab workflow

Data Acquisition – Experiments and Systems: We
perform in vivo calcium imaging experiments in
head-fixed (2-photon imaging) and freely moving
(miniscope) mice. Experiments include multi-plane,
multi-color, and/or multi-day recordings.

Data Acquisition – Tasks and Stimuli: In some
experiments, animals receive pre-programmed odor
stimuli independent of their behavior; in other exper-
iments, sensory stimuli or an animal’s behavior can
trigger a reward. Behavior recording includes micro-
controller-acquired time series (e.g. wheel speed,
sniff rate, licks, rewards) and video recordings of the
animal’s face or body motion.

Preprocessing: Pipelines include conventional cal-
cium imaging steps (e.g. motion correction, segmen-
tation, deconvolution, multi-color or multi-day regis-
tration) using existing tools such as Suite2p [25] and
Inscopix [26]. Experiments with behavioral videos
may also be preprocessed with toolboxes such as
DeepLabCut [3] for pose estimation and Facemap
[27] for facial motion extraction.

Conversion to standard format: Raw and prepro-
cessed data streams are integrated and stored in NWB
files, using a custom tool, calimag [28], developed
in the Fleischmann lab.

Analyses: Questions include stimulus or behavior
tuning of single neuron or population activity, as well
as how learning and experience shape neural activity.
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Fig. 1. Illustration of a typical experiment setup and the resulting data streams from the lab. This figure shows an example of an in vivo head-fixed two-photon
calcium imaging recording in a deep brain area (e.g. piriform cortex) with grins lens. Throughout the paper, we use the following color scheme whenever possible: green
for neural activity, orange for animal behaviors and purple for external variables (e.g. stimulus). Raw imaging recording from the microscope (top) is typically processed with
Suite2p to obtain fluorescence time series data for each segmented neuron (top row, right). The animal receives odor stimuli with the odor port in a specific time window
of each trial, illustrated with a light purple bar in the fluorescence time series plot. Various behaviors may be tracked. The high resolution face camera captures the animal’s
face movement, and processed with facemap to extract different facial motion principal components and the accompanying time-varying changes (middle). Alternatively,
DeepLabCut can be used for pose estimation data. The data from flow and wheel sensors from the microcontroller (e.g. Arduino, Teensy, Raspberry Pi) are processed to
obtain estimation of the animal’s respiration and running speed, respectively.

2. Key stakeholders in adoption of a new lab
standard
We first define, in high level terms, three distinct personnel
roles in a typical research lab, each of whom has their own
needs and incentives surrounding data standardization:

• PIs are principal investigators and senior researchers that
manage research teams, labs, and projects.

• Researchers include research trainees (e.g. undergrad-
uate and graduate students, postdoctoral associates), lab
technicians, and data scientists, and more generally indi-
viduals collecting and/or analyzing data.

• Research software engineers (RSE) support researchers
by developing and maintaining software, packages, and
pipelines for data management, processing, and analysis.

2.1. PIs Key desired outcomes for the adoption of lab-wide
standardized data formats include improved efficiency, rigor,
reproducibility, and ease of collaboration. Efficiency could
follow from using common tools for saving, retrieving, an-
alyzing, and sharing data; technical improvements by one
member can have knock-on value for others. Rigor and
reproducibility similarly benefit from increased access and
scrutiny brought by all lab members being able to see each
other’s work, instead of working in isolation; data already in
standard formats could ease communication and usage. An
additional value for PIs is meeting the norms of their field
for data management and sharing, including mandates from

funding agencies such as the NIH, without requiring exten-
sive ad hoc effort at the time of grant submissions or publi-
cation.

However, there are several concerns when introducing stan-
dardized formats. PIs generally want to avoid major disrup-
tions to scientific productivity in the lab. There is rarely a
good time to slow or halt data collection and analysis in order
to fully convert to new pipelines and workflows. On the other
hand, a gradual transition can paradoxically lead to greater
friction due to the simultaneous use of multiple incompatible
systems. Adoption of a data standard can be much more than
a point-and-click operation, requiring many decisions about
the structure and use of the data not just as it is now, but
also what the PI expects it to be in the future. One of the
first decisions is the standard itself: it can be difficult to pick
a “winner”, as standards may quickly become incompatible
with the lab’s evolving methods.

It is also uncommon to have institutional support, in the form
of grant funding or university staffing allocated to the “low
level” task of revising data formats, or incentives such as
promotion criteria that reward best practices in data manage-
ment. While research software engineers (RSE) are increas-
ingly recognized as valuable contributors to the research en-
terprise [29], most labs still do not have access to an RSE.
This places the burden on students and postdocs, who are of-
ten enthusiastic to adopt new practices but are constrained by
a need to make continual progress in their own careers. More-
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over, lab members, including PIs, generally lack advanced
training to know how to build automated systems that inte-
grate multiple data streams into a single format with appro-
priate metadata, provide that data for analysis, and share data
following community norms such as FAIR guidelines [30].
Without support, adopting a standard is often a shared aspi-
ration with little personal buy-in to do the needed work.

2.2. Researchers The main motivation for researchers to
adopt standardized data formats is to improve data analysis
and shareability. Standardized data formats may support effi-
cient and reproducible data processing and flexible, compre-
hensive data exploration and analysis. Efficient data analy-
sis can, in turn, provide critical information for optimizing
experimental design. Furthermore, standardized formats fa-
cilitate data sharing, which can yield new perspectives on
datasets and increase their impact.

A main concern is that data standardization requires a sig-
nificant increase in workload, whether researchers tackle it
on their own or in collaboration with an RSE. The increased
workload can happen at the experiment and data conversion
stages, if data management standardization comes at the ex-
pense of experimental flexibility. At the stage of analysis,
researchers may need to spend time to learn and adapt to the
new standard in order to use the data. Researchers’ diverse
backgrounds, the availability/support of tools for standard-
ized data, and the maturity of their project further complicate
tradeoffs between making consistent experimental progress
and standardizing experimental outputs. Additionally, re-
searchers who decide to embrace standardization, open data,
and reproducible workflows often lack recognition for the
added work.

2.3. Research software engineers RSEs directly sup-
port researchers in data management, analysis, sharing, and
publication. Adopting standardized formats establishes pre-
dictability in the data that the researchers produce. This fa-
cilitates communication and makes it easier for RSEs to effi-
ciently provide support in finding, using, and building appro-
priate systems to interact with the data. RSEs can also take
advantage of such predictability to provide sufficient docu-
mentation and usable examples of the data for analysis, shar-
ing and re-use.

A core challenge is developing stable software implementa-
tions and workflows that are robust to small variations in ex-
perimental data, while still allowing flexibility to be useful
to researchers engaged in rapid evolution of diverse exper-
imental designs. Furthermore, choosing a new technology
carries an elevated risk of bugs and missing features. Open
source tools can be particularly unpredictable, and extensive
in-house workarounds may be unsustainable and defeat the
original purpose of standardization.

In addition, researchers and RSEs often come from different
backgrounds. RSEs may not be familiar with scientific prior-
ities and experimental constraints, and the expectations and
timeline of research projects. Thus, diverging expectations

and miscommunication between researchers and RSEs can
lead to friction and delay in adopting the standards.

3. Social scales of working with the NWB
standard

3.1. Within a lab It is often desirable for members of a
lab to share and use common technology, including analysis
code, data conversion pipelines, and/or acquisition systems.
This commonality allows members to jointly address techni-
cal problems, and build on top of known solutions with some
degree of prior validation, creating consistency across “gen-
erations” of graduate students and postdocs. For example, in
our lab, researchers performing head fixed two-photon cal-
cium imaging share the same acquisition systems and data
conversion pipeline, which allows them to get advice from
their peers and to contribute their own solutions to common
pain-points.

A potential pitfall of sharing a common set of technologies
may arise when the technology is not well maintained or kept
up-to-date, forcing new projects to build on shaky ground.
Another pitfall may come from the complexity of supporting
a diverse enough set of use cases, and trying to make them all
fit into the same technology.

On-boarding is key to encourage this economy of scale and
self-regeneration of benefits, especially if a standard is not
yet established. For example, rather than introduce NWB
to researchers in new analysis notebooks, we tried to work
backwards from the analysis pipeline they already used. That
is, we refactored researchers’ existing code by replacing
only file load operations and converting to whatever variable
names and data type conventions they already used (which
often embedded excess structure from the original raw data
file formats). Further experience with NWB might motivate
changes to those conventions, but in this approach, initial
learning is focused on practical steps whose value is innately
recognized by the researcher, rather than on the generic NWB
software interface.

The Fleischmann lab uses lab-wide Git hosting (on GitLab),
facilitating internal sharing and collaborative development of
code. Combined with regular lab meeting discussion of data
management and analysis topics, this culture of open com-
munication and sharing helps disseminate technical progress
across all lab members.

3.2. Collaboration Our experience using NWB to send
data to collaborators in other labs has been more mixed than
for internal adoption. While standardization aims to estab-
lish a universal language for data, there can still be friction
for recipients who have not already installed and used the
necessary software, especially in the absence of good docu-
mentation and relevant working examples. We describe two
cases with two different labs performing additional analyses
on data we collected.

In the first case, we provided our collaborators with raw mi-
croscope images as TIFF stacks and pre-processed calcium
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3.3 Public data sharing

activity time series in NWB format. However, as they were
unfamiliar with NWB, it was challenging for them to learn
how to use the files. With hindsight, we should have in-
cluded working example code that loaded and displayed data,
which they could use as a starting template for their own
work. However, there would still have been some friction,
as their lab works primarily in Matlab, while we work almost
entirely in python. NWB provides APIs for both environ-
ments, but we would have needed to generate example code
from scratch, and the two labs would have maintained two
separate code bases. In the end our collaborators used only
the TIFF stacks, though partly in order to also work on novel
pre-processing algorithms.

In the second case, our collaborators had previous experience
with NWB. However, we were still refining our NWB conver-
sion of that data, and were regularly making code breaking
changes. Hence, we chose to create and send python “pickle”
files that contained only a subset of the data, organized to
simplify usage on their end and make it easier for us to cre-
ate example code and documentation. As we continued to
develop our internal pipelines, this approach hampered code
interoperability between our labs. However, it was the more
expedient choice to get the collaborators up and running.

3.3. Public data sharing Researchers are increasingly
asked to publish their data on public archives. Apart from
publication and funding requirements and opportunities for
collaboration, these public data repositories increase chances
of data reuse, e.g. for education, benchmarking new tools,
computational modelling, or meta-analysis. Popular reposi-
tories include Figshare [31], Zenodo [32], OSF [33, 34] and
GIN G-Node [35]. These are more general repositories, with
limited restrictions on data formats.

The Distributed Archives for Neurophysiology Data Integra-
tion (DANDI, [36]) is the recommended choice for public
data sharing of NWB datasets, and is supported by both the
BRAIN Initiative [37] and the AWS Public dataset programs.
While it is more restrictive compared to other repositories
(for example DANDI allows only standardized formats [38],
while Zenodo allows all formats [39]), the resulting rigor and
consistency from DANDI may better facilitate reproducibil-
ity, modelling, meta-analysis, and tool development [40, 41].
We discuss our experience contributing a demonstrative cal-
cium imaging dataset [42] on DANDI in Section 6.

Apart from file format restrictions, researchers may need to
take into account file size limits. DANDI has fairly generous
limits, with 5 TB per file and no limit on dataset size, while
some repositories have limits of less than 100 GB per file or
dataset (some offer higher limits for a fee or other arrange-
ment).

3.4. NWB community During the process of developing
our NWB data conversion pipeline, we had several opportu-
nities to interact with the NWB development team. Some of
these ways were the NWB/DANDI Slack for quick questions,
GitHub issues for a technical question or bug, GitHub dis-

cussions for entry level questions, remote meetings with the
NWB team for more in-depth substantial guidance, and or-
ganized events (hackathons, user days, data re-hack) to meet
others from the community and learn about the progress of
the ecosystem. In general, our interactions with the NWB
community were friendly, helpful, and responsive. For exam-
ple, our questions on Slack usually received responses within
the day. From our observation, this was also true for ques-
tions posed by other users.

As described in Section 5, we decided to design our own
NWB extensions, which was technically challenging. Com-
munication and assistance from the NWB team was very
valuable in our design and implementation. Occasionally
there were also helpful examples in GitHub issues or discus-
sions on GitHub and Slack.

That said, many of these resources and communication chan-
nels are more familiar to computational scientists and soft-
ware developers. The official documentation sometimes
could be overwhelming to navigate (see, e.g. [43]), increas-
ing a typical user’s need to find and access these discussions
scattered around many channels. It could have been helpful
to have a centralized, searchable resource that aggregated and
archived these different issues and discussions across differ-
ent forums, as a complement to the official documentation.

3.5. Neuroscience community The advent of the open
science movement, in parallel with standards development,
has increased access to software tools and data that until re-
cently was generally limited to high resource institutions. For
example, the Allen Brain Institute released an SDK that sim-
plifies retrieval of and interaction with extensive collections
of NWB standardized data recorded with cutting edge elec-
trophysiology and imaging tools. Such initiatives greatly ex-
pand opportunities to reuse data in education [44–46], ba-
sic research [47], and bench-marking of new computational
models [48].

However, given differences in cultures, priorities, resources,
and incentives across different labs and institutions, adoption
of NWB, and of open science practices more generally, re-
mains challenging. Institutional policies like the recently up-
dated NIH Data Management Policy [49] add new expecta-
tions for researchers, but without creating meaningful recog-
nition and training to support and encourage changes in their
practice. Individual institutions also have historically pro-
vided minimal support for adoption of data management best
practices. We advocate for better funding for standardization
as an essential practice in science in general, and particularly
for NWB adoption. Some of this support could include part-
nerships with public resources such as nwb4edu [44].

4. Building our NWB-based data conver-
sion pipeline: Experiences, Challenges, and
Lessons Learned

4.1. How to organize data into a standard format
There have been many efforts at standardization of neuro-
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Fig. 2. The issue of data standardization. This figure illustrates the issue faced by researchers, who may record different types of data. The data may be multimodal, e.g.
timeseries recorded from sensors, ROIs (Regions Of Interest) segmented from images or videos, behavioral markers tracking limbs on videos, tables tracking events, etc.
This data may also be scattered in different files and formats. Researchers may then want to organize it in a unified way to make analysis and sharing easier. Two possible
strategies to organize this data are shown: the first one is the strategy chosen by the NWB team, which organizes the data from a data lineage standpoint, the second one is
an alternative strategy which organizes the data from a categorical standpoint. We use the following color scheme: green for neural activity, orange for animal behavior and
purple for external variables (e.g. stimulus).

science data. Neurodata Without Borders (NWB) started as a
pilot project to standardize neurophysiology data [21], which
then matured into NWB:N version 2.0 (NWB:N 2.0) [50].

However, NWB is not really a file format. The substantive
outcome of the NWB development effort was an “ontology”
that encapsulates the logical structure of neuroscience data
at a high level, and schemas to translate these conceptual ob-
jects into precise computational objects. Unlike saving an im-
age in JPEG or a document in PDF, to use NWB researchers
must make a number of choices specific to their data, with
both technical and conceptual implications.

Fig. 2 illustrates questions faced by researchers who may
record multi-modal data scattered across different files and
formats. The resulting data need to be organized, unified, and
aligned in order to support analysis and collaboration. There
can be different strategies to standardize this data, for exam-
ple from a data lineage standpoint (the choice of the NWB
team, Fig. 2, middle) or from a categorical standpoint (Fig. 2,
right).

Our files mostly follow the default NWB internal structure
for optical physiology, though we made our own exten-
sion to handle odor data (see Section 5.3), and argue re-
searchers could benefit from alternative structures, perhaps
using aliases or tags, that allow them to interact with their
data files following categorical or other organization (see
Section 7.2.4).

4.2. When to create and use the standardized format
Few experimental acquisition systems produce NWB files na-
tively, so use of the standard requires researchers to choose
a process and time to convert to NWB from some mixture
of other data files. One strategy is to convert at the end of a
project, perhaps to upload to a repository for sharing. This

choice minimizes disruption to existing research workflows
and preserves flexibility for intermediate analyses. However,
this strategy may reduce reproducibility, as analysis is done
on different files than are eventually shared. Also, shared
code needs to be refactored at time of publication to account
for these file differences.

Alternatively, conversion could occur prior to internal use.
In the pipeline illustrated in Fig. 3, conversion happens be-
tween preprocessing (using Suite2p and DeepLabCut) and
analysis. Regardless of standardization, researchers typically
reformat data before analysis, for example to compile infor-
mation from “raw” files into a convenient single data array
or table. The key aspect of standardization is that the out-
put format carries restrictions that generalize the particular
dataset with common practice in the field. If data is con-
verted early, then archival repositories can be used also as
backups, possibly including data version control. Moreover,
shared code does not need substantial rewriting at time of
publication. However, if there is not already a robust con-
version pipeline in place, this strategy introduces additional
effort prior to progress of the scientific aims.

4.3. Our experience with metadata capture Metadata
can be defined as “data about data”, for example, informa-
tion about animal subjects (e.g. weight, sex, genetic line,
age, whether naive or trained), recording sessions (e.g. date,
task type, experimenter name, manufacturer and model of
hardware), stimuli (e.g. chemical names, concentrations,
frequency of audio tones), supplemental text descriptions,
and/or parameters used in data processing. Generally, meta-
data can aid in quality control, communicate contextual infor-
mation to future users, and support cross-analyses of multiple
data sets. Its use can extend beyond the lifetime of a project,
including archiving, sharing, and re-use.

6 Pierré et al. | A perspective on standardization with NWB



4.3 Our experience with metadata capture
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Fig. 3. Our data pipeline. In this pipeline, the data flows in fives different stages: It starts from the raw data acquired during the experiment, which is rarely used and get
saved in cold storage.In the preprocessing stage, information is usually extracted from the raw data so that it is directly useable, this scattered data is then converted and
standardized to NWB, the analysis happens on the standardized data, finally, the data is published with the rest of the scientific community. Ideally, standardization would
happen before analysis for reproducibility purposes, but it often happens that they are swapped in practice as standardization may be thought only at publishing stage.

4.3.1. Quality of metadata capture A benefit of moving data
to NWB is that it encourages systematic handling of meta-
data. To convert into NWB format, some types of meta-
data are required by the standard, while some are encour-
aged. Before moving to NWB, our metadata was scattered
in several places. Now, all the relevant metadata is included
in the NWB file, allowing consistent and easy access. This
may help answer questions such as “What was the sex of
animal X?”, “What imaging frame rate was used in experi-
ment Y?”, or, when using our neurodata extension described
in Section 5.3, “Which odor stimulus was used in trial Z?”,
without having to go back to the raw data or to the experiment
notebook.

4.3.2. Challenges to metadata capture An obvious chal-
lenge to incorporating correct metadata in standardized files
is that experimentalists do not always record metadata effec-
tively. They may rapidly iterate an experimental design while
piloting, and record only “core” data for preliminary analy-
ses, with a fuzzy boundary between these initial pilots and
subsequent “real” data collection. Moreover, metadata of-
ten takes unusual effort to document. Acquisition software
may not support metadata capture at all. For example, mouse
dates of birth or ages are often not included in data files pro-
duced during an experiment, yet at least one of these values
is needed for NWB creation. Sometimes tools set incorrect
metadata as a default; for example, we found the NWB con-
version function within Suite2p defaulted to setting area of
recording to be “V1” (see [51]). Also, there is not always a
clear purpose to recording metadata that goes beyond the key
variables in the original study design. Under the time pres-
sure of the experiment, researchers may be induced either to
use non-informative defaults or to enter random metadata to
get underway.

This issue is exacerbated by a lack of accepted community
standards of how to document for some types of metadata.
For instance, in olfaction research, there is not yet consen-
sus on how to document odor stimuli (though see [52], and
Sections 4.10 and 5.3).

More generally, metadata capture is needed not only during
acquisition conversion but also during preprocessing, analy-
sis, and file conversion stages. For example, fluorescence is
typically normalized (“dF/F”), but there is wide variation in
how that normalization is performed. The choices of normal-
ization parameters should also be captured as metadata.

4.3.3. Working with acquisition devices and software In our
labs, research software engineers assist data conversion in
part by working with researchers, equipment vendors, and
others to determine what metadata is needed and how best to
capture it.

Some commercial vendors put metadata in dedicated files
(e.g., Bruker Microscope XML or ENV files) while others
integrate metadata into the same files as core data (e.g., In-
scopix Miniscope). However, some proprietary vendor files
are poorly documented (and questions stayed unresolved af-
ter contacting support), such that we have had to reverse-
engineer files and make educated guesses as to the informa-
tion in them. For example, some things we had to indepen-
dently infer from Bruker XML files were where frame rates
are recorded, what physical units different fields have, and
what the reference frame coordinates are. Our inferences
relied on field names, and were incomplete and possibly in
error. More importantly, certain metadata can change the al-
gorithm used to parse a file; for example, a flag indicating
whether an experiment has multi-plane imaging affects the
correct way to extract timestamps from the XML file. Neu-
roConv, the conversion tool from NWB developers (see Sec-
tion 4.12), is working to integrate Bruker metadata [53, 54],
and we hope this support improves over time.

Open source tools typically fill a space between commer-
cial vendors and in-lab custom development. Some of these
tools lack an ability to input metadata. An example is Ar-
Control [55], which is an experiment control platform used
with general purpose microcontrollers to present stimuli and
record behaviors. There is a project to convert its output into
NWB format [56], but (as of this writing) still requiring post
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hoc metadata injection [57].

We also develop custom scripts ourselves that generate CSV-
like files on microcontrollers. This approach would ideally
include informative headers, for example to give each data
column an informative name, a plain text description, phys-
ical units, a data type, and possibly other metadata. We find
this step introduces friction and an increased chance of errors,
especially as experimental designs change and researchers
or software engineers need to keep code updated and doc-
umented. For now, metadata is often documented after ac-
quisition. In an alternative approach, we implemented cus-
tom widgets in Jupyter notebooks used for data acquisition,
that allow experimenters to write in odor names. The note-
book then saves the names in a YAML file along with sepa-
rate core data files, and all files are integrated into an NWB
file in a later conversion process. The widget was tedious to
develop, but substantially improved the quality of metadata
capture for odors at the time of the experiment.

4.4. Where should raw data and supplemental infor-
mation be stored? Researchers may want to store raw data
in their NWB dataset. In our case, the raw data may con-
tain calcium imaging TIFF stacks or behavior video record-
ings, both of which tend to be large. For example, a typi-
cal calcium imaging session in our lab generates a video of
size around 40 GB, with associated behavioral videos around
3 GB. There has long been a question of what to do with
videos [58, 59], contrasted with the much smaller data de-
rived from them in pre-processing. Should raw videos be in-
cluded in NWB files? If yes, how? If not, how should videos
be handled when publishing to a repository [36]?

The NWB team discourages writing videos in lossy com-
pressed formats within NWB files. The main reason is an
inability to decode the video without first copying the data
to a standard file type (e.g. MP3) on the user’s computer;
moreover, if the appropriate codec is not available, even a
copied video would be unreadable. The preferred solution is
to include videos in NWB files as an ImageSeries that
has an external file reference (a relative path to, say, an MP4
file), see [60] as an example. This solution also allows adding
videos in published datasets on DANDI [61].

Often researchers may want to share explanatory content
such as videos of experimental setups or down-sampled
videos of calcium imaging registration aligned to behavior
recording. Only a subset of recording sessions may have such
associated content. A solution could be similar storing raw
data as external file references as described above, clearly la-
belled for demonstrative purposes to avoid confusion.

4.5. How should different data types be stored? In
NWB, neurodata types refer to different modalities of data
and metadata, for example DfOverF, PupilTracking,
or SpikeEventSeries. Each type has specific rules to fit
different use cases. If data belongs to a standard neurodata
type, there are usually clear examples and guidelines about
where and how to store it in an NWB file. When it does

not, non-trivial choices may be required, and variation across
labs, each implementing their own conventions, may impact
general reusability.

For each data source to be integrated into an NWB file, users
must answer a number of questions. Can the data be fit in a
standard neurodata type? What metadata should be associ-
ated with it? Would an extension (see Section 5) add a more
appropriate datatype? Does such extension exist? If not, is it
worth the effort to develop one? Where in the file hierarchy
should the data be stored (see Fig. 2)? Should it be saved in
a separate container or combined with other “similar” data?

4.5.1. Cell type tagging As an example of how small exper-
imental variations can lead to non-trivial design choices in
NWB files, we describe an experiment in the Fleischmann lab
involving two color imaging of red (tdTomato) labelled cells
in parallel with green (gCaMP) functional imaging. After
using Suite2p for cell segmentation, the researcher classified
each cell as expressing or not expressing the red fluorophore,
producing a table of ROI (cell) indices, boolean values for
whether a cell is red, and auxiliary data about the classifica-
tion (average pixel intensity and a quality metric).

There are three levels of detail one might choose to keep in an
NWB file (in addition to the functional imaging contained in
a standard datatype): as the full table, as only the boolean ar-
ray, or as an array of indices of red cells. The last choice is the
most compact, but does not preserve the auxillary informa-
tion that might be useful for quality control and reproducibil-
ity. Similarly, parameters of the classifier itself (e.g. inten-
sity thresholds) should likely be saved as well. The choice of
what information to retain both suggests and is constrained
by what datatypes are available, or whether we would need
to develop an extension (see Section 5). And a further deci-
sion is where to save the data in the file hierarcy (Fig. 2): as
pre-processed data or an analysis result?

There is obvious value to saving the classification in the
same place that stored the segmentation table from Suite2p
output, essentially by adding more columns to that table.
However, since the classification is not available at the
time of Suite2p segmentation, and updating existing ob-
jects in the Suite2p NWB file was problematic (see Sec-
tion 4.7), we resorted to placing the classification table in
another module called cell_tag. Given that the table
came from Suite2p, whose outputs are in processing,
we were unsure whether cell_tag should be considered
processing or analysis in terms of lineage. However,
in terms of usage, the tagging is not a useful result by itself,
but is combined with the calcium dependent activity. Hence,
we decided to consider the table as processed data needed for
analysis, and save it in processing.

4.5.2. Breathing As a second example, the Datta lab records
breathing signals with a temperature sensor implanted in the
nose. An Arduino captures the signal, which is written into a
CSV file in real-time. We developed a processing pipeline to
clean and parse the breathing signal into individual breaths,
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4.6 Should one standardize data from intermediate analysis stages?

and store the resulting data in an NWB file. There were a
number of challenges along the way that highlight some lim-
itations of the current NWB implementation.

Scipy’s signal.find_peaks function was the core of
the breath processing pipeline; good results relied on choos-
ing correct parameters to find true breaths while ignoring
noise in the data. Sometimes we would update the defaults of
those parameters based on new analyses, and it would have
been helpful to traverse old files programmatically and up-
date them. As it was, many key parameters ended up stored
in the “description” section of the relevant TimeSeries,
which may not be an obvious location to those looking at the
data for the first time.

Also, there were a number of options for how to store in-
formation about each breath, which were difficult to dif-
ferentiate ahead of time. It would have been ideal to
choose one rationally (e.g., based on efficiency of stor-
age or common practice), but in the end our decision was
purely pragmatic. We first considered a tabular format
like the TimeIntervals table, but adding data to the
TimeIntervals table proved to be buggy [62]. Then we
considered an IntervalSeries, which would allow la-
beling onsets and offsets of inhales and exhales and convey
the “interval” aspect of the data, but this did not lend itself to
storing scalar descriptors for each breath, since the datatype
stores only timestamps and not values. Finally, we settled on
a simple solution: a BehavioralTimeSeries, contain-
ing many TimeSeries of length number_of_breaths.
For example, inhale onset times, amplitudes, and peak
flow rates each got their own TimeSeries. Inhales and
exhales were paired in the pre-processing stage, and the
TimeSeries that describe the inhales and exhales have the
same length, thus implicitly pairing each inhale/exhale pair.
We chose to save the BehavioralTimeSeries interface,
called “breaths”, in the “processing” section of the NWB file.

4.6. Should one standardize data from intermediate
analysis stages? Research analysis pipelines typically
have multiple stages, such as pre-processing, statistical mod-
eling, simulation, or any computation whose inputs are the
outputs of a previous stage. Those stages may also branch
out to test a family of models, or vary analysis parameters.
The NWB standard is limited in its handling of analysis pa-
rameters, for example as tables of metadata. Should interme-
diate results be appended to a single NWB file containing the
entire history of analysis, each as their own “data source”?
Should each analysis be stored in its own NWB file? Should
all but the final published analysis be discarded?

It seems to us that the stages where NWB is most useful are to
integrate relatively stable pre-processed data, and to archive
finalized data and analysis for publication. It can be chal-
lenging to store raw data, as discussed above, and iterative
analyses quickly become unwieldy without a strong effort
to programmatically integrate with existing workflows and
data version control (such as DataLad [63]). NWB was not
designed to compactly represent collections of results such

as arise from parameter sweeping in an analysis. Similarly,
NWB does not natively support tracking the partitioning of
data (such as into “training” and “testing” subsets for cross
validation) common to many analysis pipelines.

4.7. Editing and merging of NWB files Early in our tran-
sition to NWB adoption, we needed to combine an NWB file
exported from Suite2p with another NWB file produced by
our own data pipeline. This turned out to be surprisingly
difficult. Indeed, according to the PyNWB documentation,
adding to files is supported, but removal and modifying of ex-
isting data is not allowed. We therefore tried two approaches
to do this. In the first, we read the existing NWB file pro-
duced by Suite2p, added the missing data, and exported to a
new NWB file. In the second, we looped over containers, i.e.
HDF5 groups, in the existing NWB file, and copied each of
them into a new NWB file, together with the new data.

The first approach produced an NWB file that, due to a bug in
the underlying packages (which has since been fixed), caused
crashes while reading with PyNWB [64]. Because of a dif-
ferent bug, the second approach failed to create a new NWB
file with the new containers [65]. These unexpected errors in
what seemed like intuitive workflows were frustrating both
for the delay in switching over to NWB, and the additional
effort needed to diagnose the bugs and find workarounds.

There are still limitations in copying containers from one
NWB file to another. But compared to when we started work-
ing on this project, it is now more straightforward to copy
datasets, i.e. a data array and its timestamps, from one file
to another, and to read an existing NWB file, modify it, and
export the modified file to a new file. It is also possible to
append data to a file, in the sense of creating new datasets.
However, to our knowledge, the only way to update metadata
in an NWB file is to read the content of the existing file, use
the NWB API to create an object with the correct metadata,
and then export to a new file. In general, we have found that
users, especially those used to CSV and other general data
formats, can be unpleasantly surprised by the rough spots in
NWB file editing.

4.8. Pain points in the conversion workflow We en-
countered several pain points in our data conversion pipeline.
One of the main pain points happens with branching exper-
imental designs (Fig. 4a). Each time a design is updated,
NWB conversion code may break and need to be updated.
This is an issue especially early in project development, when
many experimental details are undecided, but can continue
far into a project’s lifetime as researchers adjust their ap-
proach based on prior results.

Another pain point may arise when metadata is missing at
conversion time (Fig. 4b). Researchers may be tempted to
input nonsense values that need to be updated later, or the
conversion may be blocked until the missing metadata is cap-
tured.

Sometimes, data in NWB files may need to be updated, e.g.
to correct a previous entry, or to add data that becomes avail-
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Fig. 4. Scenarios of pain points in the conversion workflow. This figure describes different scenarios adding burden to the research workflow. The red crosses represent
a situation that breaks the existing workflow. The electric current symbol represents the location of a pain point. Fig. 4a shows that branching from the main experiment,
i.e. a redesign or update of the experiment, may break the current conversion code to NWB. Fig. 4b shows that if some metadata is missing at conversion time, it may force
the researcher to come back to the experiment, to the original data, or to the conversion code. Fig. 4c shows a scenario where existing NWB files need to be updated, e.g.
when data from additional experiments like histology experiments become available, or when the NWB files have missing/wrong metadata, or if the NWB file has been found
to have some data issues which need to be updated. Fig. 4d shows a validation issue before publishing the data to DANDI which may force the researcher to update their
conversion code to NWB and reprocess their NWB files.

able later, such as histology (Fig. 4c). In this case, the pain
point happens when the data conversion pipeline has to be run
again on multiple already existing files. As discussed more
in Section 6.1, a related issue can arise when sharing data
in an archive such as DANDI [36]. Validation to DANDI is
stricter than requirements to build a file with the python API
(PyNWB), requiring conversion code updates even after con-
version was locally “successful” (Fig. 4d).

4.9. Confusion with workflow ontology The organiza-
tion of the NWB standard is structured with data workflow
stages at the top of the hierarchy: acquisition (usually
raw), processing, and analysis (see Fig. 2). While
in theory preserving some element of data lineage, the se-
mantics in practice are not always clear or observed, and can
cause confusion when creating and using NWB files.

For example, should raw behavior time series acquired from
microcontrollers be in acquisition, a module called
behavior in acquisition, or in the same behavior
module in processing that is often used to store post-
experiment processing such as DeepLabCut pose estimation?
From a data lineage point of view, it should be stored in
acquisition. But from an analysis point of view, doing
so spreads multiple fragments of behavior-related data across
multiple hierarchical levels and modules.

Returning to the example in Section 4.5 of two-color clas-
sification of cells, one solution is to save cell type with the
Suite2p segmentation table. However, since the classification
is not available at the time of Suite2p segmentation, and up-
dating HDF5 objects was buggy, we resorted to placing the
classification table in another module called cell_tag. As
the table was created with information from Suite2p, whose
outputs are in processing, we were unclear whether it
should be considered processing or analysis in terms
of lineage. However, in terms of usage, the table alone does
not constitute useful results, but must be combined with cal-
cium dependent fluorescence time series. Hence, we decided

to consider the table as processed data needed for analysis,
and save it in processing.

4.10. Lack of standard language In general, we have ex-
perienced a lack of common language to describe processing
applied to data, which impacts how such processes are docu-
mented in the NWB format. For instance, there are currently
many ways to normalize fluorescence data. Methods used
to obtain so-called dF/F0 can differ in parameter choices or
the algorithm itself (e.g. global z-scoring, quantile normal-
ization, or running normalization with additional filtering).
Some methods may attempt to compute dF/noise instead
(e.g. Inscopix CNMFE [66]). Often these choices are not ap-
parent in publications and require careful inspection of code,
if provided. Such nuances may affect how the data are used,
the assumptions of tools that analyze such data, and efforts to
replicate analyses.

As another example, we needed to save metadata about odor
stimuli, which led us to create our own extension (discussed
more in Section 5.3). We were not aware at the time that
our choices for metadata representation in the extension over-
laped with an emerging effort to describe odor stimuli called
pyrfume [52]. Both efforts involve technical components
such as designing the computational instantiation, while also
needing substantial and ongoing input from researchers to de-
cide how to capture odor information in a concise but scien-
tifically useful manner.

4.11. Timeliness of code contribution acceptance We
discovered Suite2p was dropping data from a second micro-
scope channel in its NWB file output. The issue was that the
NWB export function had been developed for only one mi-
croscope channel. Fig. 5 shows the timeline of the issue un-
til a fix was released. While fixing the issue internally took
around two months, it took around five months (including
time for us to complete a GitHub “pull request”) for the so-
lution to be available to the Suite2p community. This is a
long turnaround for what we considered to be a critical er-
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4.12 Off the shelf NWB conversion

ror, impacting all multicolor imaging analysis. We stress that
we appreciate the Suite2p team’s review and acceptance of
our code contribution. However, this experience illustrates
a general problem for research software development in the
open source community; researchers maintaining software
may not have the bandwidth to address every issue or feature
request in as timely a fashion as desired.

2022
Mar Apr May Jun Jul Aug Sep

Internal work
Raise issue

Fix issue

Community work
Raise issue

Work on PR
Merge PR

Fig. 5. Example of a broader community issue resolution timeline. This figure
illustrates the time that it took to fix the issue internally (i.e. two months), compared
to the time it took to fix the issue for the broader community (i.e. five months).

4.12. Off the shelf NWB conversion Some friction dur-
ing adoption of NWB can arise from the level of techni-
cal skill needed to be able to convert one’s data. When we
started the process of adopting NWB, the options available
were either to learn how to write our own data conversion
pipeline, or hire a consultant to do the technical work. In the
few years since, the NWB ecosystem has rapidly evolved.
More recently introduced tools miss some areas of need (e.g.
currently unsupported proprietary formats like Inscopix, or
Suite2p output with multiple channels) , but they solve many
popular use cases.

NeuroConv [53] is a rapidly advancing Python package from
core NWB developers to make it easier to convert from a va-
riety of common neuroscience data formats. It is a flexible
low-code solution for use in one-off conversion or as part of a
lab pipeline. One benefit of NeuroConv is that it includes util-
ities to get metadata from proprietary formats with minimal
effort. Additionally, it can combine files from multiple data
sources with functionality to align timestamps, and contains
utilities for file path inference to aid batch-conversion based
on user-defined data organization. Coupled with the devel-
opment of the NWB Graphical User Interface for Data Entry
(NWB GUIDE) [67], which uses NeuroConv as a back-end,
NWB is considerably more accessible to newcomers than it
was at the time we began our adoption.

These recent changes highlight a risk to early adopters of
any standard, that one may build features from scratch that
quickly become obsolete after further developments from the
community. If we started this project today, we would lever-
age these community projects, developing less custom code
and using existing features from more widely tested projects
used by the entire NWB community.

4.13. An indirect benefit of using NWB is improved
data awareness As a standard, NWB encourages good
data practice. For example, each data array that is written in a
file needs to have a timestamps vector attached to it, and ide-
ally all the timestamps of the same NWB file would be on a
common axis. This includes the acquisition timezone, mean-
ing an NWB file can easily be analyzed in different parts of
the world without risking timestamps collision.

In our case, standardization encouraged better timestamp-
ing with custom instruments and sensors like Arduino and
Teensy boards. For example, before we developed our own
data pipeline, one lab researcher manually specified inter-
trial intervals in their analysis code, as it was cumbersome
to extract the (nearly constant) intervals from the recording
system. Now they have access to the actual recorded times-
tamps for the inter-trial intervals and can catch and correct
any system errors. Also, using NWB encouraged us to align
timestamps across all data sources, simplifying downstream
analysis work.

A general by-product of moving our lab to NWB is increased
awareness regarding data management itself. Lab members
have become more familiar with general principles such as
FAIR [30] and emerging best practices. Although still har-
boring some skepticism of the direct usefulness to their re-
search, lab members have become more welcoming to incor-
porating NWB into their workflows, and are supportive of the
broader benefits, such as for data sharing.

5. Creating NWB extensions allows fitting do-
main specific use cases
An emerging standard with as broad a domain as NWB will
naturally struggle to cover some applications, especially in
less common experimental settings. Making the standard ex-
tensible creates a way for individual users or research groups
to add functionality beyond what is created by the core de-
velopers. The NWB standard thus includes “neurodata ex-
tensions” to incorporate new data types. Extensions may be
used individually, shared with the community, or, if the exten-
sion addresses a fundamental gap in NWB coverage, submit-
ted for review to be added to the standard NWB data types.
We have had some success using and creating NWB exten-
sions to fit our specific research needs, though challenges and
questions remain.

5.1. Existing Neurodata Extensions Before deciding to
create an extension, researchers should check the Neurodata
Extensions Catalog (NDX Catalog), a community led effort
to create a central repository of contributions that, by design,
arise from widely distributed effort [68]. The NDX catalog
includes extensions that support diverse types of data such
as TTL pulses [69], and popular acquisition systems such as
miniscopes [70]. However, not all Neurodata Extensions are
listed on the NDX Catalog, since anyone can create and post
an extension on lab websites, GitHub, or other sites.
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5.2. Lab-specific metadata One use case of NWB ex-
tensions is to record lab-specific metadata with greater
flexibility than is supported in base NWB. We created
ndx-fleischmann-labmetadata [71] to store addi-
tional detail on recorded brain areas, and descriptions of the
experiment and animals. Within our general type of experi-
ment we use many variations (Box 1), such as 1-photon or 2-
photon calcium imaging, single or multicolor imaging, head-
fixed or freely-moving animals, and passively presented or
task-driven stimulation. NWB standard is missing fields to
describe some of the complexity in these experiments; for ex-
ample, we use multicolor imaging to retrograde label projec-
tions from the imaging site to distant brain regions, and there
is no field to indicate this second (projection) area. Storing
such additional experimental description as text in the top-
level description field would be harder for quality control at
time of entry, and less efficient to parse for queries at analy-
sis time. With our extension, a subset of information ends up
being repeated with standard locations in the NWB file; for
example, imaging site is also stored under ophys, as sug-
gested in the NWB documentation. However, we chose to
centralize our metadata in one place, to make querying, anal-
ysis, and aggregation of multiple data files easier.

5.3. Odor stimulus metadata Another use case for ex-
tensions is to describe stimuli that do not fit within base
NWB types. Our calcium imaging experiments use pri-
marily odor stimuli, and some non-chemical stimuli such
as sound. We are not aware of an extension to adequately
describe these stimuli, and hence a year ago developed
ndx-odor-metadata [72]. We characterize odor stim-
ulus with standardized information automatically obtained
from PubChem [73] using a PubChem CID (chemical IU-
PAC names, molecular formulas, and weights); dilution de-
tails such as concentration and solvent; metadata that are use-
ful for analysis such as stimulus category (e.g. control or con-
ditioned stimulus) and common chemical names; and identi-
fiers to cross-reference with associated time series. The ex-
tension also allows non-odor stimuli to be described in plain
text.

A major challenge with such extension development, al-
though not an issue specific to NWB, is that there may not be
community consensus or documentation to be used as start-
ing points for extension design. For odor stimuli, it was not
obvious what type and level of description would be nec-
essary for both in-lab analysis and general reproducibility.
Fleischmann lab RSEs used existing spreadsheets as starting
examples, and learned only later that outside collaborators
had independently created a package, pyrfume [52], for
documentation of odorants. Future work could better har-
monize these two efforts at stimulus metadata capture. More
generally, the technical development of metadata capture can
grow only in concert with the research community’s under-
standing of what the standards for metadata ought to be.

5.4. Documentation for extension development For
most labs, we expect extension development will be out of

reach unless the lab has access to personnel with strong cod-
ing experience. A general challenge for us was that the
available documentation could be confusing, and informa-
tion was scattered across multiple sources, including docu-
mentation pages for PyNWB [74], HDMF [75, 76], NWB
Overview [77], and NWB Schema [78], and also in GitHub
issues or examples on Slack. It would have been helpful in
particular to have a larger set of use cases, examples, and/or
tutorials. We stress that the NWB development team was
highly responsive through GitHub, Slack, and emails, and
their help was very valuable for our development work. In
the future, we hope such support could be complemented by
more comprehensive documentation.

5.5. Social challenges in extension development One
lesson learned from our experience is that creating the exten-
sion is only a technical part of a solution. Sustained engage-
ment with researchers to choose, document, and record key
information is the more fundamental requirement, especially
if metadata standards motivating the extension are unsettled.

As a lab, we continue to refine what metadata we should
track and how we should capture it. Some changes arise from
variation in experiments conducted by different lab members.
Some changes reflect interest in adding further types of infor-
mation, such as water restriction details for experiments with
behavioral training, as inspired by an International Brain Lab
extension [79]. An extension may lower the technical bar-
rier to metadata capture, but only if the extension is aligned
with researchers’ goals and practices, including changes over
time.

A closely related challenge is that many metadata records
must be captured post hoc instead of automatically during
acquisition or pre-processing. Some acquisition systems lack
features to enter metadata in machine-readable formats (nec-
essary for software to correctly place that information in
NWB files) during the experiments. Even where real time
capture is possible, the systems may be cumbersome to use,
leading researchers to avoid comprehensive entry and check-
ing of metadata. We usually need to work with researchers
to collect metadata records in machine-readable formats af-
ter experiments and preprocessing are completed, leading to
increased work and greater risk of errors and missing infor-
mation.

We also have felt a tension between building minimal exten-
sions that serve immediate needs versus investing in a longer
development project that may have greater generalizability.
For example, our odor stimulus extension provides for sin-
gle odorant but not mixed odor stimuli. Though we generally
do not use multi-component odors, they are used by some of
our close collaborators [80]. We also designed our extension
to build on PubChem standardization, which presents diffi-
culties when studying custom-made or undocumented natu-
ral odors [81]. These limitations in our current implementa-
tion may become impediments as neuroscience tends towards
more natural and ethologically relevant behaviors [82]. How-
ever, surmounting these challenges will require substantial
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5.6 Framework extensions

engagement from a broad section of the olfaction research
community, before any technical contributions such as exten-
sions can have a substantial impact.

5.6. Framework extensions An extension is built on top
of another NWB object. This object can be one of the
four minimally structured objects (Groups, Attributes, Links,
Datasets) of the base NWB specification [83], but it is of-
ten better for an extension to build on a previously developed
high level data type that already captures much of the struc-
ture of the information being added. In addition to making it
easier to develop the extension without starting from scratch,
such inheritance can promote greater consistency by keeping
almost all data organization the same as a “common” data
type, except for the particular items added by the new ex-
tension. For example, a new fluorescence imaging data type
might add beam path parameters to an existing fluorescence
imaging type, to provide for a scope that uses non-uniform
laser scanning but otherwise collects standard data.

In cases where NWB is missing a more basic category of
data, there is motivation to develop extensions intended to
be used specifically as building blocks for other extensions.
We refer to these types of building blocks as “framework ex-
tensions”. In addition to facilitating development and serv-
ing as illustrative examples, framework extensions could add
technical precision to discussions if a research community is
working to converge to a consensus data standard.

For example, DeepLabCut and Facemap output time series of
spatial locations of points on an animal’s body. While these
outputs can be stored generically as simply behavior, they are
both instances of a more specific concept of “pose”, and can
be stored using the ndx-pose extension [84] (the DLC de-
velopers offer the DLC2NWB utility to ease conversion using
this extension, but we are not aware of an analogous tool for
Facemap).

An example framework extension that could have broad util-
ity would store results from principal component analysis
(PCA) (one of the authors, TP, participated in discussing
this idea at a 2023 NWB Hackathon, but it is not yet im-
plemented as far as we know). PCA is used widely as a
simple data dimensionality reduction technique. There are
several variants of PCA, such as jPCA used to find low di-
mensional structure in the activity of large neural ensem-
bles [85]. Moreover, many analysis applications, including
Facemap and MoSeq [86, 87], use PCA as a preprocessing
step. A general PCA extension could serve as a useful frame-
work to incorporate these different uses within a consistent
NWB format. The framework extension would define com-
ponent eigenvalues, eigenvectors, and projections of the orig-
inal time series.

As another example, BEADL [88] and ArControl [55] model
behaviors in a finite state machine framework. The exten-
sion ndx-beadl [89] is available for BEADL outputs, and
it is possible to adapt the extension to handle ArControl out-
put [56]. However, as finite state machines are an impor-
tant class of models for analysis, there could be value in es-

tablishing a more general framework extension, for exam-
ple called ndx-finite-state, from which extensions
for these specific analysis packages would inherit.

5.7. Wishlist for NWB extensions Development, cata-
loging [68, 90] and updating extensions could be more
streamlined.

First, researchers may develop software using different repos-
itory hosting (e.g. GitLab instead of GitHub). It could
be more inclusive for the ndx-template extension tem-
plate [91] to not explicitly assume GitHub as the code repos-
itory. The template might also take into account both the
Python Package Index (PyPI) and Anaconda as potential
package repositories.

Second, currently, to be added to the NDX Catalog, new
extensions are submitted via Pull Requests for review on
GitHub. Some seem to be approved instantly while others
are either stale (e.g. ndx-pose), or took around 2 months to
be approved (see Fig. 6). While the timeline for open source
development is often highly variable, researchers and RSEs
have to balance many priorities, and usually cannot dedicate
much time to the approval process.

To simplify the review process, a bot could check critical
requirements before asking for intervention from an NWB
maintainer (taking some inspiration from the Conda-Forge
community). For example, the bot could check if the pack-
age is already published on PyPI, if all the metadata fields in
the ndx-meta.yaml file are filled in, and if all tests pass.
Also, the bot could help for updating the extensions, say if
the extension template or if some dependency has changed.
Also, publishing to PyPI could be streamlined, for example
by having a CI job in the ndx-template extension tem-
plate [91] that supports automatic publishing to PyPI.

Additionally, we suggest adding some metadata to improve
quality checks, centralization, and organization of exten-
sions. To maintain quality control, the catalog could allow
entries to be tagged to indicate whether an extension has
been reviewed, similar to the distinction of pre-print from
peer-reviewed publications. To tackle fragmentation of ex-
tensions and tools, it might be helpful to also allow op-
tional specification of the type and lineage of each entry,
e.g. whether it is built upon another extension, and if it
is a template extension for demonstration purposes. Addi-
tionally, it is unclear whether lab-specific extensions (e.g.
ndx-ibl for the International Brain Laboratory (IBL) and
ours ndx-fleischmann-lab) are encouraged to be sub-
mitted. It could still be useful for them to be deposited with
an indication of lab specificity, as they can be a valuable
source of examples that other labs can adopt or mirror.

We hope to see depositing on the community catalog become
more flexible and timely. A disadvantage is a potential re-
duction of quality control. However, more engagement, con-
tribution, feedback, and discussion from the community is
in general more likely to accelerate development of the stan-
dard. Extensions may serve as a starting point for such dis-
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Pull request & timeline annotations

Fig. 6. Pull requests (PR) for publishing on the extension catalog may take a long time to be accepted. The data were obtained using GitHub API from
nwb-extensions/staged-extensions repository, on 2023-07-30. Out of 23 extension requests, about 61 % (14/23) has been merged (bars ended with purple
vertical sticks) and added to the catalog, while 13 % (3/23) is closed without being added to the catalog (bars ended with red crosses). The review times for finished PRs vary,
ranging between within a day to less than 5 months for most of them, with the exception being 1.6 years for the closed request for ndx-tan-lab-mesh-attributes.
About 26 % of the extension PRs (6/23) are still open, with 3 out of 6 being stale for more than a year. A notable one is ndx-pose for pose estimation extension (PR 31) is
open for almost a year (Sep 2022). Note: any closed/merged PR finished within less than 5 days is artificially extended to be 5 days for visibility.

cussions, responding to community needs.

6. Considerations for sharing on DANDI
In this section, we look at the last step of the data conver-
sion workflow: data has already been converted to NWB and
the researcher wants to share the data on a public respoitory,
for example to accompany a published paper. Here we look
at DANDI [36], as the default solution recommended by the
NWB team.

6.1. Potential surprises with data validation One pos-
sible source of friction is validating the data before being able
to push to DANDI. DANDI enforces a set of rules that NWB
files have to meet before upload and publication as a “dan-
diset” is allowed, intended to promote adherence to consis-
tent metadata standards and ensure the FAIRness [30] of the
archive. If files do not meet those requirements, researchers
may need to (iteratively) redo their conversion with altered
settings. This can be an unpleasant surprise, as one might
have thought that having converted to NWB itself would be
sufficient.

One solution could be to advertise and describe the NWBIn-
spector tool [92], used to validate NWB files, in the documen-
tation and tutorials on how to create NWB files. It would also
be helpful to be able to run NWBInspector from PyNWB to
check files and get feedback at the time of initial conversion.
This solution may soon be implemented when using no-code
tools like NWB-GUIDE [67] (see also Section 4.12), though
it did not exist when we started our projects.

Another point of friction can arise if a dandiset has already
been published but needs to be updated later, for example
[93]. In our case, the validation rules changed after we first
released the dandiset, and files that were already published
became retroactively non-compliant. We had to go back to
conversion from raw data. In general, if the cost to update a
dandiset is too high, the risk is that researchers may decide
not to correct stale or inaccurate information.

A potential solution would be to allow version-controlled
inspection (Fig. 7). There could be at least two levels of
NWBInspector passing. Files that pass the most recent
NWBInspector can always be uploaded. But if some files
already on DANDI get updated and fail the most recent in-
spection, they could still be uploadable given they passed the
previous working version of NWBInspector. Similar to CI
systems, logs of fail/pass versions could be attached to the
archive for developers and others to inspect. This approach
would allow for researchers to flexibly upload corrections
and updates, while still being transparent about compliance
status. Failures could be reported to the DANDI team, allow-
ing them to work with researchers to follow up-to-date best
practices.

6.2. Modification of file organization Another potential
surprise is that the DANDI upload tool renames and reor-
ganizes files into a “flatter” hierarchy. For example, one
could have their NWB files organized by experiments with
a nested directory structure organized by areas of recording,
but DANDI refactors this structure to be organized only by
subject directories, and moreover renames files by subject
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6.3 Alternatives to DANDI and general strategy with data repositories

v0.2.3
(latest PyPi version)
passed: 2022-03-11

NWB Inspector

First published
on DANDI 

v0.2.3
(last successful version)
passed: 2022-04-17

v0.3.9
(latest PyPi version)
passed: 2022-04-17

NWB Inspector

Published paper

Proposed version-controlled checks for NWB Inspector on DANDI Archive

v0.3.9
(last successful version)
passed: 2025-02-23

v2.5.19
(latest PyPi version)
failed: 2025-02-23

NWB Inspector

Correction

1 month

easy to fix if failed latest

~ 3 years

not easy to always comply to latest

finalize data correct metadata

last successful version is
minimum version to pass
to allow upload on DANDI
if fail latest PyPI version

pass last successful version
failed the latest version

can still upload to DANDI

Fig. 7. Illustration for proposed version-controlled checks for NWB Inspector when uploading to DANDI Archive. To be published on DANDI Archive, datasets should
always be checked and pass the latest version of NWB Inspector (first and second boxes), to maintain compliance with best practices. When existing datasets need updating,
they may fail the latest version, for example 3 years after publication, to correct metadata (third box on left). The proposed solution is to allow for checking against the
last working version for existing datasets, in cases of non-compliance with the latest version. This still allows researchers to still disseminate updates and correction, while
maintaining transparency for the community in terms of non-compliance. This can be allowed a limited number of times, and failures can also be reported to DANDI Archive
maintainers.

name and data type. DANDI also modifies external file links
stored inside each NWB file to stay consistent with these file
changes.

Changing the file structure may break existing analysis
pipelines based on the original paths. Thus, it may be use-
ful to think about data archiving from the start of a project.
In that case, publishing the data to DANDI from the begin-
ning of the project, with occasional updates, would make the
researcher aware of this reorganization and account for it in
their own code. In addition to saving effort at publication
time, such a workflow would enhance analysis reproducibil-
ity. However, the cost is some increased overhead while data
collection is still occurring.

6.3. Alternatives to DANDI and general strategy with
data repositories DANDI has strong restrictions on data
file formats. While there is currently an exception on DANDI
[60] that contains free-form source data (e.g. Python and
NPY files), it is unclear whether this feature will officially
be supported in the long run. Alternative repositories include
Zenodo [32], Figshare [31], GIN G-Node [35], OSF [34],
or university data storage, potentially with Globus endpoints
[94]. These data archives can include NWB data and all re-
lated data such as raw data, pre-conversion data, analysis and
summary data.

However, it may not always be feasible to centralize all
data, and researchers might instead use distributed stor-
age. Large source data, including raw and pre-conversion
data, can be deposited on university storage solutions, with
Globus endpoints if possible, to take advantage of univer-
sity’s less restrictive quotas, assuming these data would rarely
be accessed, updated, or used after conversion. Converted
NWB files can then be deposited on DANDI, on which re-
searchers can benefit from specialized software tools, as well
as DANDI Hub, a Jupyter Hub with free computing resources
on Amazon Web Services (AWS). Lastly, along with code

and documentation, researchers can continuously work on
data with their analysis pipelines using solutions such as
GIN G-Node, GitHub/GitLab with a DataLad [63] or DVC
[95, 96] backend, to manage aggregated and analyzed data
and code. This helps with version-controlled code and data,
without the restrictions from DANDI Archive.

We note that if researchers decide to decentralize storage,
they would need to manually link these different archives
together, preferably with DOI numbers and in machine-
readable metadata on these different providers. The outlined
example strategy separate the three archives (e.g. univer-
sity storage, DANDI Archive, and GIN G-Node) by an as-
sumed increasing update frequency, i.e. raw data files are
less frequently updated compared to NWB files, and NWB
files less than files with analysis or modelling results. With
distributed storage, especially if these assumptions do not ap-
ply, researchers would need to manually keep track and link
the updates regularly.

7. Suggestions to streamline data reading
and writing

7.1. Data exploration tool guidance The NWB ecosys-
tem has many applications available for a researcher to
quickly get a sense of what is inside an NWB file. As of
writing, there are four general and 15 specialized data tools
listed on the NWB Overview [77], and new tools continue
to emerge. The number of active projects indicates a vibrant
development community. However, new users may be over-
whelmed by the choices, and not know how, except through
brute force trials, to determine which tools are best for them.
Moreover, consolidation around a few key applications could
help channel valuable developer efforts into refining and im-
proving existing tools, some of which still exhibit rough spots
like freezing on large files or frequent crashes.

This situation is common in open source development
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ecosystems (for example, there are many partially redundant
but not interchangeable python plotting packages). A differ-
ence here is that the NWB standard was created and contin-
ues to be maintained through a somewhat centralized devel-
opment team, with an explicit agenda to be adopted as a ubiq-
uitous standard for neurophysiology. There is thus a stronger
case that innovation arising from widely dispersed develop-
ment should be balanced by centralized advising over third
party tools.

For example, primary NWB documentation could maintain
a section with some (automatically scraped) metrics for each
tool (e.g. number of GitHub stars, number of downloads on
PyPI) next to accessible summaries of the features of each
tool, and descriptions of who their target users are.

A more assertive approach would select recommended tools,
on the basis of features, robustness (e.g. resolution of bugs,
handling of large file sizes), and probable longevity. For
data exploration, some natural candidates could be NWB-
Widgets [97], which is also integrated with DANDI Hub,
and NeuroSift [41], which is an interactive visualization tool
that works directly in the user’s browser. Both tools support
streaming data from the DANDI Archive. Again, the goal
would be to provide soft incentives that encourage contribu-
tors to focus on existing tool refinement, while still leaving
space for new specialized projects in early development.

7.2. Data access pain points

7.2.1. Figuring out where data is We find new NWB users
often struggle to find and access information, with confusion
arising from where the information is in the internal hierar-
chy, or because the datatype of a particular object does not
intuitively describe what it is. Many scientists look first for
modules based on source of data (e.g. fluorescence, behav-
ior, stimuli). But access under the NWB schema runs first
through stage of processing (e.g. acquisition, pre-processing,
analysis) and then descends through multiple levels of hierar-
chy to data source. That is, researchers may employ a mental
sequence of where is my behavior (say) then what processing
has been applied, which is the opposite ordering from what
NWB currently uses (Fig. 2).

An outlier is that stimulus is at the top of the hierarchy,
with acquisition and processing. However, stim-
ulus time series sometimes need additional processing, for
example, to transform raw digital outputs recorded by be-
havior control devices into a semantically useful tabular for-
mat. Should such stimuli be saved within stimulus (with
processing stage indicated in name or description at-
tributes), or in a module inside processing? Additionally,
tables cannot be saved inside stimulus, and only limited
metadata can be associated. It is recommended to use dedi-
cated modules or objects designed to save metadata, for ex-
ample devices for recording or lab_metadata for lab-
specific metadata. This again runs into the potential issue of
categorically similar objects being widely separated.

# R e t r i e v e d a t a wi th PyNWB API
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 1D a r r a y o f t i m e s t a m p s
t = n w b _ f i l e . p r o c e s s i n g [ " b e h a v i o r " ] [ " i n t e r p d _ 5 0 0 "

↪→ ] [ " t h e r m _ h i g h p a s s e d " ] . t i m e s t a m p s [ : ]

# 1D a r r a y o f d a t a
therm = n w b _ f i l e . p r o c e s s i n g [ " b e h a v i o r " ] [ "

↪→ i n t e r p d _ 5 0 0 " ] [ " t h e r m _ h i g h p a s s e d " ] . d a t a [ : ]

# R e t r i e v e d a t a t h r o u g h a custom wrapper
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Use wrapper t o c r e a t e an a l i a s t o t h e d a t a
i n t e r p d = MyCustomWrapper (

n w b _ f i e l d =" p r o c e s s i n g " ,
p a t h _ t o _ i n t e r f a c e =[ " b e h a v i o r " , " i n t e r p d _ 5 0 0 " ] ,
n w b _ f i l e = n w b _ f i l e

)

# A f t e r one − t ime s e t u p , s i m p l e r d a t a r e t r i e v a l
t , therm = i n t e r p d . g e t ( " t h e r m _ h i g h p a s s e d " )

Listing 1. Data loading with NWB API and with a wrapper

7.2.2. Cumbersome syntax to extract data A challenge for
new users that is parallel to understanding object locations
is confusion over the addressing syntax, i.e. when to use
dot syntax, object1.object2, or Python dictionary syn-
tax, object1["object2"]. The syntactic variation de-
rives from the structure of the HDF5 file specification and
the NWB schema, both of which are generally unknown and
opaque to users.

Two obvious alternative possibilities for API syntax would
simply make one or the other access method universal
(e.g. through a Python DataClass). Either choice would ob-
scure the real differences between types of objects in the
NWB implementation (e.g. a fluorescence object including
metadata attributes, vs a numpy array just of the dF/F0 val-
ues), but we are not convinced that most users benefit from
having these differences encoded in syntax.

Another possibility that is both general and convenient
for programmatic access would support universal reference
via “path strings”, such as nwbfile[pathstr] where
pathstr=’object1/object2/object3’.

7.2.3. Lab specific wrapper workaround In its current state,
long hierarchies in NWB files (e.g. processing → behav-
ior → interpolated → position → data) are slow to type
and hard to remember, and tend to clutter code. A com-
mon method to hide complexity in an individual user’s anal-
ysis code is to first create “wrappers” (Listing 1). For
example, a wrapper may define simple “get()” meth-
ods that automatically skip parts of the object path, e.g.
data=nwb_wrapper.get(’dFF0’). Wrappers can
also add convenience features, such as aggregating different
time series into a single data frame, and, wrappers can be
stored in dictionaries for easy looping over multiple files.
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7.2 Data access pain points

Current NWB
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but needs a special API
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trials
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�� fluid_nwb.get(nwbfile, tags="neural")
Narrow down with
�� fluid_nwb.get(nwbfile, tags=["neural", "proc"])

neural stim. tuning tables
neural corr. w/ behaviors
PCA of behaviors
...
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behavior

neural

neural
neural

behavior

external
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neural

stim

neural
neural

behavior

raw
raw

proc

proc

proc

proc
raw

proc

metadata
metadata
metadata
metadata

raw

proc
proc

proc

(a)

(c)

(b)

pynwb: nwbfile.processing["ophys"]["Fluorescence"]["RoiResponseSeries"].data[�]
�� fluid_nwb.get(nwbfile, alias="raw_F")

(d)

Fig. 8. A proposed design layer for the NWB standard to assist with the usage of data. The nature of the current NWB structure is hierarchical and tends to be
organized by processing stages; panel (a) shows an example of this structure. Accessing relevant data requires knowledge of where they are, which may be multiple
levels deep, for example, bottom box (d) with PyNWB to access raw fluorescence data. The proposed “decorative layer” allows for more “fluid” interaction with NWB
via additional specifications in NWB objects, to assist querying, exploration and analysis with more user/lab/community’s control and customization, without breaking the
existing hierarchical NWB structure. Panel (b) illustrates examples of adding tags and aliases. Tags can be more specific, multi-faceted and customized to concepts of
recording/analysis perspective oriented that users tend to look for (e.g. neural, behavior, stim, external), as well as higher level details such as processing stages (e.g. raw,
proc). Aliases and/or pointers allow users to add names for objects that are most frequently accessed, or expected to be so. Taking advantage of this “decorative layer”, users
and developers may design a fluid_nwb API to interact with NWB files in a more flexible, less verbose, manner, for example with tags in box (c) and aliases in box (d).

On the other hand, wrappers may be complex to design
and may introduce a maintenance burden if they aim to
work across the usually wide range of experiments and data
streams that arise even within a single lab. In practice, then,
individual researchers often end up partially or completely
rewriting similar helper code with each new project.

7.2.4. Suggestion for better data access: tags and aliases
A potential solution for better data access is a feature we call
“fluid NWB” (Fig. 8), allowing for a list of tags for each ob-
ject, including “flat” objects such as timeseries, tables, and
modules. Users could add annotations and categories as they
see fit, and specialized communities could evolve their own
norms for “virtual” file organization, without confounding
the underlying standard. Aliases, to our knowledge, are cur-

rently not possible, but the integration of such a feature may
allow for users to have easier and quicker access, and could
also aid documentation. Supporting custom tags for neuro-
data types is currently an open GitHub issue [98].

Tags and aliases would be a “decorative layer” on top of the
NWB standard, allowing for more “fluid” data structures,
which researchers and developers could exploit for usabil-
ity and discoverability. However, in the absence of conver-
gence on naming norms within a given research area, over-
lapping tags, complex tag formatting, and tag relations could
proliferate to the point of no longer being useful. For exam-
ple, should cardiac recordings (EKG), saccades, and arena
locations all carry a common behavior tag? Should muscle
recordings (EMG) be tagged both as neural and behavior in a
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brain-machine-interface (BMI) study? The added flexibility
of an alias or tag system would produce the greatest benefit if
complemented by a process to secure community consensus
around tagging conventions.

8. Conclusion
Standardization is an essential component of modern data
management, analysis, and sharing, and NWB has introduced
a comprehensive and versatile data science ecosystem for
neuroscience research. However, our experience suggests
that implementation of NWB workflows at the level of indi-
vidual labs or research collaborations still requires significant
effort and commitment. Furthermore, given the rapid pace
of technology development in neuroscience research, we ex-
pect that the development and implementation of adequate
data science tools will continue to pose new challenges for
some time. Solutions to these challenges will likely require
a reorganization of neuroscience research to facilitate inter-
disciplinary collaborations, including additional institutional
support not just for the creation of new tools, but also for their
adoption by research labs at all levels of technical capability.
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